Support device and method for use

Information

  • Patent Grant
  • 10070968
  • Patent Number
    10,070,968
  • Date Filed
    Friday, October 2, 2015
    8 years ago
  • Date Issued
    Tuesday, September 11, 2018
    5 years ago
Abstract
Devices and methods for orthopedic support are disclosed. The device can have a first rigid section hingedly attached to a second rigid section. The device can be curved or rotated around obstructions along an access path to a target site. The device can be delivered to an intervertebral location in a patient.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


A device, such as a flexible spinal fusion cage, which can articulate (bend) in such a way that it will be able to be implanted from a lateral approach into L4-L5 and L5-S1 is disclosed.


2. Description of the Related Art


Typical lateral approach fusion implants (e.g., Discover XLIF, by NuVasive, Inc., San Diego, Calif.; and the Direct Lateral Interbody Fusion (DLIF) by Medtronic, Inc., Minneapolis, Minn.) are not able to implant their fusion cages for two reasons.


First, boney obstacles can impair access. FIGS. 1a and 1b illustrate the pelvis and lower spine including the Ilium 2, sacrum S1, and lower lumbar vertebrae L3, L4 and L5. FIGS. 1a and 1b show the challenge of gaining lateral access to the L4-L5 and the L5-S1 intervertebral spaces. The position of the Ilium 2 obstructs the direct lateral access pathway.



FIG. 2 illustrates windows 4a and 4b or channels which some doctors create during implantation. The windows 4a and 4b are created through the Ilium to gain direct line of site access to the L4-L5 and L5-S1 intervertebral spaces, respectively. This is a highly invasive approach, creates significant tissue damage, particularly to the Ilium and surrounding soft tissue, and requires significant surgical skill.


Second, the steep approach angle (8a for the L4-L5 intervertebral space and 8b for the L5-S1 intervertebral space), as measured from a transverse plane along the approach path (10a for the L4-L5 intervertebral space and 10b for the L5-S1 intervertebral space) of a tissue retractor relative to the location of the fusion site, can cause problems, as illustrated in FIGS. 3 and 4. The approach paths 10a and 10b pass through the skin surface 12. The tissue retractor used in lateral fusion surgery provides line of site access to the disk space requiring a fusion cage insertion. The tissue retractor holds tissue out of the way of the procedure. The tissue retractor is also used to create a working channel to pass tools through, protect neural tissue, and anchor to the superior and inferior vertebral bodies relative the disk space requiring fusion. The volume within the pelvis and inferior to the dashed demarcation line 6 along a transverse plane is very hard if not impossible to reach with a direct lateral approach due to the Ilium. Even if the retractors are tilted as shown by the demarcation line 6, the ability to insert an implant that is the length of the end plates of the L4 or L5 vertebral bodies would be very difficult due to obstruction of the Ilium among other factors.


Furthermore, with the retractor positioned along the approach path 10a or 10b plane and angled direction, the angle formed between the retractor and the vertebral body end plates would make inserting a monolithic, inflexible fusion cage 14 or implant into the L5-S1 intervertebral space difficult if not virtually impossible due to obstruction of the surrounding hard and soft tissue, as illustrated by FIG. 5a. A typical lateral fusion cage or implant width 16 is the width of the end plate 18 along the adjacent disk. The implant 14 can not turn the corner at the pivot point 20 at the lateral and/or anterior edge of the L5-S1 intervertebral space.


SUMMARY OF THE INVENTION

Support or fixation devices and methods for access, controlling (e.g., steering or rotating, and driving or translating) implants, and modifying the configuration of implants are disclosed. The device can be an implantable fixation device, such as a flexible and/or articulatable fusion cage. The device can articulate and/or bend so the device can make the turn around the L5-S1 intervertebral space. The implant can flex and/or articulate. For example, the implant can have hinges and/or be flexible (e.g., have significantly elastic structural components).


Articulation tools are disclosed that can be used to implant the device. The articulation tools can articulate the device and/or allow the device to articulate. For example, the connection between the articulation tool and the implant can bend, flex, steer, or combinations thereof. The articulation tools can be used to debride or clear out the disk space.


An oblique curved access tool or device can be used. The device can be delivered to the intervertebral space along an oblique approach path, not perpendicular to the spine. The oblique approach can provide an access path from lateral skin to the L5-S1 disk space, and can curve tangent to the Ilium. A large working channel through the soft tissue can be created. The oblique access tool can move soft tissue out of the way to create the working channel. The oblique approach can reduce the access-tool-to-disk-space approach angle.


A biological implant support device for providing orthopedic support is disclosed. The device can be articulatable or flexible. The device can have a first rigid section at a first terminal end of the device. The first rigid section can have a first top plate and a first bottom plate. The device can have a second rigid section having a second top plate and a second bottom plate. The first rigid section can be rotatably attached to the second rigid section. The top and bottom plates can be configured to interface with hard tissue.


A method for inserting a support device to a target site in a spine adjacent to a first vertebra is disclosed. The method can include creating a channel through a non-vertebral bone. The method can include inserting a first rigid section of the device through the channel and into the target site. The method can include inserting a second rigid section of the device through the channel. The method can include rotating the second rigid section of the implant with respect to the first rigid section. The first rigid section can be hingedly attached to the second rigid section. The method can include inserting the second rigid section of the implant into the target site.


Creating the channel can include drilling the tissue with a flexible drill. The non-vertebral bone can be the pelvis, such as the ilium and/or the sacrum.


