Supplying pressurized gas to plasma arc torch consumables and related systems and methods

Information

  • Patent Grant
  • 10413991
  • Patent Number
    10,413,991
  • Date Filed
    Wednesday, December 28, 2016
    8 years ago
  • Date Issued
    Tuesday, September 17, 2019
    5 years ago
Abstract
In some aspects, a consumable for plasma arc torch that generates a predetermined plenum pressure from a substantially constant preset gas supply pressure from a plasma arc torch power supply, where the substantially constant preset gas supply being used to support plasma generation for a selection of multiple consumable components that each generate a different plasma plenum pressure for carrying out different processes, can include a proximal portion shaped to connect to the plasma arc torch and define a plasma gas inlet region; a distal portion shaped to define a gas outlet; and a pressure-matching stage comprising a pressure wall defining at least one flow path between the gas inlet region and the gas outlet configured to establish sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce a pressure of the flow of gas to the predetermined plenum pressure.
Description
TECHNICAL FIELD

This application relates generally to plasma arc torches, and more specifically to supplying pressurized gas to plasma arc torch consumables and related systems and methods.


BACKGROUND

Thermal processing torches, such as plasma arc torches, are widely used in the heating, cutting, gouging, and marking of materials. A plasma arc torch generally includes an electrode, a nozzle having a central exit orifice mounted within a torch body, electrical connections, passages for cooling, and passages for arc control fluids (e.g., plasma gas). A swirl ring can be used to control fluid flow patterns in the plasma chamber formed between the electrode and the nozzle. In some torches, a retaining cap can be used to maintain the nozzle and/or swirl ring in the torch body. In operation, the plasma arc torch produces a plasma arc, which is a constricted jet of an ionized gas with high temperature and sufficient momentum to assist with removal of molten metal. Power used to operate plasma arc torches can be controlled by a power supply assembly of a plasma operating system. The power supply can include a plurality of electronic components configured to control and supply an operational current to the plasma arc torch, the gas flows provided to the plasma arc torch, and, in some cases, motion of the plasma arc torch.


Some plasma arc torch consumable components require different gas pressures to be provided to the torch by the power supply based on their operation, purpose, design, etc. For example, plasma gouging operations typically use a significantly lower pressure plasma gas than some plasma cutting operations. This means that a variable gas pressure regulator, either manual or auto-adjusting, is traditionally used to adjust the gas pressure in the power supply system. Such regulators can be complex and unreliable. Additionally, manual adjustment, for example, by an operator, can also be prone to error by which the operator incorrectly sets the plasma gas pressure for a particular consumable or operation.


SUMMARY

In some aspects, plasma arc torch systems can include a plasma arc torch configured to receive at least one consumable; and a power supply having a gas pressure regulator for providing pressurized gas to the torch, the gas pressure regulator being set to provide a substantially constant preset gas supply pressure to the torch for use with a plurality of different consumables that generate a predetermined plenum pressure from a set input supply pressure, the different consumables being configured for carrying out different processes, where at least one of the different consumables includes a proximal portion shaped to connect to the plasma arc torch and define a gas inlet region; a distal portion shaped to define a gas outlet; and a pressure-matching stage comprising a pressure wall defining at least one flow path between the gas inlet region and the gas outlet configured to establish sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce a pressure of the flow of gas to the predetermined plenum pressure.


In some aspects, a consumable for a plasma arc torch that generates a predetermined plenum pressure from a substantially constant preset gas supply pressure from a plasma arc torch power supply, where the substantially constant preset gas supply being used to support plasma generation for a selection of multiple consumable components that each generate a different plasma plenum pressure for carrying out different processes, can include a proximal portion shaped to connect to the plasma arc torch and define a plasma gas inlet region; a distal portion shaped to define a gas outlet; and a pressure-matching stage comprising a pressure wall defining at least one flow path between the gas inlet region and the gas outlet configured to establish sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce a pressure of the flow of gas to the predetermined plenum pressure.


Embodiments can include one or more of the following features.


In some embodiments, the at least one flow path of the pressure-matching stage can include a set of metering holes located between the gas inlet region and the gas outlet. The set of metering holes can be oriented to be axially and circumferentially offset from a set of swirl ring openings.


In some embodiments, the substantially constant preset gas supply pressure can be set by a pressure regulator. In some embodiments, the fixed pressure drop can be at least about 15 psi. The fixed pressure drop can be at least about 45 psi. In some cases, the fixed pressure drop can correspond to a desired operating characteristic of the plasma arc torch.


