Not applicable.
1. Field of the Invention
The invention herein described relates generally to stud wall systems and more particularly to a device for spacing and bridging studs in a stud wall, and connecting devices for use with spacing and bridging members.
2. Description of the Invention Background
Metal studs are used to form walls in building structures today, including load bearing walls such as exterior walls and curtain walls. In a typical installation, the metal studs are secured by screws at their lower ends to a bottom track secured to a floor, and extend at their upper ends into a top track secured to overhead joists which may form the framework for an upper floor. The upper ends of the studs generally also are secured to the top track. Exterior wall materials and/or wall boards or other panels are applied to the sides of the studs to form a closed wall structure.
The load bearing walls are subject to axial loads (compressive loads on the studs) applied to the studs through the overhead joists, and also may be subject to transverse loads (for example, exterior walls may be subject to transverse loads from wind effects) and lateral loads acting in the plane of the wall. These loads may cause flexing (including bowing, twisting or other deformation of the stud) or turning of the metal studs which may cause the walls to crack or otherwise be flawed or damaged. In load bearing walls, this problem is structural as well as aesthetic.
Bridging systems heretofore have been used to reinforce the metal stud walls by adding structural support between adjacent studs. Three known bridging systems include braced channel, welded channel, and block-and-strap bridging systems.
In the braced channel bridging system, an U-shape channel spans two or more metal studs, extending through a conduit hole in the web of each stud. An angled brace is fastened to both the channel and the web of the stud, generally with screws or rivets.
The welded channel bridging system also uses an U-shape channel which spans two or more metal studs and extends through conduit holes in the webs of the studs. The channel is then welded to the studs on one or both sides of the channel.
In the block-and-strap bridging system, sheet metal “blocks” are fastened between adjacent studs through bent tabs at their distal ends. Then a strap is fastened to one or both sides of two or more metal studs as well as to the respective side or sides of the blocks. Thus the studs are interconnected by the blocks between the studs as well as the straps along the sides of the studs, and the blocks and straps also are connected to each other.
The installation of metal stud wall systems, including the reinforcing bridging systems, heretofore has been a time consuming process. In a typical installation where the metal studs are fastened at their upper ends to a top track or channel, the attachment positions of the studs are marked off along the top track. Then each stud is fastened to each flange of the top track by screws. A ladder or a scaffold may be required if the top track is too high for the installer to reach. If a ladder is used, the installer climbs the ladder and fastens as many studs as he can reach to the near flange of the top track. Then, he must climb down the ladder, move the ladder along the wall so that when he again climbs the ladder he can reach the next one or more studs for fastening to the top track. If a scaffold is used, much more time is expended setting up the scaffold. After doing this along one side of the wall, the process is repeated on the other side of the wall to fasten the studs to the other flange of the top track.
The metal studs must then be fastened at their lower ends to a bottom track or channel. Each stud must be carefully aligned and squared before being fastened to the bottom track. In addition, the bridging members described above also must be installed to interconnect the metal studs at one or more points between the top and bottom tracks. Because of the time consuming nature of the installation process, fasteners can be missed or forgotten. In the welded channel bridging systems, welders and their equipment are relatively expensive, and welds also can be missed, or can be improperly formed. Defects in welds can be particularly difficult to detect.
In addition, once the studs are installed, other trades people, such as plumbers and electricians, may remove the bridging members between two studs to give them more room to work, running plumbing lines or electrical lines, for example. If the bridging member is not replaced, the strength of the wall may be reduced. It would be desirable to have a device for holding the bridging member in place. In certain situations, the bridging member may not fit tightly with the web of a stud and inadvertently come loose. It also would be desirable to have a solution to this problem.
In addition, there are certain circumstances that do not occur as often in a stud wall, but which present unusual problems for a mass-produced bridging member. For example, at a door jamb, where the studs generally are doubled up, typical mass-produced bridging members are not readily attachable to both of the studs.
Furthermore, it would be desirable to have a bracket for attaching an end of a bridging member against a flat surface. Another situation that occurs is an irregular stud spacing that does not readily accommodate and/or further complicates the installation of a bridging member. Accordingly, it would be desirable to have a system for quickly and easily installing a bridging member across irregularly spaced studs.
One embodiment of the present invention provides a bridging/spacing member having an inverted V-shape cross section with an overall width approximately equal to the width of the stud punch-outs for conduits, and a bracket having a generally similar cross-section attachable to the bridging/spacing member at any point. The bracket has a greater width with notches cut in distal ends thereof for engaging the web of a stud.