A method for inserting an implant to a target site between a first vertebra and a second vertebra is disclosed. The method can include creating a first channel through the ilium. The method can include creating a second channel through the sacrum. The first channel can be aligned with the second channel. The method can include inserting a first rigid section of the implant through the first channel and the second channel into the target site. The method can include rotating a second rigid section of the implant with respect to the first rigid section, wherein the first rigid section is hingedly attached to the second rigid section. The method can include inserting the second rigid section of the implant into the target site. The second channel can pass through a port formed in vertebral endplate. The device can be inserted through the port in the vertebral endplate and articulate as the device is delivered into the target site.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a and 1b are anterior and lateral views, respectively, of the lower lumbar and sacral spine and pelvis with the Ilium shown in phantom lines in FIG. 1b.



FIG. 2 is a lateral view of the lower lumbar spine with windows cut through the Ilium.



FIGS. 3 and 4 are anterior and lateral views, respectively, of the lower spine and pelvis along with approach paths into the intervertebral spaces.



FIG. 5a is an anterior close-up view of the lower spine and pelvis with an approach of a monolithic implant.



FIG. 5b illustrates a variation of the implantable device.



FIGS. 5c and 5d illustrate a variation of a method of delivering the device of FIG. 5b into the L5-S1 space.



FIGS. 6 through 8 are anterior, perspective and lateral views, respectively, of a variation of the approach path for delivering the implant into the intervertebral space.



FIGS. 9a through 9d illustrate variations of the device in various configurations. An x-axis, y-axis and z-axis are also shown for orientation with the x-axis disposed along the longitudinal axis of the device.



FIGS. 10a and 10b illustrate various configurations of a variation of the device in a steering tube with the tube shown as see-through for illustrative purposes.



FIGS. 10c through 10e illustrate various configurations of a variation of the device on steering rails attached to the lateral outside of the device.



FIGS. 11a through 11c illustrate various configurations of a variation of the device on a steering rail attached to the inside of the device.



FIGS. 12a through 12f are cross-sections of various steering rails, or along the length of the same steering rail.



FIG. 13 illustrates a method for deploying the device into the L5-S1 intervertebral space.



FIGS. 14a and 14b illustrate various configurations of a variation of the device in a steering slide.



FIGS. 15a and 15b are top and side views of a variation of the device with parallel hinges.



FIG. 16 is a top view of a variation of the device with non-parallel hinges.



FIGS. 17a through 17f are side views of variations of the device.



FIGS. 18 and 19 are perspective views showing the orientation of variations of living hinges within devices.



FIGS. 20a through 20c are perspective, top and front views, respectively, of a variation of the device in a straight or flat configuration.



FIGS. 21a through 21c are perspective, top and front views, respectively, of the device of FIGS. 20a through 20c in an articulated configuration.



FIGS. 22a through 22c are perspective, top and front views, respectively, of a variation of the device in a straight or flat configuration.



FIGS. 23a through 23c are perspective, top and front views, respectively, of the device of FIGS. 22a through 22c in an articulated configuration.



FIG. 24 illustrates the lower spine and pelvis.



FIGS. 25 through 28 illustrate a variation of a method of delivering the device to a target site.



FIGS. 29 through 31 illustrate views through the transverse plane from a superior location, the sagittal plane from a lateral location, and the coronal plane from an anterior location, respectively, of a variation of the location of the transosseous delivery channel.



FIGS. 32a through 32d illustrate a superior view of a variation of a method of delivering the device showing the iliac and sacrum, but not the L5-S1 disc or remainder of the spine for illustrative purposes.



FIGS. 33a through 33d illustrate a posterior perspective view of a variation of a method of delivering the device showing the iliac and sacrum, but not the L5-S1 disc or remainder of the spine for illustrative purposes.





DETAILED DESCRIPTION

Support or fixation devices and methods for access, controlling (steering) implants, and modifying implants are disclosed. The support device disclosed herein can be used to treat one or more osseous structures in the body including the L4-L5 and L5-S1 region of the spine. The device can be used with known methods of accessing the vertebrae of the spine such as the L4-L5 and L5-S1 regions with posterior, anterior, or lateral approaches, or combinations thereof.


The device can be an implantable fixation device, such as a flexible fusion cage. The device can be delivered into an intervertebral space, for example, to provide structural support between the adjacent vertebrae. The device can fuse the vertebra adjacent to the specific intervertebral space. A discectomy can be performed at the target implant site before or during delivery of the implant.



FIGS. 5a through 5c illustrate that the device can be articulatable or flexible. The implantable device 10 can be used to support and/or fix structures between adjacent vertebrae, such as between the L4 and L5 vertebrae or between the L5 and S1 vertebrae. The implantable device 10 can be articulatable and/or flexible so as to navigate sharp anatomical turns, such as the L4-L5 or L5-S1 intervertebral space. The implantable device 10 can be rigidly lockable or can remain flexible or articulatable at all times. The implantable device 10 can be rigidly locked for example using a delivery tool, e.g., wires, sheaths, guides, or combinations thereof, for example, for additional stability. Such surgical delivery tools, alone or in combination, may add axial strength and stability before during or after pressing the implantable device 10 into the targeted intervertebral disc space.



FIG. 5b illustrates that the implantable device 14 can have first, second, third, and fourth segments 22a through 22d. Each of the segments 22a, 22b, 22c, and 22d can be attached to the adjacent segment at a flex point or articulatable hinge 24a, 24b, and 24c, respectively. The device 14 can articulate and/or bend at the hinges 24.



FIGS. 5c and 5d illustrate that the device 14 can be delivered into the L5-S1 intervertebral space. The device 14 can make the turn around the L5-S1 intervertebral space, such as at the pivot point 20, by articulating or flexing.



FIGS. 6 through 8 shows illustrate a curved implant pathway or approach path 10c. An articulation tool can be used to push (e.g., impact), pull, control or combinations thereof, the implant 14. The implant 14 can articulate and/or flex during delivery. The implant can have single or multiple hinges, a flexible shaft, laser slots (e.g., in a tube to act as hinges) or combinations thereof.