In some embodiments, the consumable can be a nozzle. In some embodiments, the consumable can be shaped to seat in a swirl ring and engage a surface that is positioned proximally with respect to a set of swirl ring openings in the swirl ring. In some embodiments, the gas outlet can be a nozzle bore.


In some aspects, a nozzle for a plasma arc torch that generates a selected plenum pressure from a substantially fixed supply pressure input provided by a power supply, where the substantially fixed supply pressure being used to support plasma generation for a selection of different nozzles that each generate a different plasma plenum pressure to complete different material processing procedures, can include a distal section defining a bore; and a proximal section shaped to matingly engage a swirl ring, the proximal section defining an outer plenum flow surface shaped to complement an inner plenum flow surface of the swirl ring to together define a pressure metering chamber, the proximal section defining one or more metering orifices fluidly connecting the pressure metering chamber to an interior surface of the nozzle in fluid communication with the bore.


Embodiments can include one or more of the following features.


In some embodiments, the one or more metering orifices can be sized to induce a predefined pressure drop between the pressure metering chamber and the interior surface of the nozzle. In some embodiments, the nozzle can be a gouging nozzle and the one or more metering orifices can include 4 holes. In some embodiments, the one or more metering orifices can be canted about a central axis of the nozzle. In some embodiments, the outer plenum flow surface defines a recess formed about the nozzle. In some cases, the recess can include a substantially annular channel formed about the nozzle.


In some embodiments, the proximal section can be shaped to fit within a portion of the swirl ring. The proximal section of the nozzle can include a rear sealing portion to form a fluid seal against the swirl ring. The proximal section of the nozzle can include a forward sealing portion to form a fluid seal against a complementary retaining cap.


Embodiments described herein can have one or more of the following advantages.


In some aspects, the systems and methods described herein can be more efficient and easier to use than some conventional systems, such as those having adjustable pressure regulators in the power supply. For example, pressure regulators in the power supply typically add complexity and cost to the system. Additionally, pressure regulators in the power supply allow for undesirable lag between the power supply and torch, which decreases the robustness and dependability of the plasma torch system. However, the consumables and torch configurations described herein (e.g., the pressure matching stage of the consumable) can reduce the need for the costly regulator components by being configured to generate a variety of different plasma plenum pressures from a constant input pressure provided from the power supply.


Additionally, control algorithms used to operate the pressure regulators can also be complex and unreliable under a variety of operating conditions. This unreliability can result in suboptimal performance and cuts, wear on the system and valve, and additional points of failure. Whereas, the systems and methods described herein in which the adjustable pressure regulator is generally obviated due to plasma pressure being set at the torch using the consumable can be used to alleviate these insufficiencies, which can reduce warranty issues for gas control systems. As a result, the systems and methods described herein can also reduce costs for users and/or manufacturers.


In some cases, the systems and methods herein can also be easier to use than some conventional systems. For example, rather than an operator having to manually set up a system by selecting a proper gas pressure (e.g., looking up a pressure in a cut chart and turning a dial or switch to set a plasma gas pressure), which can be prone error, the consumables described herein having a dedicated pressure-matching stage can simply be installed into a torch, and then upon use, the plasma gas is delivered to the plenum at the predetermined desired plasma gas pressure automatically. Thus, the systems described herein can reduce (e.g., minimize) incorrect or improper system set ups. As a result, better cutting performance can be achieved. The systems and methods described herein can also be used to improve consumable tunability and specialization.


In a specific example application, the systems and methods described herein can allow for optimized gouging capability to be brought to even lower amperage systems where auto-gas regulation to switch between cutting and gouging modes is not currently available. Additionally, the concepts described herein can be integrated into a cartridge design to enhance ease of use when switching between cutting and gouging modes and allow more precise tunability in consumables.


In order to attain consistent cutting and gouging performance, a system can be designed such that it can maintain the following process gas flow characteristics:


a) Pressure at nozzle orifice;


b) Sufficiently large rate of change of pressure (delta pressure/delta time (dp/dt)) at electrode for fast electrode-nozzle separation; and


c) Swirl strength.


The swirl ring can typically be a shared part for both cutting and gouging. The hole pattern of the flow paths defining the flow-matching section can be a unique offset from center hole pattern that provides the following function:


a) Optimized swirl strength for both cutting and gouging pressures/flow-rates; and


b) Sufficiently large cross-sectional area in order to minimize delta p between electrode chamber and plenum.