Another embodiment of the present invention also provides an angled clip having a first portion with a cross-section generally similar to the cross section of the bridging/spacing member and a second portion lying in a plate extending approximately at a right angle to the first portion for attachment to the face of a wall or stud without passing through a conduit punch-out. The present invention may also provide a jamb connector for engaging the webs of two adjacent metal studs and for connection to bridging/spacing members on either side. The present invention may also include a hold down bracket attachable above a bridging/spacing member across a conduit punch-out to prevent removal of the bridging/spacing member.
Still another embodiment of the present invention comprises a stud bridging/spacing member for the quick and easy spacing of a plurality of studs without measuring, while at the same time providing bridging between the studs. In this embodiment, the bridging function of the stud bridging/spacing member reinforces the studs to resist bending under axial loads and to resist rotation under transverse loads, providing a “shear” connection between the bridging/spacing member and the studs. The stud bridging/spacing member enables a substantial reduction in the amount of time needed to install a metal stud wall and, in particular, a load bearing wall, while at the same time functioning effectively to lock each stud against bowing, twisting or turning when subject to axial, transverse and/or lateral loads, thereby providing improved strength and rigidity to the metal stud wall.
Another embodiment of the invention comprises a metal stud wall including the stud bridging/spacing member and a method of assembling a metal stud wall using the stud bridging/spacing member. The angled slots, or more accurately the angled sides thereof, coact with the webs of the studs and may inhibit twisting, turning or bowing of the studs when subjected to axial and/or lateral and/or transverse loads. Moreover, as the loads increase, the angled slots can more tightly lock with the stud webs by providing the “shear” connecting between the bridging/spacing member and the webs of the studs.
According to one aspect of an embodiment of the invention, a stud bridging/spacing member includes an elongate member having at least three longitudinally spaced apart notches for receiving and engaging therein a web of a metal stud. The notches extend at an incline to the longitudinal axis of the elongate member to accommodate different gauges of metal studs while maintaining on-center spacing of studs when assembled in a stud wall.
According to one embodiment of the invention, the notches extend inwardly at an angle of about two to about fifteen degrees relative to a perpendicular to the longitudinal axis, and more preferably about five and a half degrees to about eight degrees, and most preferably about seven degrees. The notches have a width of about 0.050 inch (about 0.13 cm) to about 0.1 inch (about 0.2 cm), more preferably about 0.065 inch (about 0.16 cm) to about 0.080 inch (about 0.20 cm), and most preferably about 0.080 inch (about 0.20 cm). The elongate member is formed of fourteen, sixteen or eighteen gauge metal such as, for example, steel or galvanized steel).
In this embodiment, the at least three notches generally extend laterally inwardly from laterally outer edges of the elongate member. The elongate member may include a fourth notch equally spaced between at least two of the at least three notches. Each of the at least three notches in one portion of the elongate member may be laterally aligned with a corresponding notch in another portion of the elongate member, and/or the laterally aligned notches may incline in the same direction. The sides of the notches generally are parallel, and straight.
Further in accordance with an embodiment of the present invention, the elongate member has a V-shape lateral cross-section formed by longitudinally extending planar first and second portions joined at respective longitudinal edges to form the sides and vertex of the V-shape. The elongate member further may include a pair of wing portions extending laterally outwardly from respective distal ends of the V-shape elongate member. The wing portions may extend in opposite directions from the V-shape elongate member, and each wing portion may extend a distance which is approximately one-third the width of the widest part of the V-shape elongate member. The angle of the V is of least about 90°, more preferably at least about 120° and most preferably about 130°. A shallow angle increases the transverse stiffness of the elongate member, although other means may be used for this purpose.
According to another aspect of one embodiment of the present invention, a metal stud wall includes at least three metal studs each having at least two flanges interconnected by a web. The web of each stud has an opening, and the studs are arranged in a row with the openings in the webs thereof aligned with one another. An elongate member as described above extends through the openings of the at least three studs, and the at least three longitudinally spaced apart notches engage the webs of the studs. The notches generally are equally longitudinally spaced apart at a predetermined web-to-web spacing of the studs. The web-to-web spacing may be, for example, sixteen inches (about 40.6 cm) or twenty-four inches (about 61.0 cm). The metal stud wall typically will include one or more additional elongate members with adjacent ends overlapping and engage with respect to a common stud.