The approach path 10c can be tangential to the medial surface of the Ilium along a portion of the length of the approach path 10c. A portion of the length of the approach path 10c can be linear and a portion of the length of the approach path 10c can be curved. The entire approach path 10c can be linear or curved. A portion of the length of the approach path 10c can track (i.e., follow the same shape of) the medial surface of the Ilium. The approach path 10c can contact the medial surface of the Ilium 2. The approach path 10c can be non-perpendicular or perpendicular to the longitudinal axis 27 of the spine where the approach path 10c enters the intervertebral space L4-L5 or L5-S1.


The approach-Ilium gap 26 can be measured between the approach path 10c and the closest medial surface of the Ilium 2. The approach-Ilium gap 26 can be perpendicular to the approach path 10c and the Ilium 2, for example when the approach path 10c is tracking the medial surface of the Ilium 2. The approach-Ilium gap 26 can be from about 0 mm to about 15 mm along the length of the approach path 10c where the approach path is tracking the medial surface of the Ilium 2, more narrowly from about 0 mm to about 10 mm, yet more narrowly from about 2 mm to about 8 mm.


The approach path 10c can be curved in all three dimensions (e.g., in the transverse plane, sagittal plane and coronal plane), or any combination thereof and straight in the remaining dimensions.



FIG. 9a through 9d illustrate that variations of hinges 24a and 24b between the segments 22a, 22b and 22c can allow the implant 14 to articulate. The implant 14 can have controlled angulation or articulation (i.e., with discrete, defined built-in stopping points or stops) or free angulation or articulation (i.e., with no stops).



FIG. 9a illustrates that the hinges 24a and 24b can be oriented in parallel with the z-axis. The hinges can have a single degree of rotational freedom. The segments 24, 24b and 24c can articulate by rotating about the z-axis with respect to each other. The hinges 24a and 24b can be near the top (as shown), near the bottom, in the middle with respect to the y-axis, or combinations thereof of the device 14.



FIG. 9b illustrates that the hinges 24a and 24b can be oriented in parallel with the x-axis. The segments 24, 24b and 24c can articulate by rotating about the x-axis with respect to each other. The hinges 24a and 24b can be near the front (as shown), near the rear, in the middle with respect to the z-axis, or combinations thereof of the device 14.



FIG. 9c illustrates that the hinges 24a and 24b can be oriented in parallel with the y-axis. The segments 24, 24b and 24c can articulate by rotating, about the y-axis with respect to each other. The hinges 24a and 24b can be near the front (as shown), near the rear, in the middle with respect to the z-axis, or combinations thereof of the device 14.



FIG. 9d illustrates that the hinges 24a and 24b can be ball-in-socket hinges allowing three rotational degrees of freedom, or a combination of the three hinges described in FIGS. 9a through 9c, allowing two or three degrees of freedom. The segments 24, 24h and 24c can articulate by rotating about the x-axis, and/or y-axis, and/or z-axis with respect to each other. The hinges 24a and 24b can be near the front (as shown), near the rear, in the middle with respect to the z-axis, near the top, near the bottom, in the middle with respect to the y-axis (as shown), or combinations thereof of the device 14.


The first hinge 24a can be located in a different location and/or with a different than the second hinge 24b. For example, the first hinge 24a can be oriented in parallel with the z-axis, allow rotation about the z-axis and be located near the top of the device 14, and the second hinge 24b can be oriented in parallel with the x-axis, allow rotation about the x-axis, and be located near the middle of the device 14 with respect to the z-axis.



FIGS. 10a and 10b illustrate that the device 14 can have an outer steering sheath or tube 28. The device 14 can be fixed to the steering tube 28 or can slide along the steering tube 28. The steering tube 28 can be articulatable and/or flexible, as shown by the arrow in FIG. 10b and the various configurations of the tube 28 between FIGS. 10a and 10b. The articulation or flexion of the steering tube 28 can be controlled, for example by delivering controlled tension to tensile control wires in the walls of the steering tube 28.


The steering tube 28 can be positioned at the target deployment site. For example, the steering tube 28 can be placed in the intervertebral space and can remain in the intervertebral space post-surgery, or the steering tube 28 can be removed from the intervertebral space and the device 14 can be deployed from the tube 28 and the device 14 can be left in the intervertebral space.


Also for example, the distal end of the steering tube 28 can be positioned at the entrance to the intervertebral space and/or rested on the inferior and/or superior vertebral body end plate adjacent to the target intervertebral space. The device 14 can then be pushed (e.g., by a plunger) out of the steering tube and into the intervertebral space. The steering tube 28 does not have to, but can, enter the intervertebral space.



FIGS. 10c through 10d illustrate that the device 14 can have one or more exterior steering rails, tracks or wires 30a and 30b, such as guidewires. The rails 30a and 30b can slidably or fixedly and releasably engage the external surface of the segments 22 of the device 14. For example, the rails can pass through slots, guides, collars, cuffs or combinations thereof on the exterior of the segments 22. The slots, guides, collars, cuffs or combinations thereof, and/or the rails 30a and 30b can be coated or covered with a low-friction (e.g., PTFE) or high-friction (e.g., knurled or toothed surface texturing) material or surface treatment or texture, including any of the materials listed herein. The steering rails 30a and 30b can be steered or manipulated by applying a tensile force to tensile cables within the rails, as shown by the arrows in FIGS. 10d and 10e, and the flexing from FIGS. 10c to 10d. The rails 30a and 30b can be pre-formed to a specific shape and can be substituted for other rails 30a and 30b that can be pre-formed to a different shape to change the direction of delivery.



