The present invention relates to a support arrangement comprising at least one vertical support that has a vertical guiding groove and a plurality of vertically staggered latching steps, and a horizontal support comprising a pin that engages in the guiding groove and a latching step, which, by swiveling the horizontal support about an axis defined by the pin, can engage with and disengage from the latching steps of the vertical support. A support arrangement of this kind, or a refrigerator in which it is used, is known from DE101 45 141A1.
One problem with this known support arrangement is that in order not to block the mobility of the horizontal support the latching steps of the vertical support are not allowed to project very far. If when displaced the horizontal support loses its hold this results in the risk of it being able to fall a relatively long way without engaging in latching steps in the vertical support again.
The object of the present invention is to disclose a support arrangement comprising at least one vertical support and a horizontal support suspended therefrom, in which the risk of falling without engagement is reduced.
The object is achieved by a support arrangement comprising at least one vertical support that has a vertical guiding groove with an undercut and a plurality of vertically staggered latching steps provided therein, and a horizontal support provided with a pin that engages in the undercut of the guiding groove, in the latched position of the horizontal support the pin resting on one of the latching steps and pressing against a first wall of the vertical support from which the latching steps protrude, and a contact surface of the horizontal support pressing against a second wall of the vertical support that opposes the first wall, which is characterized in that the contact surface and the latching steps are staggered in the width direction of the walls and the latching steps are located in a lower position in the undercut than the contact surface. Whereas in the conventional support arrangement, cited above, the latching steps and the contact surfaces align with each other, the inventive offset between the two means that the pin can be made narrower and therefore even wide latching steps, which offer greater security against slipping, can pass upwards or downwards without difficulties.
According to a first embodiment the first wall is a back wall of the guiding groove which opposes an inlet slot thereof, and the contact surface is formed on a pin which engages in the undercut.
According to a second preferred embodiment the first wall is conversely a front wall of the guiding groove that is adjacent to an inlet slot, and the contact surface touches the back wall outside of the undercut. This has the advantage that the guiding groove can be made narrower than in the first embodiment but has the same effect.
To simplify production of the support arrangement the latching steps are preferably formed on an insert that is inserted in the guiding groove. The guiding groove can then be produced in particular as an extruded profile with a strictly constant cross-section.
To support the latching steps the insert preferably comprises a rod from which the latching steps protrude and which runs in a region of the undercut that is remote from an inlet slot of the guiding groove.
The latching steps can extend over one to two third(s) of the spacing between the first and second walls.
To secure latching of the horizontal support the latching steps expediently comprise a concave upper side.
To simplify the height adjustment of the horizontal support the latching steps preferably have a lower side that runs obliquely downwards toward the first wall.
A single recess in a front wall, which is adjacent to the inlet slot, of the guiding groove, through which recess the pin of the horizontal support can engage in or disengage from the undercut, is sufficient to introduce the horizontal support into the guiding groove or to remove it therefrom.
Further features and advantages of the invention will become clear with the aid of the following description with reference to the accompanying figures, in which:
A strong metal sheet 11, from which latching steps 12 are notched at regular intervals inside the undercut 10, extends along the back wall 2 of the vertical support. The part of the metal sheet 11 extending behind the inlet slot 4 is smooth, so all of the vertical support appears smooth and even from the outside. The long pin 9 of the horizontal support 6 rests on one of the latching steps 12. The latching steps 12 maintain a spacing d1 from the edge of the inlet slot 4 which is greater than the length d2 of the short pin 8. The short pin 8 therefore cannot be submerged so deep into the undercut 10 that it touches a latching step 12 and could interlock therewith. The long pin 9 presses against the back wall 2 and the short pin 8 against the front wall 5 under the load of the arm of the horizontal support that projects from the guiding groove.
To hang the horizontal support 6 on a different latching step 12 or to remove it via a recess 13 in the front wall 3, it is initially sufficient to raise it, while retaining its spatial orientation, until the long pin 9 abuts under the next-higher latching step 12. The support 6 can accordingly be pivoted about the short pin 8, so the long pin 9 moves toward the front wall 3 and can thus pass the constriction between the latching step 12 and the front wall 3. The latching steps 12 can therefore easily extend between front and back walls over one to two third(s) of the depth of the guiding groove 7 without this restricting the mobility of the horizontal support 6. The great width of the latching steps 12 makes it almost impossible for the long pin 9 to pass a latching step in free fall however.
A second embodiment of the invention is shown in perspective views in
The head 5 of the horizontal support 6 that engages in the guiding groove 7 has only a single pin 9 in this case which in its function of supporting the support 6 on the latching steps 12 matches the long pin in the first embodiment, but in contrast thereto rests against the front wall 3. A projection in the lower region of the head 5 forms a contact surface 15 which supports the horizontal support 6 on a region of the back wall 2 that aligns with the inlet slot 4.
To raise the support 6 further it is necessary to tilt it. For this tilting movement the support 6 is led through the oblige lower side 16 which pushes the pin 9 against the back wall 2 without a user who is handling the support 6 having to be conscious of the need for tilting. In this thus swiveled position the pin 9 can pass the next-higher latching step 12, as shown in
By reverse swiveling into the horizontal and renewed lowering the support could accordingly be hooked into the next-higher latching step 12.
A recess 13, which can pass the pin 9, is located above this latching step in the front wall 3. If the support 6 has reached the level shown in
The support 6 can be re-fitted using the same movements in the reverse order.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 021 538.6 | May 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/061386 | 4/6/2006 | WO | 00 | 10/30/2007 |