In some embodiments (e.g., for a gouging nozzle/process application), these concepts described herein can be for a gouging nozzle that is designed to collect the gas flowing through the swirl ring holes and meter the flow entering the plasma chamber. This design induces a large pressure drop between the torch lead line and the plenum/electrode chamber. A specific orifice orientation and cross-sectional area can be used to achieve the desired process gas pressure and swirl strength. By controlling and adjusting the cross-sectional area and placement of these orifices, one is able to meter and manage the pressure drop and ultimately the pressures in the system to what is desired for a given process. It is understood that while holes and orifices in nozzles and swirl rings are described in detail herein, these descriptions are merely examples. Other approaches are being considered and examined and may be used in place of or in conjunction with the orifices described herein in detail.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of an example plasma torch system providing a consistent gas pressure to a series of consumable types, each of the consumables having a pressure-reducing component to generate a different plenum pressure.



FIG. 2 is a cross-sectional view of an example plasma arc torch having a consumable component with a pressure matching stage to reduce a consistent gas input pressure to a predetermined plasma plenum pressure for the consumable component.



FIG. 3 is a cross-sectional view of an example plasma arc torch having a consumable component defining a pressure metering chamber that generates a selected plenum pressure from a substantially fixed supply pressure input provided by a power supply.





DETAILED DESCRIPTION

In some aspects, the systems and methods described herein can include torch consumables having a plenum pressure-setting portion that is configured to receive a consistent gas pressure from a plasma arc system power supply and reduce the pressure to a desired, predetermined plenum pressure desired for carrying out a material processing operation with the given consumable. Using the consistent gas pressure and consumables with their own pressure-setting portion, consumables can simply be installed into a torch and used without requiring additional gas pressure adjustments or set up.


For example, referring to the schematic diagram of FIG. 1, in some aspects, a plasma arc torch system 50 can include a plasma arc torch 60 fluidly and electrically connected to a control system (e.g., a power supply) 75. The power supply 75 is configured to provide electricity and pressurized gas to the torch 60 for generating a plasma arc. For example, the power supply 75 can include a gas pressure control (e.g., a regulator) 80 that provides pressurized gas to the torch 60. The gas pressure regulator 80 can be set to provide a consistent (e.g., substantially constant, preset, substantially fixed) gas supply pressure 82 to the torch. In some embodiments, the gas supply pressure is preset (e.g., predetermined) for use for multiple consumable sets 100A, 100B, 100C, 100D and for different material processing procedures. In some embodiments, the different consumables can each be configured for carrying out a certain cutting persona with limited action by the system operator. A “cutting persona” is a set of parameters for a plasma arc cutting system that are customized for a particular kind of cut. For example, one user may want to cut as fast as possible and sacrifice consumable life. For this type of cut, a cutting persona that establishes a high current and gas flow can be desirable. Another user, such as one who is using a computer numeric controller (“CNC”)—controlled table mounted system, may want to select a cutting persona optimized for long life or fine cutting. For this type of cut, a cutting persona that establishes a low current and/or gas flow rate can be desirable. In some embodiments, the consumable can include a nozzle (e.g., a cutting nozzle or a gouging nozzle), a cartridge, a shield, or a cartridge assembly including one or more individual components.


Gas can be provided to the regulator 80 from a gas source 77, such as a high pressure gas supply line. In some cases, the substantially constant preset gas supply pressure is provided by a line pressure provided to the plasma arc torch power supply from the gas source 77.


As depicted, in some cases, the power supply 75 can be configured to provide the consistent gas pressure to the different consumables 100A, 100B, 100C, 100D and the consumables can then generate a predetermined plenum pressure 84A, 84B, 84C, 84D from the supply pressure for plasma generation to carry out different processes, such as fine cutting, gouging, etc. Thus, the various consumables can be installed into the torch 60 for a material processing operation without requiring an adjustment of gas pressure by the operator and/or the power supply/at the system. To generate the predetermined plenum pressure, as discussed below, the consumables can each have a pressure-setting portion (e.g., pressure-matching portion (e.g., a pressure-matching stage)) 110A, 110B, 110C, 110D that reduces the gas pressure within the consumable from the set pressure 82 (e.g., 55 psi) of the gas provided by the power supply to the varied/desired plenum pressure(s) 84A, 84B, 84C, 84D.