FIGS. 11a through 11c illustrates that the device 14 can have one or more interior steering rails, guide, tracks or wires 30, such as guidewires. The rails 30 can be positioned through the center or interior of one or more segments 22 of the device 14. The rail 20 can slidably or fixedly and releasably engage an internal surface, such as through a longitudinal guide port or channel 32, of the segments 22 of the device 14. For example, ports or channels can extend longitudinally through the segments 22 of the device 14. The channels, and/or the rail 30 can be coated, covered or collared, such as with a low-friction (e.g., PTFE) or high-friction (e.g., knurled or toothed surface texturing) material or surface treatment or texture, including any of the materials listed herein. The steering rail 30 can be steered or manipulated by applying a tensile force to tensile cables within the rail 30, as shown by the flexing from FIGS. 11a to 11c. The rail 30 can be pre-formed to a specific shape and can be substituted for one or more other rails 30 that can be pre-formed to a different shape to change the direction of delivery.


The distal ends of the internal and/or external steering rail or rails 30 can be positioned at the target deployment site. For example, the steering rails 30 can be placed in the intervertebral space and can remain in the intervertebral space post-surgery, or the steering rails 30 can be removed from the intervertebral space and the device 14 can be deployed from the rails 30 and the device 14 can be left in the intervertebral space.


Also for example, the distal end of the steering rails 30 can be positioned at the entrance to the intervertebral space and/or rested on the inferior and/or superior vertebral body end plate adjacent to the target intervertebral space. The device 14 can then be pushed (e.g., by a plunger) out of the steering rails 30 and into the intervertebral space. The steering rails 30 do not have to, but can, enter the intervertebral space.



FIGS. 12a through 12f illustrate cross-sections of various rails 30, or at various lengths along the same rail 30. FIG. 12a illustrates that the cross-section of the steering rail 30 can be circular. FIG. 12b illustrates that the cross-section of the steering rail 30 can be oval. FIG. 12c illustrates that the cross-section of the steering rail 30 can be multi-ovular (i.e., having a union of two or more ovals with the same major axis). FIG. 12d illustrates that the cross-section of the steering rail 30 can be the union of rectangles intersecting at right (or another) angle, such as a plus-sign. FIG. 12e illustrates that the cross-section of the steering rail 30 can be hexagonal. FIG. 12f illustrates that the cross-section of the steering, rail 30 can be rectangular or square with sharp or rounded (chamfered) edges. The cross-section of the steering rail 30 can be triangular, pentagonal, heptagonal, or octagonal. The steering rail 30, whether internal or external to the device 14, can deliver torque around the longitudinal and/or transverse axes of the device. The steering rail 30 can have various cross sections at various lengths along the rail 30. The steering rail 30 can guide, pitch, yaw and roll the device 14 into a desired orientation or indication. The device 14 can be delivered with one or more internal and/or external rails 30 and/or a sheath 28 or neither.



FIG. 13 illustrates a device 14 that can be attached to a deployment tool having a controller handle 34 controllably attached to the internal steering rail 30. The internal steering rail 30 can pass through the device 14. The steering rail 30 can be fixedly attached to the device 14 during the delivery and articulation of the device 14. The device can be steered along or tracking the medial surface of the Ilium 2. The device 14 can then be positioned adjacent to the target site (e.g., the L5-S1 intervertebral space). The deployment tool can then release the device 14 from the steering rail 30 and push the device 14 into the target site.



FIGS. 14a and 14b illustrate that the device 14 can be delivered by being pushed along a steering horn, boot, or slide 36. The slide 36 can be similar to the steering tube 28, except that at least one wall of the slide 36 can be missing or open (e.g., the top wall is not present in the variation of the slide shown) compared with the steering tube 28. The missing wall can be completely open or replaced by one or more steering rails 30. The slide 36 can be used similar to the steering rails 30 and/or steering tube 28. The slide 36 can be steered, flexed or articulated by applying a tensile force to tensile cables within the rails, as shown by the arrow in FIG. 14b, and the flexing from FIGS. 14a to 14b.



FIGS. 15a and 15b illustrate that the device 14 can have six segments 22a through 22f and five hinges 24a through 24e. The segments 22 can be attached to adjacent segments 22 by one or more hinges, tension or steering rails or wires, screws, pins, or combinations thereof. The hinges 24 can be pins. The segments 22 can be chained together. The segments 22 can be identical to each other except for the distal-most segment 22a and the proximal-most segment 22f. The segments 22 or links can be box-shaped. The hinges 24, such as the pins, can be parallel to all or some of the other hinges 24.



FIG. 16 illustrates that the hinges 24 can be at acute angles to all or some of the hinges 24. The hinges 24 can be at hinge angles 38 with respect to each other. The hinge angle 38 can be measured between the hinge longitudinal axis 40 and the device longitudinal axis 42. The hinge angles 38 can be from about 80° to about 150°, more narrowly from about 90° to about 135°, yet more narrowly from about 95° to about 110°.


The device 14 can be translated and/or rotated by a handle 34 that can be removably attached to the device 14. The handle 34 can be screwed and/or snapped directly into the proximal end of the device 14, such as into the proximal-most segment 22. The handle 34 can compress, such as by grabbing or pinching, the proximal end of the device 14. The handle 34 can be a pusher, plunger, ram, or combinations thereof. The handle 34 and/or remainder of the deployment tool can be rigid and/or flexible or articulatable. For example, hinged similar to the device 14.


The segments 22 are not necessarily connected to each other by hinges. The segments 22 can be delivered to the target site individually, or as an unattached line of segments 22.


The device 14 can be cylindrical and flexible. The implantable device 14 can be fully flexible all the time. The device 14 can be mechanically stabilized by the deployment tool, steering wires, sheaths, tubes and guides. For example, the tools, wires, sheaths, tubes and guides can provide column stability to press the device 14 into the target site (e.g., intervertebral disc space).


