The invention first relates to a support bracket. The support bracket comprises two support rods and a traverse connecting the bars.
The traverse of such a support bracket is made of plastic or a composite material and comprises a first attachment region for attachment to a support rod as well as a second attachment region for attachment to another support rod.
Such a support bracket is known from DE 10 2010 061 308 [US 2010/0148171]. The traverse is formed from plastic and comprises latch elements that are part of a latch. A head contact part is shiftably guided on the support rods. A slider is mounted on the head contact part in a manner moveable between a latched position and a released position. A spring urges the slider into a latched position in which teeth of the slider cooperate with latch elements of the traverse. The slider can be actuated from outside by a push button.
The object of the invention is to provide headrest and a support bracket that makes additional features possible, in particular the option for pivotally supporting a head contact part.
The object is attained in that the support bracket comprises two support rods and a traverse connecting the support rods. The traverse is made of plastic or a composite material. For example the traverse can be made of a plastic material with at least one further component, for example of a fiber-reinforced plastic material.
The traverse comprises for example at least one attachment region for attaching a support rod. For example, the traverse comprises a first attachment region for attachment of a first support rod and a second attachment region for attachment on a second support rod. The attachment region is for example formed as a seat. The seat can for example be formed as a recess in the traverse complementary to the support rod end. The support rod ends can then simply be inserted into the hole of the bracket.
According to an alternative, the support rods and the traverse can be integrally formed of plastic or of a composite material.
Due to the traverse being made of plastic or of a composite material, a weight reduction of the support bracket is achieved. Furthermore, diverse functional surfaces can be molded on the traverse. These can be relatively freely designed.
One embodiment is characterized in that slide surfaces for the pivotal slide mounting of a head contact part are molded on the traverse. Such slide surfaces can be used directly pivotally supporting a head contact part. It is not necessary that additional parts are provided on the traverse that are provided with the slide surfaces. For example, corresponding counter-surfaces are attached or molded on the head contact part, which surfaces cooperate with slide surfaces in order to make pivoting of the head contact part possible.
For example, in one embodiment at least one lock seat is molded on the traverse for blocking the head contact part in at least one pivot position. One or multiple lock seats can be molded on the traverse to prevent pivoting of the head contact part in at least one direction and in at least one pivot position. The lock seat is for example provided as a part of a latch and is for example shaped for a form-fitting engagement of a moveable latch element held on the head contact part. The lock seat can for example comprise at least one counter-bearing surface that prevents movement of the head contact part in a pivot direction or in two opposite pivot directions. The lock seat can for example comprise at least one surface which makes movement of the head contact part into at least one pivoting direction possible in the latched position of the latch.
On the traverse, for example a guide with at least one guiding surface is molded that is suitable to guide the latch element into engagement with the lock seat when the head contact part is being moved from an unlatched position to a position to be latched. The guide can be formed for example by a wall molded on the traverse that holds a latch element—for example across a certain pivot angle—in the released position. For example, the latch element can be held in the released position by the guide surface when the head contact part is being moved to the nonuse position. The guide surface ends for example briefly before a position in which the latch element can be moved back into the latched position by a spring, for example.
One embodiment of the invention provides that at least one stop surface is molded on the traverse in order to cooperate with a counter surface of the head contact part or with one of its components and to limit the pivoting of the head contact part into at least one pivot direction. In other words, the at least one stop surface limits the pivoting with respect to a first pivot direction or with respect to two opposite pivot directions. The limitation of the pivoting range of the head contact part can be effected by a cooperation of a stop surface of the traverse and a counter-surface of the head contact part.
On the attachment region for the support rod, in particular on the seat, for example at least a first stop formation is formed that prevents straight-line movement of the support rod relative to the head contact part in the demounting direction and/or a rotation of the support rod relative to the head contact part. The stop formation can for example be formed by a pin that engages through at least one recess of the support rod and at least one recess of the seat in such a way that movement in the demounting direction and a rotation relative to the seat is prevented.
Furthermore, the invention relates to a headrest. The headrest comprises a head contact part that is pivotably-mounted on the traverse of a support bracket.
Such a headrest is known from EP 1 862 352 [US 2007/0284929]. A head contact part is pivotal on the traverse of a support bracket and can be latched in different positions of use. For this purpose, a latch comprises a latch element that is assigned to the head contact part, as well as lock disks provided with multiple lock seats that are fixed in the support bracket. The latch element is displaceable between a lock position in which the latch element is in engagement with one of the lock seats and a released position in which the latch element is out of engagement with the lock seats.
According to a second aspect of the invention, it is the object of the invention to provide a headrest that can be made in a simpler manner and which has a larger variability with respect to its features.