As depicted in FIG. 1, by way of example only, gas can be provided to the power supply at approximately 100 pounds per square inch (psi) from a gas source. The pressure regulator 80 can set the pressure of the gas to approximately 55 psi to consistently provide plasma gas to a variety of consumables at 55 psi. The pressure-matching stages 110A, 110B, 110C, 110D of each consumable then further reduce the plasma gas pressure to the desired plenum pressure for carrying out an intended operation. As illustrated, consumable 100A can have a pressure-matching stage 110A that decreases the pressure by approximately 8 psi to generate a plasma plenum pressure 84A of approximately 47 psi. Consumable 100B can have a pressure-matching stage 110B that decreases the pressure by approximately 23 psi to generate a plasma plenum pressure 84B of approximately 28 psi. Consumable 100C can have a pressure-matching stage 110C that decreases the pressure by approximately 27 psi to generate a plasma plenum pressure 84C of approximately 28 psi. Consumable 100D can have a pressure-matching stage 110D that decreases the pressure by approximately 15 psi to generate a plasma plenum pressure 84D of approximately 40 psi.


Various structural features and configurations can be used to generate a pressure-dropping flow blockage to obstruct gas entering the consumable and reduce its pressure. For example, referring to FIGS. 2 and 3, a consumable (e.g., a nozzle) 100 can include a proximal portion 120 and a distal portion 140. The proximal portion 120 can be shaped to connect to the plasma arc torch and define a plasma gas inlet region 130. In some examples, the consumable is shaped to engage (e.g., seat or fit within) a swirl ring 300 and engage a surface that is positioned proximally with respect to a set of swirl ring openings 310 in the swirl ring. The swirl ring openings 310, as indicated by the dashed lines in the figures, can be canted about the longitudinal axis of the torch. In some examples, the proximal section 120 extends into the swirl ring 300. The distal portion 140 can be shaped to define a portion of a plasma plenum and a gas outlet (e.g., exit orifice, nozzle bore) 142.


The consumable also includes a pressure-matching stage 150 to reduce the pressure of incoming plasma gas from the consistent gas supply pressure from the regulator to a predetermined plenum pressure. The pressure-matching stage 150 can include a blockage (e.g., a flow obstruction (e.g., a plasma gas flow blocking wall)) that intercepts and limits plasma gas flowing from the torch body into the nozzle to reduce the pressure of the gas that enters the nozzle. This flow blocking wall reduces a cross-sectional area of a portion of the gas flow path from the regulator to the plenum. This reduction in cross-sectional area induces a specific/targeted pressure drop. As a result of the flow blocking wall, high pressure plasma gas delivered to the torch can undergo a pressure reduction as it enters the nozzle, reducing the pressure to a desired and predetermined plasma pressure.


For example, the pressure-matching stage 150 can include a pressure wall defining at least one flow path (e.g., pressure-loss inducing hole) between the gas inlet region 130 and the gas outlet 142. The flow path 122 is configured to establish a fixed pressure drop (e.g., a predetermined set pressure drop) of a flow of gas flowing through the pressure-matching stage that is sufficient to reduce the pressure of the flow of gas to the predetermined plenum pressure (e.g., a selected plasma pressure) desired for a particular application. The fixed pressure drop can be any of various amounts to reduce the incoming gas pressure to a desired plenum pressure and can correspond to a desired operating characteristic of the plasma arc torch. The fixed pressure drop can be about 80 psi to about 35 psi (e.g., about 85 psi to about 50 psi (e.g., about 65 psi)). In some embodiments, the pressure drop can be at least 15 psi, at least 30 psi, at least 45 psi, or more.


In some embodiments, the at least one flow path 122 is in the form of a set of one or more openings (e.g., orifices, holes (e.g., metering holes)) disposed between the gas inlet region 130 and the gas outlet 142. For example, a nozzle can include a series of holes 122 formed around the proximal region 120 that permit the plasma gas blocked by the flow blocking wall to pass into the inside of the nozzle to reduce to the desired plenum pressure. In some cases, the holes 122 can be oriented to be axially and circumferentially offset from a set of swirl ring openings 310. Offsetting the holes 122 from the swirl ring openings 310 can help distribute gas around the nozzle and reduce flow variation due to axial misalignment.


The configuration of the holes, for example, the size, location, and number of holes can be based on the intended pressure drop to be induced. For example, the pressure-matching stage can include about 4 holes to about 24 holes (e.g., about 8 holes to about 16 holes (e.g., about 12 holes)). In some examples, a gouging nozzle can include four holes. The holes can have any of various sizes (e.g., widths (e.g., diameters)). For example, the holes can have a width (e.g., diameter) that is about 0.015 inches to about 0.060 inches. Additionally, the total cross-sectional area of the flow paths formed by the holes can be about 0.002 square inches to about 0.05 square inches. By way of example, a nozzle can include a pressure-matching stage in the form of 6 holes distributed around its proximal region, where each hole is about approximately 0.021 inches wide and the resulting pressure reduction is approximately 30 psi. In some embodiments, the holes are canted (e.g., angled) about a central axis of the nozzle. For example, the holes can be canted at an angle of about 15 degrees to about 30 degrees.