The device 14 can flexible, and then locked with a tension or steering wire to stop rotational motion of the hinges once the device is delivered to and oriented within the target site. The tension wire could be tightened, for example by being tensioned by a nut to create higher friction in each hinge 24.



FIGS. 17a through 17f illustrate that the device 14 can have a living hinge 44. The living hinge 44 is a length of decreased rigidity and increased flexing within the body of the device 14. The living hinge 44 can be formed around slots and continuous segments of otherwise tough, durable material. The living hinge 44 can be defined be narrowing or thinning in the body of the device 14, such that the narrowing is sufficient to provide flexibility under reasonable torque. For example, the thickness of the unitary body of the device 14 at the living hinge 44 can be narrowed by more than about 85%, or more than about 90%, or more than about 95%, or more than about 97%, or more than about 98.5%. The living hinge 44 can have one or more repeated thinnings along the length of the device 14, as shown in FIGS. 17a through 17f.



FIGS. 17a and 17b illustrate that the device 14 bends at the living hinge 44. The living hinges 44 can be made to control the bend and direction of the device 14. The outer surface of the device 14 along the living hinge 44 can be smooth, for example providing low-friction surface for sliding over bone.



FIGS. 17a and 17b illustrate that the living hinge 44 can be along the bottom of the implant device 14. FIG. 17c illustrates that the living hinge 44 can be along the top of the device 14. FIG. 17d illustrates that the living hinge 44 can be through the middle or central axis of the device 14. FIG. 17e illustrates that the living hinge 44 is discontinuous and on opposite sides of the center of the device 44. FIG. 17f illustrates that the living hinge 44 is at an angle with respect to the longitudinal axis of the device 14, starting near the bottom of the device 14 and ending near the top of the device 14.



FIG. 18 illustrates that the living hinge 42 can be at a non-zero angle to the central longitudinal axis 42 of the device 14. A first length of the living hinge 42 can be at a non-zero angle to a second length of the living hinge 44.



FIG. 19 illustrates that the living hinge 44 can be curved. The living hinge 44 can curve around the central longitudinal axis 42 of the device 14.



FIGS. 20a through 20c illustrate that the device can have three segments 22a, 22b and 22c connected by two hinges 24a and 24b. The device longitudinal axis 42 can be straight or can have a longitudinal radius of curvature 46. The longitudinal radius of curvature 46 can be from about 3 cm to about 100 cm, more narrowly from about 5 cm to about 20 cm, yet more narrowly from about 7 cm to about 15 cm, for example about 15 cm, also for example about 10 cm.


The support device 14 can have a support device width 11a, a support device length 11b and a support device height 11c. The support device width 11a can be from about 10 mm to 30 mm, or more narrowly 16 mm to about 18 mm. The support device length 11b can be from about 30 mm to 60 mm, or more narrowly from 45 mm to about 55 mm. The support device height 11c can be from about 1 mm to 30 mm, or more narrowly from 8 mm to about 16 mm.


The device 14 can have an anterior taper or lordosis angle 48. The taper angle 48 can be measured between the plane of the top surface and the plane of the bottom surface of the device 14. The taper angle 48 can be from about 0° (i.e., parallel top and bottom planes) to about 45°, more narrowly from about 2° to about 20°, yet more narrowly from about 0° to about 12°, yet more narrowly from about 4° to about 10°, yet more narrowly from about 4° to about 8°, for example from about 0°, also for example about 6°.


The first, second, and third links or segments 22a, 22b and 22c of the flexible implantable device 14 may be separate or connected. One or more of the segments 22 can be rigid and/or flexible. One or more of the segments 22 can have through-ports or segment ports 50, such as first, second and third segment ports 50a, 50b and 50c, through the first, second and third segments 22a, 22b, and 22c, respectively. The segment ports 50 can extend through part of all of the height of the respective segment 22 or the device 14 from the top to the bottom surface. One or more of the segment ports 50 can be partially or completely filled with a bone ingrowth matrix, bone morphogenic protein, therapeutic agents, any agent or material disclosed herein, or combinations thereof, for example for analgesic effect or to promote bone ingrowth.


The device 14 can have a surface coating or texturing on the top, and/or bottom, and/or side surfaces, such as lateral teeth 52, longitudinal or angled teeth, knurling, a coating or matrix to promote bone ingrowth, or combinations thereof.


The device 14 can have hinge teeth or knuckles 54. The hinge teeth 54 can slide by adjacent hinge teeth 54 to increase lateral stability during articulation and increase range of motion (e.g., a hinge tooth 54 on one segment 22 can slide into the gap between hinge teeth 54 on the adjacent segment 22 during articulation of the device 14).


One or more tension and/or steering wires can be inserted and/or tensioned through guide ports or channels 32a and 32b. The guide channels 32a and 32b can extend longitudinally through some or all of the segments 22.


The first segment 22a and the third segment 22c can have central vertical holes 82a and 82b, respectively. The central vertical holes 82 can be attached to a deployment device, screwed to the adjacent tissue (i.e., bone) after delivery, filled with a radiopaque material for visualization or therapeutic or other material listed herein, or combinations thereof.



FIGS. 21a through 21c illustrate that device 14 can articulate. The segments 22 can rotate with respect to each other about the hinges 24, as shown by arrows.


The first segment 22a can have a first segment longitudinal axis 42a. The second segment 22b can have a second segment longitudinal axis 42b. The third segment 22c can have a third segment longitudinal axis 42c. The respective longitudinal axes can intersect at the adjoining, hinge pins 24. The first segment longitudinal axis 42a can form a first articulation angle 80a with the second segment longitudinal axis 42b. The second segment longitudinal axis 42b can form a second articulation angle 80b with the third segment longitudinal axis 42c. The first and second articulation angles 80a and 80b can be the same or different. When the device is in an articulated configuration, the first and/or second articulation angles 80a and/or 80b can be from about 0° to about 90°, more narrowly from about 3° to about 75°, yet more narrowly from about 5° to about 60°, yet more narrowly from about 15° to about 45°.



