This application relates generally to plasma arc torches, and more specifically to supplying pressurized gas to plasma arc torch consumables and related systems and methods.
Thermal processing torches, such as plasma arc torches, are widely used in the heating, cutting, gouging, and marking of materials. A plasma arc torch generally includes an electrode, a nozzle having a central exit orifice mounted within a torch body, electrical connections, passages for cooling, and passages for arc control fluids (e.g., plasma gas). A swirl ring can be used to control fluid flow patterns in the plasma chamber formed between the electrode and the nozzle. In some torches, a retaining cap can be used to maintain the nozzle and/or swirl ring in the torch body. In operation, the plasma arc torch produces a plasma arc, which is a constricted jet of an ionized gas with high temperature and sufficient momentum to assist with removal of molten metal. Power used to operate plasma arc torches can be controlled by a power supply assembly of a plasma operating system. The power supply can include a plurality of electronic components configured to control and supply an operational current to the plasma arc torch, the gas flows provided to the plasma arc torch, and, in some cases, motion of the plasma arc torch.
Some plasma arc torch consumable components require different gas pressures to be provided to the torch by the power supply based on their operation, purpose, design, etc. For example, plasma gouging operations typically use a significantly lower pressure plasma gas than some plasma cutting operations. This means that a variable gas pressure regulator, either manual or auto-adjusting, is traditionally used to adjust the gas pressure in the power supply system. Such regulators can be complex and unreliable. Additionally, manual adjustment, for example, by an operator, can also be prone to error by which the operator incorrectly sets the plasma gas pressure for a particular consumable or operation.
In some aspects, plasma arc torch systems can include a plasma arc torch configured to receive at least one consumable; and a power supply having a gas pressure regulator for providing pressurized gas to the torch, the gas pressure regulator being set to provide a substantially constant preset gas supply pressure to the torch for use with a plurality of different consumables that generate a predetermined plenum pressure from a set input supply pressure, the different consumables being configured for carrying out different processes, where at least one of the different consumables includes a proximal portion shaped to connect to the plasma arc torch and define a gas inlet region; a distal portion shaped to define a gas outlet; and a pressure-matching stage comprising a pressure wall defining at least one flow path between the gas inlet region and the gas outlet configured to establish sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce a pressure of the flow of gas to the predetermined plenum pressure.
In some aspects, a consumable for a plasma arc torch that generates a predetermined plenum pressure from a substantially constant preset gas supply pressure from a plasma arc torch power supply, where the substantially constant preset gas supply being used to support plasma generation for a selection of multiple consumable components that each generate a different plasma plenum pressure for carrying out different processes, can include a proximal portion shaped to connect to the plasma arc torch and define a plasma gas inlet region; a distal portion shaped to define a gas outlet; and a pressure-matching stage comprising a pressure wall defining at least one flow path between the gas inlet region and the gas outlet configured to establish sufficient fixed pressure drop of a flow of gas flowing through the pressure-matching stage to reduce a pressure of the flow of gas to the predetermined plenum pressure.
Embodiments can include one or more of the following features.
In some embodiments, the at least one flow path of the pressure-matching stage can include a set of metering holes located between the gas inlet region and the gas outlet. The set of metering holes can be oriented to be axially and circumferentially offset from a set of swirl ring openings.
In some embodiments, the substantially constant preset gas supply pressure can be set by a pressure regulator. In some embodiments, the fixed pressure drop can be at least about 15 psi. The fixed pressure drop can be at least about 45 psi. In some cases, the fixed pressure drop can correspond to a desired operating characteristic of the plasma arc torch.
In some embodiments, the consumable can be a nozzle. In some embodiments, the consumable can be shaped to seat in a swirl ring and engage a surface that is positioned proximally with respect to a set of swirl ring openings in the swirl ring. In some embodiments, the gas outlet can be a nozzle bore.
In some aspects, a nozzle for a plasma arc torch that generates a selected plenum pressure from a substantially fixed supply pressure input provided by a power supply, where the substantially fixed supply pressure being used to support plasma generation for a selection of different nozzles that each generate a different plasma plenum pressure to complete different material processing procedures, can include a distal section defining a bore; and a proximal section shaped to matingly engage a swirl ring, the proximal section defining an outer plenum flow surface shaped to complement an inner plenum flow surface of the swirl ring to together define a pressure metering chamber, the proximal section defining one or more metering orifices fluidly connecting the pressure metering chamber to an interior surface of the nozzle in fluid communication with the bore.