Referring more specifically to FIG. 3, in some embodiments, a consumable (e.g., nozzle) 200 can include a pressure metering chamber 220. The pressure metering chamber 220 can be partially defined by the nozzle 200 and partially defined by the swirl ring 300 in which the nozzle is matingly engaged. For example, a proximal section of the nozzle can define an outer plenum flow surface 222 shaped to complement an inner plenum flow surface 224 of the swirl ring that together define the pressure metering chamber 220, the proximal section defining one or more metering orifices fluidly connecting the pressure metering chamber to an interior surface of the nozzle in fluid communication with the bore.


In some embodiments, as depicted in FIG. 3, the outer plenum flow surface 222 defines a recess formed about the nozzle. In some cases, the recess includes a substantially annular channel formed about the nozzle. For example, the recess and the inner plenum flow surface of the swirl ring together form the pressure metering chamber 220.


The nozzle, swirl ring, and complementary retaining cap can include mating features by which they can engage one another. For example, as depicted in FIG. 2, the nozzle can include a step feature 126 against which the swirl ring 300 can seat. As depicted in FIG. 3, a nozzle can include a forward sealing portion 226 to form a fluid seal against a complementary retaining cap 400. For example, a metal-to-metal surface seal can be used. The nozzle can also include a rear sealing portion 228 to form a fluid seal against the swirl ring 300. For example, the swirl ring can define a surface (e.g., a recess (e.g., a step recess)) against which the rear sealing portion can seat.


In some embodiments, the pressure matching stage can also reduce the inlet pressure by “spilling off” some of the air to atmosphere or elsewhere in the stack up/torch. For instance not only is there a pressure drop but there is a vent or separate path besides the plenum where a portion of the gas is directed to further adjust/manipulate the pressure.


While some of the examples above have been described with respect to implementing the methods and systems herein into plasma torch nozzles, other embodiments are possible. For example, as mentioned above, the consumables having pressure-limiting features can include cartridges. In some aspects, different cartridges can accept the same (e.g., consistent or constant) gas pressure from the plasma power supply and produce different plenum pressures. In some embodiments, the different gas pressures can be achieved using a built-in, fixed, predetermined pressure reducing or matching component that reduces the nominal input pressure to whatever operating pressure that particular cartridge needs. Because the pressure and flow of a particular cartridge is typically fixed, a flow path (e.g., a simple orifice) might be used for this purpose. This flow path may include a pressure matching stage as described herein which induces a pressure drop in the gas flow between the system and the plenum, tailoring the pressure value for the given process/style of cartridge.