FIGS. 22a through 22c illustrate that some or all of the distal-most segments 22a through 22d can be identical. Segments 22 can be added or removed from the device 14, before during or after deployment to the target site, to increase or decrease the length of the device 14 to best fit the target site. The false hinge 24′ can be a hinge component that is not attached to the other half of the hinge 24. The hinges 24 can snap together and apart. The articulation of each segment 22 can be limited by the interference fit of a rotational stop 58 on the top and bottom of the adjacent segment 22.


The device 14 can have a deployment tool interface, such as the lateral hole 56, for attaching to the deployment tool.



FIGS. 23a through 23c illustrate that a tensioning or steering wire or rail 30 can be deployed through the channels 32 on each segment. The wire 30 can then be tensioned to articulate and/or lock the device 14 in an articulated configuration.


PCT Application No. PCT/US 11/00974 filed 27 May 2011 which claims priority to U.S. Provisional App. No. 61/349,151 filed 27 May 2010 are both herein incorporated by reference in their entireties.


Any or all elements of the device and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphathalate (PET)/polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, (PET), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEEK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block co-polyimide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyethyl acrylate (PEA), polydioxanone (PDS), and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized hone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.


Any or all elements of the device and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents and/or a matrix a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.


The device and/or elements of the device and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glues, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.


Examples of such cements and/or fillers includes bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.


The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.


Methods of Use



FIG. 24 illustrates that a straight or curved transosseous delivery channel 94 can be drilled, chiseled, punched, or a combination thereof, through the iliac bone 2 and/or the sacral ala 90, for example passing through the sacroiliac joint 92. The transosseous delivery channel 94 have a first length or first channel through the iliac 2 and a second length or second channel through the sacrum S1. The first length of the transosseous delivery channel 94 can be aligned with the second length of the transosseous delivery channel 94, for example to form a substantially continuous channel. The transosseous delivery channel 94 can have a laterally-located channel entry port 96 laterally outside of the sacral ala 90 and/or iliac bone 2. The transosseous delivery channel 94 can have a channel exit port 98 adjacent to the L5-S1 intervertebral disc space. For example, the channel exit port 98 can be in the S1 endplate. The channel exit port 98 can be positioned so the circumference of the channel exit port 98 tangentially coincides with or is closely adjacent to (e.g., within about 2 cm, more narrowly within about 1 cm, more narrowly within about 5 mm, yet more narrowly within about 2 mm) with the edge of the S1 vertebral endplate 100.


The L5-S1 intervertebral space can be partially or completely void of soft tissue, as shown, for example from a discectomy performed before insertion of the support device 14. For example, the discectomy can be performed by the method and device shown in U.S. Provisional Patent Application No. 61/526,630 filed 23 Aug. 2011, which is incorporated by reference herein in its entirety.



FIG. 25 illustrates that the support device 14 can be inserted, as shown by arrow 102, medially through the channel entry port 96 of the transosseous delivery channel 94. The device 14 can be removably and/or articulatably attached to a deployment tool shaft 104.



FIG. 26 illustrates that the shaft 104 can be further translated, as shown by arrow 106, into the transosseous delivery channel 94. The support device 14 can translate toward and into the L5-S1 intervertebral disc space. The distal tip of the support device 14 can enter the L5-51 intervertebral disc. The support device 14 can enter the target site of the L5-S1 intervertebral disc directly from the transosseous delivery channel 94 without passing through any soft tissue between the L5-S1 intervertebral disc and the iliac bone 2.



FIG. 27 illustrates that the shaft 104 can be further translated, as shown by arrow 108, medially through the transosseous delivery channel 94. The device 14 can translate, as shown by arrow 110, through the L5-S1 intervertebral disc space and the L5 and/or the S1 vertebra. The support device 14 can articulate, as shown by arrow 112. One or more of the hinges 24 can rotate, articulating the segments 22. The hinges 24 can be controllably rotatably locked and unlocked, for example, by controls on the handle of the deployment tool (of which the shaft 104 is a part).


The support device 14 can then be further translated, such as being pushed and/or vibrated (e.g., manually, ultrasonically), for example, medially and laterally, and/or superior and inferiorly, and/or anteriorly and posteriorly. The through ports and/or cavities and/or recesses 50 in the device 14 can be partially and/or completely filled bone morphogenic protein, therapeutic agents, other materials listed herein or combinations thereof. The support device 14 can deliver a cauterizing electrical energy from the deployment tool. The support device 14 and shaft 104 can have one or more longitudinal lumens that can be used to irrigate (e.g., with analgesic agents, saline, anesthetic agents, bone morphogenic proteins, visualization agents, other agents described herein, or combinations thereof) and/or aspirate (e.g., to remove irrigated material and/or debris) the target site (e.g., the L5-S1 intervertebral disc space).



FIG. 28 illustrates that before, during or after the support device 14 is positioned in the L5-S1 intervertebral space, the shaft 104 can detach from the support device 14 and be translated laterally, as shown by arrow 114, from the L5-S1 intervertebral disc space and the transosseous delivery channel 94. The deployment tool shaft 104 can remove or reposition the support device 14, or leave the support device 14 in place in the L5-S1 space.


The method shown in FIGS. 25 through 28 can be repeated to deliver multiple support devices 14 to one or more intervertebral spaces. For example, one, two, three or more support devices 14 can be positioned in the L4-L5 intervertebral space and/or the L5-S1 intervertebral space. The one, two, three or more support devices 14 positioned in the L4-L5 and/or L5-S1 intervertebral spaces, can mechanically support the adjacent vertebrae and/or fix the adjacent vertebrae to each other. Bone ingrowth can occer through the through ports 50, for example fusing the support devices 14 to the respective surrounding vertebrae.