Embodiments can include one or more of the following features.
In some embodiments, the one or more metering orifices can be sized to induce a predefined pressure drop between the pressure metering chamber and the interior surface of the nozzle. In some embodiments, the nozzle can be a gouging nozzle and the one or more metering orifices can include 4 holes. In some embodiments, the one or more metering orifices can be canted about a central axis of the nozzle. In some embodiments, the outer plenum flow surface defines a recess formed about the nozzle. In some cases, the recess can include a substantially annular channel formed about the nozzle.
In some embodiments, the proximal section can be shaped to fit within a portion of the swirl ring. The proximal section of the nozzle can include a rear sealing portion to form a fluid seal against the swirl ring. The proximal section of the nozzle can include a forward sealing portion to form a fluid seal against a complementary retaining cap.
Embodiments described herein can have one or more of the following advantages.
In some aspects, the systems and methods described herein can be more efficient and easier to use than some conventional systems, such as those having adjustable pressure regulators in the power supply. For example, pressure regulators in the power supply typically add complexity and cost to the system. Additionally, pressure regulators in the power supply allow for undesirable lag between the power supply and torch, which decreases the robustness and dependability of the plasma torch system. However, the consumables and torch configurations described herein (e.g., the pressure matching stage of the consumable) can reduce the need for the costly regulator components by being configured to generate a variety of different plasma plenum pressures from a constant input pressure provided from the power supply.
Additionally, control algorithms used to operate the pressure regulators can also be complex and unreliable under a variety of operating conditions. This unreliability can result in suboptimal performance and cuts, wear on the system and valve, and additional points of failure. Whereas, the systems and methods described herein in which the adjustable pressure regulator is generally obviated due to plasma pressure being set at the torch using the consumable can be used to alleviate these insufficiencies, which can reduce warranty issues for gas control systems. As a result, the systems and methods described herein can also reduce costs for users and/or manufacturers.
In some cases, the systems and methods herein can also be easier to use than some conventional systems. For example, rather than an operator having to manually set up a system by selecting a proper gas pressure (e.g., looking up a pressure in a cut chart and turning a dial or switch to set a plasma gas pressure), which can be prone error, the consumables described herein having a dedicated pressure-matching stage can simply be installed into a torch, and then upon use, the plasma gas is delivered to the plenum at the predetermined desired plasma gas pressure automatically. Thus, the systems described herein can reduce (e.g., minimize) incorrect or improper system set ups. As a result, better cutting performance can be achieved. The systems and methods described herein can also be used to improve consumable tunability and specialization.
In a specific example application, the systems and methods described herein can allow for optimized gouging capability to be brought to even lower amperage systems where auto-gas regulation to switch between cutting and gouging modes is not currently available. Additionally, the concepts described herein can be integrated into a cartridge design to enhance ease of use when switching between cutting and gouging modes and allow more precise tunability in consumables.
In order to attain consistent cutting and gouging performance, a system can be designed such that it can maintain the following process gas flow characteristics:
a) Pressure at nozzle orifice;
b) Sufficiently large rate of change of pressure (delta pressure/delta time (dp/dt)) at electrode for fast electrode-nozzle separation; and
c) Swirl strength.
The swirl ring can typically be a shared part for both cutting and gouging. The hole pattern of the flow paths defining the flow-matching section can be a unique offset from center hole pattern that provides the following function:
a) Optimized swirl strength for both cutting and gouging pressures/flow-rates; and
b) Sufficiently large cross-sectional area in order to minimize delta p between electrode chamber and plenum.
In some embodiments (e.g., for a gouging nozzle/process application), these concepts described herein can be for a gouging nozzle that is designed to collect the gas flowing through the swirl ring holes and meter the flow entering the plasma chamber. This design induces a large pressure drop between the torch lead line and the plenum/electrode chamber. A specific orifice orientation and cross-sectional area can be used to achieve the desired process gas pressure and swirl strength. By controlling and adjusting the cross-sectional area and placement of these orifices, one is able to meter and manage the pressure drop and ultimately the pressures in the system to what is desired for a given process. It is understood that while holes and orifices in nozzles and swirl rings are described in detail herein, these descriptions are merely examples. Other approaches are being considered and examined and may be used in place of or in conjunction with the orifices described herein in detail.