While various embodiments have been described herein, it should be understood that they have been presented and described by way of example only, and do not limit the claims presented herewith to any particular configurations or structural components. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary structures or embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. A consumable for a plasma arc torch that generates a predetermined plenum pressure from a substantially constant preset gas supply pressure from a plasma arc torch power supply, the substantially constant preset gas supply being used to support plasma generation for a selection of multiple consumable components that each generate a different plasma plenum pressure for carrying out different processes, the consumable comprising: a proximal portion shaped to connect to the plasma arc torch and define a gas inlet, wherein the gas inlet is fluidly connected to the substantially constant preset gas supply;a distal portion shaped to define a gas outlet, wherein the gas outlet is fluidly connected to the gas inlet by at least one flow path, the flow path including at least the gas inlet, the gas outlet, and a pressure matching stage, the pressure-matching stage defined between the gas inlet and the gas outlet,the pressure-matching stage comprising a pressure wall and at least one metering holewherein the at least one metering hole and the pressure wall are configured to reduce a cross sectional flow area of the at least one flow path, thereby establishing sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce the substantially constant preset gas supply pressure of the flow of gas to the predetermined plenum pressure.
  • 2. The consumable of claim 1 wherein the at least one flow path of the pressure-matching stage comprises a set of metering holes located between the gas inlet region and the gas outlet.
  • 3. The consumable of claim 2 wherein the set of metering holes are oriented to be axially and circumferentially offset from a set of swirl ring openings.
  • 4. The consumable of claim 1 wherein the substantially constant preset gas supply pressure is set by a pressure regulator.
  • 5. The consumable of claim 1 wherein the fixed pressure drop is at least about 15 psi.
  • 6. The consumable of claim 1 wherein the fixed pressure drop is at least about 45 psi.
  • 7. The consumable of claim 1 wherein the fixed pressure drop corresponds to a desired operating characteristic of the plasma arc torch.
  • 8. The consumable of claim 1 wherein the consumable comprises a nozzle.
  • 9. The consumable of claim 1 wherein the consumable is shaped to seat in a swirl ring and engage a surface that is positioned proximally with respect to a set of swirl ring openings in the swirl ring.
  • 10. The consumable of claim 1 wherein the gas outlet is a nozzle bore.
  • 11. A nozzle for a plasma arc torch that generates a selected plenum pressure from a substantially fixed supply pressure input provided by a power supply, the substantially fixed supply pressure being used to support plasma generation for a selection of different nozzles that each generate a different plasma plenum pressure to complete different material processing procedures, the nozzle comprising: a distal section defining a bore; anda proximal section shaped to matingly engage a swirl ring, the proximal section defining an outer plenum flow surface shaped to complement an inner plenum flow surface of the swirl ring to together define a pressure metering chamber, the proximal section defining one or more metering orifices;the distal section and the proximal section being fluidly connected by at least one flow path, the at least one flow path including at least the distal section, the proximal section, and the pressure metering chamber;the pressure metering chamber comprising one or more pressure walls,wherein the one or more metering orifices and the one or more pressure walls are configured to reduce a cross sectional flow area of the at least one flow path, thereby establishing sufficient fixed pressure drop of a flow of gas flowing through the pressure metering chamber to reduce the substantially fixed supply pressure of the flow of gas to the selected plenum pressure.
  • 12. The nozzle of claim 11 wherein the one or more metering orifices are sized to induce a predefined pressure drop between the pressure metering chamber and the interior surface of the nozzle.
  • 13. The nozzle of claim 11 wherein the nozzle comprises a gouging nozzle and the one or more metering orifices comprise 4 holes.