In assembling a metal stud wall including a row of metal studs each having at least two flanges, interconnected by a web, each stud is fastened at a lower end to a base track. A stud bridging/spacing member is inserted through aligned openings in at least three metal studs, and longitudinally-spaced apart notches in the stud bridging/spacing member are engaged with respective webs of the metal studs, thereby establishing and maintaining a fixed spacing between the metal studs and reinforcing the studs against deflection and turning under loading. When the notches engage the webs of the studs, a portion of the webs of the studs generally is caused to bend (at least under load conditions) in the direction of the inclines of the notches to retain the web in the engaged notch. The assembly method may also include securing a top end of each of the studs to a ceiling track.
The foregoing and other features of the invention are hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawings setting forth in detail certain illustrative embodiments of the invention, these being indicative, however of but a few of the various ways in which the principles of the invention may be employed.
The studs 14, as illustrated in
Although in the illustrated stud wall 10 the stud bridging/spacing member 16 engages the webs 18 of the studs 14 adjacent the base of the upper rectangular portion of the opening 22, alternatively the stud bridging/spacing member 16 may be dimensioned to engage the webs of the studs adjacent the base of the lower rectangular portion of the opening 22. The larger stud bridging/spacing member may provide more resistance to loading on the studs, however, it also may restrict the ability to run electrical conduit and/or plumbing through the opening 22. Thus, since this type of opening 22 is generally used in non-load bearing stud walls which are subject to smaller loads, the smaller stud/bridging member may be used. However, the stud bridging/spacing member 16 may be used in load bearing stud walls, wherein the studs generally have a different type of opening, as hereinbelow is further explained.
In the assembly of the metal stud wall 10 of this embodiment, the metal studs 14 are secured at their lower ends to the base track 12 by fastening means 24, such as screws, rivets, etc. The base track 12 is an U-shape channel having a central planar strip with upstanding legs at lateral sides thereof. The studs forming the wall are secured by the fastening means 24 to the upstanding legs of the base track 12 that normally will be anchored to the floor. The metal studs extend into a ceiling track (not shown) which is similar to the base track 12, except that it is secured to (or has secured thereto) overhead joists which may form the framework for an upper floor.
The stud bridging/spacing member 16 is inserted through the openings 22, and a plurality of “stud engagers” in the form of notches 26 in the stud bridging/spacing member 16 are aligned with the webs 18 of respective studs 14, or vice versa, the notches 26 being designed to engage and to retain the webs 18 of the studs 14 therein. The stud bridging/spacing member 16 is turned and is moved downwardly, as by tapping, to move the webs 18 of the metal studs 14 into engagement with the notches 26. In this manner the stud bridging/spacing member 16 sets the spacing of the studs 14, thus making it unnecessary to manually mark off the stud spacing. As a result, only one stud need be plumbed and secured to surrounding structure, such as at its top to the ceiling track (not shown). With one stud plumbed and fixed in place, all of the other studs will be spaced and held plumb by the bridging/spacing member or chain of overlapping bridging/spacing members without measuring. In an exterior load bearing wall, generally each of the studs also is secured at its upper end to the ceiling track.
The stud bridging/spacing member 16 also functions to rigidly maintain the metal studs 14 at the prescribed spacing, for example, during application of the wall panels (not shown) to the studs. Although the wall panels once applied also will help maintain the spacing of the metal studs, the stud bridging/spacing member 16 resists relative movement of the metal studs in the plane of the wall and resists flexing of the studs. In fact, additional bridging/spacing members 16 may be provided at different heights to further strengthen the metal stud wall 10. Openings 22 in the webs of the studs are usually vertically spaced apart approximately four feet on center in load bearing studs, and thus different sets of bridging/spacing members 16 may be similarly vertically spaced.
As illustrated in
Referring now to
In this embodiment, the overall length of the stud bridging/spacing member 16 is about fifty inches (127 cm). The bridging/spacing member 16 is sufficiently narrow in at least one dimension to fit within the dimensions of the openings 22 in the webs 18. The type of conduit opening 22 shown in
In this embodiment, the metal that forms the stud bridging/spacing member 16 has a thickness ranging, for example, from about twenty gauge (about 0.034 inch (about 0.086 cm)) to about fourteen gauge (about 0.071 inch (about 0.18 cm)). The stud bridging/spacing member 16 is constructed from about sixteen gauge metal, which has a thickness of about 0.058 inch (about 0.15 cm). Eighteen gauge metal has a thickness of about 0.045 inch (about 0.11 cm). Those of ordinary skill in the art will, of course, appreciate that the thickness of the material employed to fabricate the stud bridging/spacing member may be adapted to accommodate the specific structural loading that the wall is expected to encounter.