The headrest comprises a headrest bracket according to the first aspect of the invention, as well as a head contact part. In the context of the invention, the term head contact part shall include single-piece head contact parts as well as assemblies. The head contact part is mounted on the support bracket pivotal between a first end position and a second end position. At least one use position and/or at least one nonuse position is/are located between the end positions.
The headrest according to the invention can be made using only a few parts. It is characterized by low weight and low production costs. In terms of further advantages, reference is made to the configurations relating to the first aspect of the invention.
The head contact part forms for example at least one bearing surface that cooperates with the slide surface of the traverse and forms a pivot bearing. The bearing surface is for example molded on a base part of the head contact part made of plastic material. The base part can for example be formed by a housing. The housing can be readily made from plastic material together with the bearing surfaces, for example. No additional processing of the surfaces is necessary. The housing can consist of two parts, for example. A high-density polyethylene (HDPE) plastic material can be used to make the housing.
The headrest comprises for example a latch by means of which the head contact part is lockable in at least one pivot position. The latch is moveable between a latched position and a released position. In the latched position, movement of the head contact part into at least one pivot direction, i.e. in a pivot direction or into two opposite pivot directions, is not possible. In the released position, the head contact part can be pivoted into one of two opposite pivot directions unless the head contact part is situated in an end position.
A latch element is for example on the head contact part and is moveable between the latched position and the released position. The latch element is part of the latch. In the latched position, the latch element is in engagement with the lock seat of the traverse. In the released position, the latch element is out of engagement with the lock seat. The latch element is for example held on a base part of the head contact part in such a way that it is non-moveable in the opposite pivot directions relative to the base part. For example, it has merely one degree of freedom in a direction transverse to the pivot direction.
According to one embodiment, the latch element is configured as a slider that is moveably-mounted on the head contact part. The latch element is for example held on a slider that is moveable between the latched position and the released position in a translatory manner. The slider is for example moveable from outside by an actuation between the latched position and the released position.
The counter surface is for example formed on the head contact part and cooperates with the stop surface of the traverse in order to restrict the movement range of the pivoting of the head contact part. The counter surface is for example formed on a housing of the head contact part, or for example one a latch element comprised by the head contact part. The counter-surface can for example cooperate with the stop surface for example to determine the end positions of the movement of the head contact part or for example in at least one lock position. In this case, the counter-surface transmits forces from the head contact part to the stop surface of the traverse.
The stop surface of the traverse cooperates for example with different counter surfaces in different positions. For example, the stop surface cooperates with a latch element of the head contact part in a use position in which the latch is situated in the latched position. In an nonuse position in which the head contact part has been pivoted around a certain pivot angle with respect to a use position, for example about a pivot angle of approximately 90° for example a housing surface of the head contact part cooperates with the stop surface.
The latch element is for example formed in such a way that it includes at least one projection with a counter surface which extends radially to the pivot axis of the head contact part and cooperates with a stop surface when the head contact part is in a use position. For example, the counter surface cooperates for example merely in the latched position with the stop surface while the surfaces are separated from one another in the released position. The projection forms a lever arm so that high forces acting on the head contact part are transmitted to the traverse from for example the latch element mounted on the head contact part. The at least one projection can be formed in such a way that it can transmit forces that act in a first pivot direction, in a second pivot direction, or in both pivot directions.
In the other case, in which the latch element is mounted on the traverse, the latch element forms a stop surface which cooperates with a counter surface of the head contact part in the latched position.
According to another embodiment, the latch element of the latch is actuatable by an actuation from outside on the head contact part. A housing of the head contact part comprises for example at least one recess for operating the actuation. The recess is for example covered by an elastically deformable plastic skin in such a way that the actuation can be actuated via the plastic skin.
Further advantages result on the basis of the description of an embodiment schematically shown in the drawing. The drawing shows in:
A headrest as a whole is indicated with reference character 10 throughout the drawing. Like reference characters relate to corresponding parts in the different figures even though small letters are added or omitted.
According to
The head contact part 11 is arrestable in the use position by a latch 17. The latch 17 is movable between a latched position and a released position. The latch 17 is urged by a spring 23 (see for example
In the latched position, the head contact part 11 is fixed against pivoting in a use position. In other words, the head contact part 11 can be pivoted neither in the direction u1 nor in the direction u2. In the released position, the head contact part 11 is moveable between the use position and the nonuse position. A housing 60 of the head contact part 12 is moveable relative to the support bracket 12 merely in the pivot directions u1 and u2, i.e. it is not-moveable in the directions x1, x2, y1, y2, as well as z1 and z2. In a manner known per se, the support rods 13a and 13b can be supported in backrest-fixed guides of a seat in a height-adjustable manner.
In the present embodiment, merely an arresting in the use position is provided. According to an alternative configuration, the headrest could also be equipped with a locking mechanism in the nonuse position or in other positions.