  • 14. The nozzle of claim 11 wherein the proximal section is shaped to fit within a portion of the swirl ring.
  • 15. The nozzle of claim 11 wherein the one or more metering orifices are canted about a central axis of the nozzle.
  • 16. The nozzle of claim 11 wherein the outer plenum flow surface defines a recess formed about the nozzle.
  • 17. The nozzle of claim 16 wherein the recess comprises a substantially annular channel formed about the nozzle.
  • 18. The nozzle of claim 11 wherein the proximal section of the nozzle comprises a rear sealing portion to form a fluid seal against the swirl ring.
  • 19. The nozzle of claim 11 wherein the proximal section of the nozzle comprises a forward sealing portion to form a fluid seal against a complementary retaining cap.
  • 20. A plasma arc torch system comprising: a plasma arc torch configured to receive at least one consumable; anda power supply having a gas pressure regulator for providing pressurized gas to the torch, the gas pressure regulator being set to provide a substantially constant preset gas supply pressure to the torch for use with a plurality of different consumables that generate a predetermined plenum pressure from a set input supply pressure, the different consumables being configured for carrying out different processes,at least one of the different consumables comprising: a proximal portion shaped to connect to the plasma arc torch and define a gas inlet region, wherein the gas inlet is fluidly connected to the substantially constant preset gas supply;a distal portion shaped to define a gas outlet, wherein the gas outlet is fluidly connected to the gas inlet by at least one flow path, the flow path including at least the gas inlet, the gas outlet, and a pressure matching stage, the pressure matching stage defined between the gas inlet and gas outlet, the pressure matching stage the pressure-matching stage comprising a pressure wall and at least one metering hole;wherein the at least one metering hole and the pressure wall are configured to reduce a cross sectional flow area of the at least one flow path, thereby establishing sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce the substantially constant preset gas supply pressure of the flow of gas to the predetermined plenum pressure.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/272,154, filed Dec. 29, 2015 and titled “Nominal Input Pressure to Plasma Consumables and Plasma Gouging Consumables,” the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (124)
Number Name Date Kind
3018360 Engel Jan 1962 A
3518401 Mathews Jun 1970 A
3914573 Muehlberger Oct 1975 A
4034250 Kiselev et al. Jul 1977 A
4311897 Yerushalmy Jan 1982 A
4519835 Gauvin et al. May 1985 A
4682005 Marhic Jul 1987 A
4733052 Nilsson et al. Mar 1988 A
4748312 Hatch et al. May 1988 A
4914271 Delzenne et al. Apr 1990 A
4967055 Raney et al. Oct 1990 A
5018670 Chalmers May 1991 A
5023425 Severance, Jr. Jun 1991 A
5170033 Couch, Jr. et al. Dec 1992 A
5208441 Broberg May 1993 A
5309683 Hockett May 1994 A
5317126 Couch, Jr. et al. May 1994 A
5390964 Gray, Jr. Feb 1995 A
5409164 Delzenne et al. Apr 1995 A
5440477 Rohrberg et al. May 1995 A
5556562 Sorenson Sep 1996 A
5717187 Rogozinski et al. Feb 1998 A
5796067 Enyedy et al. Aug 1998 A
5844196 Oakley Dec 1998 A
5860849 Miller Jan 1999 A
5874707 Iida et al. Feb 1999 A
5886315 Lu et al. Mar 1999 A
5897059 Muller Apr 1999 A
5897795 Lu et al. Apr 1999 A
5994663 Lu Nov 1999 A
6069339 McGrath et al. May 2000 A
6084199 Lindsay et al. Jul 2000 A
6096993 Marhic et al. Aug 2000 A
6133542 Dvorak et al. Oct 2000 A
6147318 Marhic Nov 2000 A
6156995 Severance, Jr. et al. Dec 2000 A
6163008 Roberts et al. Dec 2000 A
6169264 Marhic Jan 2001 B1
6320156 Yamaguchi et al. Nov 2001 B1
6337460 Kelkar et al. Jan 2002 B2
6525292 Girold Feb 2003 B1
6657162 Jung et al. Dec 2003 B1
6703581 Jones et al. Mar 2004 B2
6713711 Conway et al. Mar 2004 B2
6717096 Hewett et al. Apr 2004 B2
6881921 Homer-Richardson et al. Apr 2005 B2
6888092 Walters May 2005 B2
6903301 Jones et al. Jun 2005 B2
6914211 Brasseur et al. Jul 2005 B2
6919526 Kinerson et al. Jul 2005 B2
6936786 Hewett et al. Aug 2005 B2
6946616 Kinerson et al. Sep 2005 B2
6989505 MacKenzie et al. Jan 2006 B2
7030337 Baker et al. Apr 2006 B2
7161111 Schneider Jan 2007 B2
7202440 Hewett et al. Apr 2007 B2
7326874 Brasseur et al. Feb 2008 B2
7375302 Twarog et al. May 2008 B2
7411149 Schneider Aug 2008 B2
7423235 Severance, Jr. Sep 2008 B2
7598473 Cook et al. Oct 2009 B2
7615720 Sanders Nov 2009 B2
7671294 Belashchenko et al. Mar 2010 B2
7737383 Hussary et al. Jun 2010 B2
7759599 Hawley et al. Jul 2010 B2
8035055 Twarog et al. Oct 2011 B2