In some aspects, the systems and methods described herein can include torch consumables having a plenum pressure-setting portion that is configured to receive a consistent gas pressure from a plasma arc system power supply and reduce the pressure to a desired, predetermined plenum pressure desired for carrying out a material processing operation with the given consumable. Using the consistent gas pressure and consumables with their own pressure-setting portion, consumables can simply be installed into a torch and used without requiring additional gas pressure adjustments or set up.
For example, referring to the schematic diagram of
Gas can be provided to the regulator 80 from a gas source 77, such as a high pressure gas supply line. In some cases, the substantially constant preset gas supply pressure is provided by a line pressure provided to the plasma arc torch power supply from the gas source 77.
As depicted, in some cases, the power supply 75 can be configured to provide the consistent gas pressure to the different consumables 100A, 100B, 100C, 100D and the consumables can then generate a predetermined plenum pressure 84A, 84B, 84C, 84D from the supply pressure for plasma generation to carry out different processes, such as fine cutting, gouging, etc. Thus, the various consumables can be installed into the torch 60 for a material processing operation without requiring an adjustment of gas pressure by the operator and/or the power supply/at the system. To generate the predetermined plenum pressure, as discussed below, the consumables can each have a pressure-setting portion (e.g., pressure-matching portion (e.g., a pressure-matching stage)) 110A, 110B, 110C, 110D that reduces the gas pressure within the consumable from the set pressure 82 (e.g., 55 psi) of the gas provided by the power supply to the varied/desired plenum pressure(s) 84A, 84B, 84C, 84D.
As depicted in
Various structural features and configurations can be used to generate a pressure-dropping flow blockage to obstruct gas entering the consumable and reduce its pressure. For example, referring to
The consumable also includes a pressure-matching stage 150 to reduce the pressure of incoming plasma gas from the consistent gas supply pressure from the regulator to a predetermined plenum pressure. The pressure-matching stage 150 can include a blockage (e.g., a flow obstruction (e.g., a plasma gas flow blocking wall)) that intercepts and limits plasma gas flowing from the torch body into the nozzle to reduce the pressure of the gas that enters the nozzle. This flow blocking wall reduces a cross-sectional area of a portion of the gas flow path from the regulator to the plenum. This reduction in cross-sectional area induces a specific/targeted pressure drop. As a result of the flow blocking wall, high pressure plasma gas delivered to the torch can undergo a pressure reduction as it enters the nozzle, reducing the pressure to a desired and predetermined plasma pressure.
For example, the pressure-matching stage 150 can include a pressure wall defining at least one flow path (e.g., pressure-loss inducing hole) between the gas inlet region 130 and the gas outlet 142. The flow path 122 is configured to establish a fixed pressure drop (e.g., a predetermined set pressure drop) of a flow of gas flowing through the pressure-matching stage that is sufficient to reduce the pressure of the flow of gas to the predetermined plenum pressure (e.g., a selected plasma pressure) desired for a particular application. The fixed pressure drop can be any of various amounts to reduce the incoming gas pressure to a desired plenum pressure and can correspond to a desired operating characteristic of the plasma arc torch. The fixed pressure drop can be about 80 psi to about 35 psi (e.g., about 85 psi to about 50 psi (e.g., about 65 psi)). In some embodiments, the pressure drop can be at least 15 psi, at least 30 psi, at least 45 psi, or more.
In some embodiments, the at least one flow path 122 is in the form of a set of one or more openings (e.g., orifices, holes (e.g., metering holes)) disposed between the gas inlet region 130 and the gas outlet 142. For example, a nozzle can include a series of holes 122 formed around the proximal region 120 that permit the plasma gas blocked by the flow blocking wall to pass into the inside of the nozzle to reduce to the desired plenum pressure. In some cases, the holes 122 can be oriented to be axially and circumferentially offset from a set of swirl ring openings 310. Offsetting the holes 122 from the swirl ring openings 310 can help distribute gas around the nozzle and reduce flow variation due to axial misalignment.