The head contact part 11 comprises a rear part 29 as well as a front part 30 of a housing 60, a cushion part 31, a cover 32 in the form of a slip-cover, as well as a latch element 20 formed as a slider that is part of the latch and the springs 23 and 25a and 25b.
The rear part 29 is formed with a guide device 33 for guiding the latch element 20, receptacle trunnions 26a and 26b for holding the spring 23, as well as bearing structures 34a and 34b pivotally supporting the head contact part 11 on the traverse 15. Supplementary bearing structures that are not shown in
In
The latch element 20 is mounted for straight-line movement in the direction y1 and y2 relative to the housing 60, i.e. relative to the rear part 29 and to the front part 30. The latch element 20 can be moved in the direction y1 to the released position shown in
The latch element 20 comprises extensions 35a and 35b on its lower side. In the latched position, a front surface 58 of the extension 35a cooperates with a stop surface 55 (not discernable in
The guide device 33 for the latch element 20 comprises projections 37a and 37b that respectively form slide surfaces 38 for the latch element 20 and that respectively are provided with hook structures 39 that engage around the latch element 20 in order to prevent one degree of freedom in the direction x1.
The latch element 20 is moveable from the latched position shown in
The button 18 engages through the recess 40b without being guided on the housing 60. A faceplate 57 that is not shown in
In the present embodiment, the button 18 is arranged on the left side of the head contact part 11, but the button 18 and the spring 23 can likewise be mounted on the right side of the head contact part 11. For this purpose, another embodiment of the traverse 15 is provided in which the strike 22 is formed in a mirror-symmetrical manner with respect to the traverse 15 shown in this embodiment. The rear part 29 of the head box and the latch element 20 can be used in identical fashion. For this purpose, a further receptacle trunnion 26b for the spring 23 is provided on the rear part 29. In this case, the latch element 20 is mounted in a manner turned by 180° around the z-axis.
The latch element 20 comprises a locking region 21 that is in engagement with a strike 22 of the traverse 15 in the latched position (see for example
As shown in
Moreover, the latch element 20 of
Furthermore, as shown in
In the nonuse position, the support surface 53 cooperates as a stop with a surface of the rear part 29 in order to restrict the pivoting in the direction u1.
When the latch element 20 is moved to the released position, the locking region 21 is moved out of the engagement with the strike 22. The latch element 20 travels the path 13 between the latched position and the released position (see
In the released position of the latch 17, the head contact part 11 can be moved from the use position in the direction u1 to the nonuse position by the springs 25. A contact surface 46 of the locking region 21 rests against a guide surface 42 of the traverse 15. The guide surface 42 holds the latch element 20 in the released position during the movement to the nonuse position against the force of the spring 23.
If the head contact part 11 is moved from the nonuse position to the use position, the latch element 20 is automatically moved to the latched position by the spring 23. Once the use position is reached, the locking region 21 rests no longer against the guide surface 42 and the latch element 20 can move in the direction y2 to its initial position with the locking region 21 again moving into engagement with the strike 22.
A second embodiment of the headrest is described in the schematic
As can in particular be taken from
Number | Date | Country | Kind |
---|---|---|---|
102018104072.5 | Feb 2018 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
6302485 | Nakane et al. | Oct 2001 | B1 |
8979203 | Sutter, Jr. | Mar 2015 | B1 |
10155464 | Boks | Dec 2018 | B2 |
20050168020 | Yetukuri | Aug 2005 | A1 |
20070148171 | Lazar et al. | Jun 2007 | A1 |
20070284929 | Keller | Dec 2007 | A1 |
20100244511 | Gomes | Sep 2010 | A1 |
20110148171 | Charles et al. | Jun 2011 | A1 |
20120068517 | Yetukuri | Mar 2012 | A1 |
20140167476 | Wang | Jun 2014 | A1 |
20140210245 | Tobata | Jul 2014 | A1 |
20150266401 | Grable | Sep 2015 | A1 |
20160288677 | Boks | Oct 2016 | A1 |
20170274803 | Boks | Sep 2017 | A1 |
20190168650 | Angelo | Jun 2019 | A1 |
20200031264 | Jiang | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2208224 | Sep 1973 | DE |
19951590 | Jan 2001 | DE |
10236259 | Feb 2004 | DE |
102005050474 | Sep 2006 | DE |
102017009580 | Apr 2019 | DE |
1122122 | Aug 2001 | EP |
2777984 | Sep 2014 | EP |
3176029 | Jun 2017 | EP |
01201209 | Aug 1989 | JP |
5557946 | Jul 2014 | JP |
WO-2006074080 | Jul 2006 | WO |
WO-2014087488 | Jun 2014 | WO |
WO-2019174038 | Sep 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20190291618 A1 | Sep 2019 | US |