FIGS. 29 through 31 illustrate that the transosseous delivery channel 94 can have a coronal delivery angle 120 measured to the coronal plane 122, a sagittal delivery angle 124 measured to the sagittal plane 126, and a transverse delivery angle 128 measured to the transverse plane 130. The coronal delivery angle 120 can be from about 0° to about 25°, for example about 12°. The sagittal delivery angle 124 can be from about 65° to about 90°, for example about 75°. The transverse delivery angle 128 can be from about 0° to about 20°, for example about 10°. The support device 14 and shaft 104 can be configured so the support device 14 can exit the channel exit port 98 (e.g., directly into the L5-S1 intervertebral disc) and articulate sufficiently to enter and pass through all or a significant portion (e.g., more than about 40%, yet more narrowly more than about 50%, yet more narrowly more than about 75%) of the width of the L5-S1 intervertebral space.



FIGS. 30 and 31 show one or both femurs 132 for illustrative purposes.



FIGS. 32a through 32d, and separately FIGS. 33a through 33c illustrate the deployment of the support device 14 into the L5-S1 intervertebral disc space target site, as described for FIGS. 24-27. The support device 14 can be delivered to a complete or partial discectomy target site 138 in the L5-S1 space.



FIG. 33d illustrates the shaft 104 can be rotated, as shown by arrow 134, about the longitudinal axis of the shaft before during or after the support device 14 is positioned in the L5-S1 intervertebral disc space target site. The support device 14 can rotate, as shown by arrow 136, in the L5-S1 intervertebral disc space, for example to control and position the support device 14 to an angular orientation in the transverse plane 130.


Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.

Claims
  • 1. A method for inserting an implant to a target site between a first vertebra and a second vertebra comprising: creating a first channel through an ilium, wherein at least a portion of a length of the first channel follows a shape of a medial surface of the ilium;creating a second channel through a sacrum, wherein the first channel is aligned with the second channel;inserting a first rigid section of an implant through the first channel and the second channel into a target site,rotating a second rigid section of the implant with respect to the first rigid section, wherein the first rigid section is hingedly attached to the second rigid section; andinserting the second rigid section of the implant into the target site.
  • 2. The method of claim 1, wherein the second channel passes through a vertebral endplate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/773,100 filed Feb. 21, 2013, which is a continuation of PCT Application No. PCT/US2011/048992, filed Aug. 24, 2011, which claims priority to U.S. Provisional Patent Application No. 61/376,626, filed Aug. 24, 2010, and to U.S. Provisional Patent Application No. 61/526,630, filed Aug. 23, 2011, all of which are incorporated by reference herein in their entireties.