The configuration of the holes, for example, the size, location, and number of holes can be based on the intended pressure drop to be induced. For example, the pressure-matching stage can include about 4 holes to about 24 holes (e.g., about 8 holes to about 16 holes (e.g., about 12 holes)). In some examples, a gouging nozzle can include four holes. The holes can have any of various sizes (e.g., widths (e.g., diameters)). For example, the holes can have a width (e.g., diameter) that is about 0.015 inches to about 0.060 inches. Additionally, the total cross-sectional area of the flow paths formed by the holes can be about 0.002 square inches to about 0.05 square inches. By way of example, a nozzle can include a pressure-matching stage in the form of 6 holes distributed around its proximal region, where each hole is about approximately 0.021 inches wide and the resulting pressure reduction is approximately 30 psi. In some embodiments, the holes are canted (e.g., angled) about a central axis of the nozzle. For example, the holes can be canted at an angle of about 15 degrees to about 30 degrees.
Referring more specifically to
In some embodiments, as depicted in
The nozzle, swirl ring, and complementary retaining cap can include mating features by which they can engage one another. For example, as depicted in
In some embodiments, the pressure matching stage can also reduce the inlet pressure by “spilling off” some of the air to atmosphere or elsewhere in the stack up/torch. For instance not only is there a pressure drop but there is a vent or separate path besides the plenum where a portion of the gas is directed to further adjust/manipulate the pressure.
While some of the examples above have been described with respect to implementing the methods and systems herein into plasma torch nozzles, other embodiments are possible. For example, as mentioned above, the consumables having pressure-limiting features can include cartridges. In some aspects, different cartridges can accept the same (e.g., consistent or constant) gas pressure from the plasma power supply and produce different plenum pressures. In some embodiments, the different gas pressures can be achieved using a built-in, fixed, predetermined pressure reducing or matching component that reduces the nominal input pressure to whatever operating pressure that particular cartridge needs. Because the pressure and flow of a particular cartridge is typically fixed, a flow path (e.g., a simple orifice) might be used for this purpose. This flow path may include a pressure matching stage as described herein which induces a pressure drop in the gas flow between the system and the plenum, tailoring the pressure value for the given process/style of cartridge.
While various embodiments have been described herein, it should be understood that they have been presented and described by way of example only, and do not limit the claims presented herewith to any particular configurations or structural components. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary structures or embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 62/272,154, filed Dec. 29, 2015 and titled “Nominal Input Pressure to Plasma Consumables and Plasma Gouging Consumables,” the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3018360 | Engel | Jan 1962 | A |
3518401 | Mathews | Jun 1970 | A |
3914573 | Muehlberger | Oct 1975 | A |
4034250 | Kiselev et al. | Jul 1977 | A |
4311897 | Yerushalmy | Jan 1982 | A |
4519835 | Gauvin et al. | May 1985 | A |
4682005 | Marhic | Jul 1987 | A |
4733052 | Nilsson et al. | Mar 1988 | A |
4748312 | Hatch et al. | May 1988 | A |
4914271 | Delzenne et al. | Apr 1990 | A |