8089025 Sanders Jan 2012 B2
8115136 Mather et al. Feb 2012 B2
8203095 Storm et al. Jun 2012 B2
8373084 Salsich Feb 2013 B2
8389887 Liebold et al. Mar 2013 B2
8395076 Matus Mar 2013 B2
8395077 Duan et al. Mar 2013 B2
8455786 Fang Jun 2013 B2
8541710 Brandt Sep 2013 B2
8546719 Warren, Jr. et al. Oct 2013 B2
8575510 Laurish et al. Nov 2013 B2
8581139 Severance, Jr. Nov 2013 B2
8624150 Simek et al. Jan 2014 B2
8698306 Yu et al. Apr 2014 B2
8759715 Narayanan et al. Jun 2014 B2
8921731 Krink et al. Dec 2014 B2
20020117482 Hewett et al. Aug 2002 A1
20020117483 Jones et al. Aug 2002 A1
20020117484 Jones et al. Aug 2002 A1
20030148709 Anand et al. Aug 2003 A1
20040169018 Brasseur et al. Sep 2004 A1
20040195217 Conway et al. Oct 2004 A1
20060016789 Mackenzie et al. Jan 2006 A1
20060289396 Duan et al. Dec 2006 A1
20060289404 Hawley et al. Dec 2006 A1
20060289406 Helenius et al. Dec 2006 A1
20070045241 Schneider et al. Mar 2007 A1
20080217305 Sanders Sep 2008 A1
20090045174 Haberler et al. Feb 2009 A1
20090152255 Ma et al. Jun 2009 A1
20090230095 Liebold et al. Sep 2009 A1
20090230097 Liebold et al. Sep 2009 A1
20090277882 Bornemann Nov 2009 A1
20100078408 Liebold et al. Apr 2010 A1
20100084381 Indraczek et al. Apr 2010 A1
20100264120 Reinke et al. Oct 2010 A1
20110284502 Krink et al. Nov 2011 A1
20120012560 Roberts et al. Jan 2012 A1
20120012565 Zhang et al. Jan 2012 A1
20120103946 Krink et al. May 2012 A1
20120181257 Mather et al. Jul 2012 A1
20120246922 Hussary et al. Oct 2012 A1
20120248073 Conway et al. Oct 2012 A1
20120261392 Barnett et al. Oct 2012 A1
20130043222 Leiteritz et al. Feb 2013 A1
20130043224 Leiteritz et al. Feb 2013 A1
20130087535 Barnett et al. Apr 2013 A1
20130126487 Crowe May 2013 A1
20130264317 Hoffa Oct 2013 A1
20140021172 Sanders et al. Jan 2014 A1
20140069895 Brine et al. Mar 2014 A1
20140113527 Lindsay Apr 2014 A1
20140217069 Griffin et al. Aug 2014 A1
20140217070 Pikus et al. Aug 2014 A1
20150076819 Mather et al. Mar 2015 A1
20150127137 Brandt May 2015 A1
20160120015 Crowe Apr 2016 A1
20160174353 Mitra et al. Jun 2016 A1
Foreign Referenced Citations (13)
Number Date Country
202013010576 Feb 2014 DE
0875329 Nov 1998 EP
1117279 Jul 2001 EP
1893004 Feb 2008 EP
S62176685 Aug 1987 JP
4688450 Nov 2004 JP
4707108 Jul 2007 JP
2011014459 Jan 2011 JP
5744467 May 2012 JP
9621339 Jul 1996 WO
03089183 Oct 2003 WO
2013103466 Jul 2013 WO
2015073522 May 2015 WO
Non-Patent Literature Citations (12)
Entry
Amada America Inc.,“Amada WACS System”, Retrieved from the Internet at: http://www.amada.de/en/laser/wacs-system.html, printed Oct. 27, 2016, 2 pages.
Centricut catalog “2013-2014 Plasma torches and consumables”, 68 pages.
Drawing of Hypertherm Part No. 120934, 2000 (redacted).
International Search Report and Written Opinion to corresponding PCT Application No. PCT/US2015/044884. dated Dec. 9, 2015. 15 pages.
Invitation to Pay Additional Fees for corresponding PCT application: PCT/US2015/044884, Sep. 28, 2015, 9 pages.
Komatsu America Industries, LLC: “Next Generation Twister TFP6062—300A Power Supply Units”, Retrieved from the internet at: http://www.komatsuplasma.com/kai/ctd/en/tfp6062/pdf/TFP6062_Brochure.pdf, printed Oct. 27, 2016, 2 pages.
“Komatsu America Industries, LLC: “TFPL Twister Series”, Retrieved from the internet at: http://fineplasma.com/kai/ctd/en/tfp/pdf/eTFP.pdf, printed Oct. 27, 2016, 6 pages”.
Thermal Dynamics XT™-300 Brochure, May 7, 2007,http://www.mitausteel.lv/wp-content/uploads/2013/I I/V- XT300-Torch.pdf, 6 pages.
Thermal Dynamics, “XT-301 Automated Plasma Cutting Torch”, retrieved from the internet at: http://victortechnologies.com/IM_Uploads/DocLib_5849_XT-301%20Torch%20for%20use%20w%20Merlin%201000%20Brochure%20(63-2524)_Nov2005.pdf: Thermadyne.
Trumpf Inc.,“TruLaser: Cost-effective culling through thick and thin”, Retrieved from the internet at: http://www.us.trumpf.com/fileadmin/DAM/us.trumpf.com/Brochures/2D_Laser/TruLaser_US_10-12.pdf, printed Oct. 26, 2016, 32 pages.
Welding Magazine, “Plasma cutting system for mild steel”,Oct. 2008, p. 34 retrieved from the internet at: http://search.proquest.com/professional/printviewfile?accountid=157282.
Welding Magazine, “Plasma cutting system and products: new and or upgraded plasma cutting systems and torches have been designed to offer increased flexibility and to boost performance and productivity”. Retrieved from the internet at: http://search.proquest.com/professional/printviewfile?accountid=157282, Apr. 2007,pp. 36-38.
Related Publications (1)
Number Date Country
20170188447 A1 Jun 2017 US
Provisional Applications (1)
Number Date Country
62272154 Dec 2015 US