The elongate member 30 need not necessarily have a V-shape as shown in
Referring to
The notches 26 of one side portion are laterally aligned with corresponding notches of the other side portion. The pairs of laterally aligned notches 26, as opposed to a single notch, provide two areas of contact with the web 18 of a stud 14 (see
Referring now to
As indicated above, this embodiment of the stud bridging/spacing member 16 is made of eighteen to fourteen gauge metal. The width and angle provide notches 26 which have been found to fit twenty gauge studs 14 (
As shown in
Installation of the bridging/spacing member 16 causes the webs 18 of the studs 14 to be urged against the abutments 42 to place the studs “on center” against the opposing wall of the slot, i.e., the barb 44 urges the web 18 against the abutment 42. The distance between the cuts that form the abutments 42 can be controlled within tight tolerances and this translates to accurate spacing of the studs in a row thereof forming a wall.
For example, in the United States, stud walls are generally constructed with studs spaced on sixteen or twenty-four inch (about 40.6 cm to 61.0 cm) centers. Therefore, a cut in the elongate member 30 will be made at sixteen or twenty-four inch (about 40.6 cm to 61.0 cm) intervals, thus ensuring that the web to web spacing of the studs 14 will be sixteen or twenty-four inches (about 40.6 cm to 61.0 cm).
As illustrated in
An embodiment of the bridging/spacing member 16 having the slanted notch 26 described above has been found to provide improved strength to the metal stud wall 10 (
An alternative stud bridging/spacing member 70 is shown in
The stud bridging/spacing member 70 can be installed in a stud wall 100 in the same way as the stud bridging/spacing member 16 is installed in the stud wall 10 in
The studs 114 are secured at their lower ends to the base track 112 by fastening means 124 in the same manner as described above with reference to
The addition of the wing portions 74 facilitates installation by making it easier to “eyeball” the stud bridging/spacing member 70 to make sure it is level and thus firmly seated in each opening 122 in the webs 118 of the studs 114. This feature helps to improve the speed and quality of the installation process. In addition, the wing portions 74 further rigidify the stud bridging/spacing member 70 against transverse loads on the wall 100, which may be particularly advantageous, for example, in external walls in building locations subject to high wind loads.
The Applicant has found that the bridging system and method described herein performs approximately as well as or better than several more labor-intensive (and therefore generally more expensive) bridging systems under different types of loads. As a result, the system and method of the present invention provide approximately the same structural strength, while the spacing function of the bridging/spacing member helps to greatly reduce installation time, thereby providing substantial cost savings.
As shown in
As shown in
In situations where the bridging/spacing member is short of a stud or for other reasons it would be difficult to mount the bridging/spacing member in the conduit punch-out, a face bracket 300 may be used to attach the spacing member 16 to the web 18 of the stud 14 without passing through the conduit punch-out. As shown in
As shown in
An alternative bridging/spacing member 654 is shown in
Although the invention has been shown and described with respect to a certain embodiment or embodiments, equivalent alterations and modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described integers (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such integers are intended to correspond, unless otherwise indicated, to any integer which performs the specified function of the described integer (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This non-provisional application for patent is a divisional patent application of U.S. patent application Ser. No. 09/888,897, filed Jun. 25, 2001 which claims priority from U.S. Provisional Patent Application Serial No. 60/229,583, Filed Aug. 31, 2000.