4967055 | Raney et al. | Oct 1990 | A |
5018670 | Chalmers | May 1991 | A |
5023425 | Severance, Jr. | Jun 1991 | A |
5170033 | Couch, Jr. et al. | Dec 1992 | A |
5208441 | Broberg | May 1993 | A |
5309683 | Hockett | May 1994 | A |
5317126 | Couch, Jr. et al. | May 1994 | A |
5390964 | Gray, Jr. | Feb 1995 | A |
5409164 | Delzenne et al. | Apr 1995 | A |
5440477 | Rohrberg et al. | May 1995 | A |
5556562 | Sorenson | Sep 1996 | A |
5717187 | Rogozinski et al. | Feb 1998 | A |
5796067 | Enyedy et al. | Aug 1998 | A |
5844196 | Oakley | Dec 1998 | A |
5860849 | Miller | Jan 1999 | A |
5874707 | Iida et al. | Feb 1999 | A |
5886315 | Lu et al. | Mar 1999 | A |
5897059 | Muller | Apr 1999 | A |
5897795 | Lu et al. | Apr 1999 | A |
5994663 | Lu | Nov 1999 | A |
6069339 | McGrath et al. | May 2000 | A |
6084199 | Lindsay et al. | Jul 2000 | A |
6096993 | Marhic et al. | Aug 2000 | A |
6133542 | Dvorak et al. | Oct 2000 | A |
6147318 | Marhic | Nov 2000 | A |
6156995 | Severance, Jr. et al. | Dec 2000 | A |
6163008 | Roberts et al. | Dec 2000 | A |
6169264 | Marhic | Jan 2001 | B1 |
6320156 | Yamaguchi et al. | Nov 2001 | B1 |
6337460 | Kelkar et al. | Jan 2002 | B2 |
6525292 | Girold | Feb 2003 | B1 |
6657162 | Jung et al. | Dec 2003 | B1 |
6703581 | Jones et al. | Mar 2004 | B2 |
6713711 | Conway et al. | Mar 2004 | B2 |
6717096 | Hewett et al. | Apr 2004 | B2 |
6881921 | Homer-Richardson et al. | Apr 2005 | B2 |
6888092 | Walters | May 2005 | B2 |
6903301 | Jones et al. | Jun 2005 | B2 |
6914211 | Brasseur et al. | Jul 2005 | B2 |
6919526 | Kinerson et al. | Jul 2005 | B2 |
6936786 | Hewett et al. | Aug 2005 | B2 |
6946616 | Kinerson et al. | Sep 2005 | B2 |
6989505 | MacKenzie et al. | Jan 2006 | B2 |
7030337 | Baker et al. | Apr 2006 | B2 |
7161111 | Schneider | Jan 2007 | B2 |
7202440 | Hewett et al. | Apr 2007 | B2 |
7326874 | Brasseur et al. | Feb 2008 | B2 |
7375302 | Twarog et al. | May 2008 | B2 |
7411149 | Schneider | Aug 2008 | B2 |
7423235 | Severance, Jr. | Sep 2008 | B2 |
7598473 | Cook et al. | Oct 2009 | B2 |
7615720 | Sanders | Nov 2009 | B2 |
7671294 | Belashchenko et al. | Mar 2010 | B2 |
7737383 | Hussary et al. | Jun 2010 | B2 |
7759599 | Hawley et al. | Jul 2010 | B2 |
8035055 | Twarog et al. | Oct 2011 | B2 |
8089025 | Sanders | Jan 2012 | B2 |
8115136 | Mather et al. | Feb 2012 | B2 |
8203095 | Storm et al. | Jun 2012 | B2 |
8373084 | Salsich | Feb 2013 | B2 |
8389887 | Liebold et al. | Mar 2013 | B2 |
8395076 | Matus | Mar 2013 | B2 |
8395077 | Duan et al. | Mar 2013 | B2 |
8455786 | Fang | Jun 2013 | B2 |
8541710 | Brandt | Sep 2013 | B2 |
8546719 | Warren, Jr. et al. | Oct 2013 | B2 |
8575510 | Laurish et al. | Nov 2013 | B2 |
8581139 | Severance, Jr. | Nov 2013 | B2 |
8624150 | Simek et al. | Jan 2014 | B2 |
8698306 | Yu et al. | Apr 2014 | B2 |
8759715 | Narayanan et al. | Jun 2014 | B2 |
8921731 | Krink et al. | Dec 2014 | B2 |
20020117482 | Hewett et al. | Aug 2002 | A1 |
20020117483 | Jones et al. | Aug 2002 | A1 |
20020117484 | Jones et al. | Aug 2002 | A1 |
20030148709 | Anand et al. | Aug 2003 | A1 |
20040169018 | Brasseur et al. | Sep 2004 | A1 |
20040195217 | Conway et al. | Oct 2004 | A1 |
20060016789 | Mackenzie et al. | Jan 2006 | A1 |
20060289396 | Duan et al. | Dec 2006 | A1 |
20060289404 | Hawley et al. | Dec 2006 | A1 |
20060289406 | Helenius et al. | Dec 2006 | A1 |
20070045241 | Schneider et al. | Mar 2007 | A1 |
20080217305 | Sanders | Sep 2008 | A1 |
20090045174 | Haberler et al. | Feb 2009 | A1 |
20090152255 | Ma et al. | Jun 2009 | A1 |
20090230095 | Liebold et al. | Sep 2009 | A1 |
20090230097 | Liebold et al. | Sep 2009 | A1 |
20090277882 | Bornemann | Nov 2009 | A1 |
20100078408 | Liebold et al. | Apr 2010 | A1 |
20100084381 | Indraczek et al. | Apr 2010 | A1 |
20100264120 | Reinke et al. | Oct 2010 | A1 |
20110284502 | Krink et al. | Nov 2011 | A1 |
20120012560 | Roberts et al. | Jan 2012 | A1 |
20120012565 | Zhang et al. | Jan 2012 | A1 |
20120103946 | Krink et al. | May 2012 | A1 |
20120181257 | Mather et al. | Jul 2012 | A1 |
20120246922 | Hussary et al. | Oct 2012 | A1 |
20120248073 | Conway et al. | Oct 2012 | A1 |
20120261392 | Barnett et al. | Oct 2012 | A1 |
20130043222 | Leiteritz et al. | Feb 2013 | A1 |
20130043224 | Leiteritz et al. | Feb 2013 | A1 |
20130087535 | Barnett et al. | Apr 2013 | A1 |
20130126487 | Crowe | May 2013 | A1 |
20130264317 | Hoffa | Oct 2013 | A1 |
20140021172 | Sanders et al. | Jan 2014 | A1 |
20140069895 | Brine et al. | Mar 2014 | A1 |
20140113527 | Lindsay | Apr 2014 | A1 |
20140217069 | Griffin et al. | Aug 2014 | A1 |
20140217070 | Pikus et al. | Aug 2014 | A1 |
20150076819 | Mather et al. | Mar 2015 | A1 |
20150127137 | Brandt | May 2015 | A1 |
20160120015 | Crowe | Apr 2016 | A1 |
20160174353 | Mitra et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
202013010576 | Feb 2014 | DE |
0875329 | Nov 1998 | EP |
1117279 | Jul 2001 | EP |
1893004 | Feb 2008 | EP |
S62176685 | Aug 1987 | JP |
4688450 | Nov 2004 | JP |
4707108 | Jul 2007 | JP |
2011014459 | Jan 2011 | JP |
5744467 | May 2012 | JP |
9621339 | Jul 1996 | WO |
03089183 | Oct 2003 | WO |
2013103466 | Jul 2013 | WO |
2015073522 | May 2015 | WO |
Entry |
---|
Amada America Inc.,“Amada WACS System”, Retrieved from the Internet at: http://www.amada.de/en/laser/wacs-system.html, printed Oct. 27, 2016, 2 pages. |
Centricut catalog “2013-2014 Plasma torches and consumables”, 68 pages. |
Drawing of Hypertherm Part No. 120934, 2000 (redacted). |
International Search Report and Written Opinion to corresponding PCT Application No. PCT/US2015/044884. dated Dec. 9, 2015. 15 pages. |
Invitation to Pay Additional Fees for corresponding PCT application: PCT/US2015/044884, Sep. 28, 2015, 9 pages. |
Komatsu America Industries, LLC: “Next Generation Twister TFP6062—300A Power Supply Units”, Retrieved from the internet at: http://www.komatsuplasma.com/kai/ctd/en/tfp6062/pdf/TFP6062_Brochure.pdf, printed Oct. 27, 2016, 2 pages. |
“Komatsu America Industries, LLC: “TFPL Twister Series”, Retrieved from the internet at: http://fineplasma.com/kai/ctd/en/tfp/pdf/eTFP.pdf, printed Oct. 27, 2016, 6 pages”. |
Thermal Dynamics XT™-300 Brochure, May 7, 2007,http://www.mitausteel.lv/wp-content/uploads/2013/I I/V- XT300-Torch.pdf, 6 pages. |
Thermal Dynamics, “XT-301 Automated Plasma Cutting Torch”, retrieved from the internet at: http://victortechnologies.com/IM_Uploads/DocLib_5849_XT-301%20Torch%20for%20use%20w%20Merlin%201000%20Brochure%20(63-2524)_Nov2005.pdf: Thermadyne. |
Trumpf Inc.,“TruLaser: Cost-effective culling through thick and thin”, Retrieved from the internet at: http://www.us.trumpf.com/fileadmin/DAM/us.trumpf.com/Brochures/2D_Laser/TruLaser_US_10-12.pdf, printed Oct. 26, 2016, 32 pages. |
Welding Magazine, “Plasma cutting system for mild steel”,Oct. 2008, p. 34 retrieved from the internet at: http://search.proquest.com/professional/printviewfile?accountid=157282. |
Welding Magazine, “Plasma cutting system and products: new and or upgraded plasma cutting systems and torches have been designed to offer increased flexibility and to boost performance and productivity”. Retrieved from the internet at: http://search.proquest.com/professional/printviewfile?accountid=157282, Apr. 2007,pp. 36-38. |
Number | Date | Country | |
---|---|---|---|
20170188447 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62272154 | Dec 2015 | US |