Number | Name | Date | Kind |
---|---|---|---|
839723 | Bury | Dec 1906 | A |
894711 | Worcester | Jul 1908 | A |
992941 | Danielson | May 1911 | A |
1101745 | Jones | Jun 1914 | A |
1346426 | Scherbner | Jul 1920 | A |
1475387 | Holmes | Nov 1923 | A |
1561976 | Donahoe, Jr. | Nov 1925 | A |
1603678 | Furey | Oct 1926 | A |
1656741 | Lane | Jan 1928 | A |
1750039 | Feltes | Jun 1930 | A |
1791197 | Dickson | Feb 1931 | A |
2102936 | Bailey | Dec 1937 | A |
2245908 | Drake | Jul 1941 | A |
2430654 | Voege | Nov 1947 | A |
2686959 | Robinson | Aug 1954 | A |
2856646 | Latimer et al. | Oct 1958 | A |
2873828 | Zitomer | Feb 1959 | A |
2918995 | Kruger | Dec 1959 | A |
2963127 | Manville | Dec 1960 | A |
2964807 | Kennedy | Dec 1960 | A |
3010162 | Klein | Nov 1961 | A |
3201874 | Christy | Aug 1965 | A |
3305981 | Biggs et al. | Feb 1967 | A |
3322447 | Biggs | May 1967 | A |
3374591 | Tillisch et al. | Mar 1968 | A |
3482369 | Burke | Dec 1969 | A |
3562970 | Schwartz | Feb 1971 | A |
3653172 | Schwartz | Apr 1972 | A |
3755988 | Van Der Stuys | Sep 1973 | A |
4018020 | Sauer et al. | Apr 1977 | A |
4031594 | Cepuritis | Jun 1977 | A |
4036307 | Marais | Jul 1977 | A |
4043689 | Spencer et al. | Aug 1977 | A |
4075810 | Zakrzewski et al. | Feb 1978 | A |
4128979 | Price | Dec 1978 | A |
4208851 | Sauer | Jun 1980 | A |
4225265 | Hooker et al. | Sep 1980 | A |
4235054 | Cable et al. | Nov 1980 | A |
4246736 | Kovar et al. | Jan 1981 | A |
4426822 | Gailey | Jan 1984 | A |
4448004 | Thorsell | May 1984 | A |
4522009 | Fingerson | Jun 1985 | A |
4604845 | Brinker | Aug 1986 | A |
4625415 | Diamontis | Dec 1986 | A |
4693047 | Menchetti | Sep 1987 | A |
4727704 | Carlton | Mar 1988 | A |
4791766 | Egri, II | Dec 1988 | A |
4809476 | Satchell | Mar 1989 | A |
4840005 | Cochrane | Jun 1989 | A |
4843726 | Ward | Jul 1989 | A |
4850169 | Burkstrand et al. | Jul 1989 | A |
4858407 | Smolik | Aug 1989 | A |
4860791 | Putnam | Aug 1989 | A |
4914878 | Tamaki et al. | Apr 1990 | A |
5127760 | Brady | Jul 1992 | A |
5155962 | Burkstrand et al. | Oct 1992 | A |
5197247 | Elderson | Mar 1993 | A |
5274973 | Liang | Jan 1994 | A |
5287644 | Schiller et al. | Feb 1994 | A |
5287664 | Schiller et al. | Feb 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5363622 | Sauer | Nov 1994 | A |
5488198 | Kramer | Jan 1996 | A |
5600926 | Ehrlich | Feb 1997 | A |
5605024 | Sucato et al. | Feb 1997 | A |
5632128 | Agar | May 1997 | A |
5682935 | Bustamante | Nov 1997 | A |
5720138 | Johnson | Feb 1998 | A |
5784850 | Elderson | Jul 1998 | A |
5822942 | Lucia, Jr. | Oct 1998 | A |
5870874 | Brothers | Feb 1999 | A |
5899041 | Durin | May 1999 | A |
5904023 | diGirolamo et al. | May 1999 | A |
5964071 | Sato | Oct 1999 | A |
6021618 | Elderson | Feb 2000 | A |
6114012 | Amaoka et al. | Sep 2000 | A |
6164028 | Hughes | Dec 2000 | A |
6199336 | Poliquin | Mar 2001 | B1 |
6241199 | Ismert | Jun 2001 | B1 |
6301854 | Daudet et al. | Oct 2001 | B1 |
6418695 | Daudet et al. | Jul 2002 | B1 |
D463575 | Daudet et al. | Sep 2002 | S |
6578335 | Poliquin | Jun 2003 | B2 |
6662520 | Nelson | Dec 2003 | B1 |
6694695 | Collins et al. | Feb 2004 | B2 |
6701689 | diGirolamo | Mar 2004 | B2 |
6708460 | Elderson | Mar 2004 | B1 |
6739562 | Rice | May 2004 | B2 |
20020059773 | Elderson | May 2002 | A1 |
20030037494 | Collins et al. | Feb 2003 | A1 |
20030145537 | Bailey | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
428 738 | Oct 1972 | AU |
30388 | Oct 1972 | AU |
9003667 | May 1990 | DE |
593443 | Oct 1947 | GB |
764052 | Dec 1956 | GB |
2103264 | Feb 1983 | GB |
2103264 | Feb 1983 | GB |
WO 9324712 | Dec 1993 | WO |
WO 9623945 | Oct 1996 | WO |
WO 0066844 | Sep 2000 | WO |
PCTUS0011991 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030089053 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
60229583 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09888897 | Jun 2001 | US |
Child | 10325570 | US |