US Referenced Citations (640)
Number Name Date Kind
646119 Clamer et al. Mar 1900 A
4204531 Aginsky May 1980 A
4541423 Barber Sep 1985 A
4569338 Edwards Feb 1986 A
4636217 Ogilvie et al. Jan 1987 A
4653489 Tronzo Mar 1987 A
4716893 Fischer et al. Jan 1988 A
4725264 Glassman Feb 1988 A
4733665 Palmaz Mar 1988 A
4759769 Hedman et al. Jul 1988 A
4763644 Webb Aug 1988 A
4863476 Shepperd Sep 1989 A
4886062 Wiktor Dec 1989 A
4911718 Lee et al. Mar 1990 A
4932975 Main et al. Jun 1990 A
4941466 Romano Jul 1990 A
4969888 Scholten et al. Nov 1990 A
5007909 Rogozinski Apr 1991 A
5015247 Michelson May 1991 A
5026373 Ray et al. Jun 1991 A
5059193 Kuslich Oct 1991 A
5108404 Scholten et al. Apr 1992 A
5123926 Pisharodi Jun 1992 A
5139480 Hickle et al. Aug 1992 A
5171278 Pisharodi Dec 1992 A
5217483 Tower Jun 1993 A
5258031 Salib et al. Nov 1993 A
5306278 Dahl et al. Apr 1994 A
5324295 Shapiro, III Jun 1994 A
5342348 Kaplan Aug 1994 A
5345927 Bonutti Sep 1994 A
5390683 Pisharodi Feb 1995 A
5390898 Smedley et al. Feb 1995 A
5397364 Kozak et al. Mar 1995 A
5425773 Boyd et al. Jun 1995 A
5454365 Bonutti Oct 1995 A
5458643 Oka et al. Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5484384 Fearnot Jan 1996 A
5496365 Sgro Mar 1996 A
5522899 Michelson Jun 1996 A
5534002 Brumfield et al. Jul 1996 A
5540690 Miller et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556413 Lam Sep 1996 A
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5571189 Kuslich Nov 1996 A
5571192 Schonhoffer Nov 1996 A
5584831 McKay Dec 1996 A
5591197 Orth et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5609356 Mossi Mar 1997 A
5609635 Michelson Mar 1997 A
5643264 Sherman et al. Jul 1997 A
5643312 Fischell et al. Jul 1997 A
5645560 Crocker et al. Jul 1997 A
5649950 Bourne et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5674295 Ray et al. Oct 1997 A
5683394 Rinner Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702449 Mckay Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5741253 Michelson Apr 1998 A
5749916 Richelsoph May 1998 A
5772661 Michelson Jun 1998 A
5776181 Lee et al. Jul 1998 A
5776197 Rabbe et al. Jul 1998 A
5776198 Rabbe et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782903 Wiktor Jul 1998 A
5785710 Michelson Jul 1998 A
5800520 Fogarty et al. Sep 1998 A
5824054 Khosravi et al. Oct 1998 A
5824093 Ray et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5853419 Imran Dec 1998 A
5861025 Boudghene et al. Jan 1999 A
5863284 Klein Jan 1999 A
5865848 Baker Feb 1999 A
5895387 Guerrero et al. Apr 1999 A
5902475 Trozera et al. May 1999 A
5972015 Scribner et al. Oct 1999 A
5980522 Koros et al. Nov 1999 A
5980550 Eder et al. Nov 1999 A
5984957 Laptewicz et al. Nov 1999 A
5993483 Gianotti Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6019765 Thornhill et al. Feb 2000 A
6019792 Cauthen Feb 2000 A
6022376 Assell et al. Feb 2000 A
6025104 Fuller et al. Feb 2000 A
6027527 Asano et al. Feb 2000 A
6036719 Meilus Mar 2000 A
6039761 Li et al. Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6053916 Moore Apr 2000 A
6066154 Reiley et al. May 2000 A
6077246 Kullas et al. Jun 2000 A
6080158 Lin Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6086610 Duerig et al. Jul 2000 A
6090143 Meriwether et al. Jul 2000 A
6102950 Vaccaro Aug 2000 A
6113628 Borghi Sep 2000 A
6113639 Ray et al. Sep 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132465 Ray et al. Oct 2000 A
6140452 Felt et al. Oct 2000 A
6146417 Ischinger Nov 2000 A
6159244 Suddaby Dec 2000 A
6159245 Meriwether et al. Dec 2000 A
6168616 Brown Jan 2001 B1
6171312 Beaty Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6206910 Berry et al. Mar 2001 B1
6206924 Timm Mar 2001 B1
6224595 Michelson May 2001 B1
6224603 Marino May 2001 B1
6224604 Suddaby May 2001 B1
6224607 Michelson May 2001 B1
6235043 Reiley et al. May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6280456 Scribner et al. Aug 2001 B1
6287332 Bolz et al. Sep 2001 B1
6293967 Shanley Sep 2001 B1
6302914 Michelson Oct 2001 B1
6332895 Suddaby Dec 2001 B1
6371989 Chauvin et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6395031 Foley et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409765 Bianchi et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6419705 Erickson Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428569 Brown Aug 2002 B1
6432107 Ferree Aug 2002 B1
6436098 Michelson Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6440168 Cauthen Aug 2002 B1
6447544 Michelson Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6447547 Michelson Sep 2002 B1
6451025 Jervis Sep 2002 B1
6454804 Ferree Sep 2002 B1
6468301 Amplatz et al. Oct 2002 B1
6468302 Cox et al. Oct 2002 B2
6478823 Michelson Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6488710 Besselink Dec 2002 B2
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6508820 Bales Jan 2003 B2
6508839 Lambrecht et al. Jan 2003 B1
6514255 Ferree Feb 2003 B1
6520991 Huene Feb 2003 B2
6533817 Norton et al. Mar 2003 B1
6551342 Shen et al. Apr 2003 B1
6554833 Levy et al. Apr 2003 B2
6562074 Gerbec et al. May 2003 B2
6582431 Ray Jun 2003 B1
6582467 Teitelbaum et al. Jun 2003 B1
6585770 White et al. Jul 2003 B1
6592589 Hajianpour Jul 2003 B2
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6602291 Ray et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6607544 Boucher et al. Aug 2003 B1
6613054 Scribner et al. Sep 2003 B2
6623505 Scribner et al. Sep 2003 B2
6641587 Scribner et al. Nov 2003 B2
6641614 Wagner et al. Nov 2003 B1
6645213 Sand et al. Nov 2003 B2
6645247 Ferree Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6648918 Ferree Nov 2003 B2
6648920 Ferree Nov 2003 B2
6652584 Michelson Nov 2003 B2
6656178 Veldhuizen et al. Dec 2003 B1
6663647 Reiley et al. Dec 2003 B2
6666891 Boehm et al. Dec 2003 B2
6676665 Foley et al. Jan 2004 B2
6679915 Cauthen Jan 2004 B1
6685695 Ferree Feb 2004 B2
6695760 Winkler et al. Feb 2004 B1
6706068 Ferree Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6709458 Michelson Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716247 Michelson Apr 2004 B2
6719773 Boucher et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6726691 Osorio et al. Apr 2004 B2
6733535 Michelson May 2004 B2
6740090 Cragg et al. May 2004 B1
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6793656 Mathews Sep 2004 B1
6793679 Michelson Sep 2004 B2
6808537 Michelson Oct 2004 B2
6814756 Michelson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6852115 Kinnett Feb 2005 B2
6852123 Brown Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6893464 Kiester May 2005 B2
6899716 Cragg May 2005 B2
6899719 Reiley et al. May 2005 B2
6921264 Mayer et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6923830 Michelson Aug 2005 B2
6936065 Khan et al. Aug 2005 B2
6936070 Muhanna Aug 2005 B1
6948223 Shortt Sep 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6960215 Olson et al. Nov 2005 B2
6962606 Michelson Nov 2005 B2
6981981 Reiley et al. Jan 2006 B2
6988710 Igarashi Jan 2006 B2
7008453 Michelson Mar 2006 B1
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7060073 Frey et al. Jun 2006 B2
7066961 Michelson Jun 2006 B2
7077864 Byrd et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7094257 Mujwid et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7112206 Michelson Sep 2006 B2
7118598 Michelson Oct 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7166110 Yundt Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7201775 Gorensek et al. Apr 2007 B2
7204853 Gordon et al. Apr 2007 B2
7211112 Baynham et al. May 2007 B2
7223292 Messerli et al. May 2007 B2
7226475 Lenz et al. Jun 2007 B2
7226481 Kuslich Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7238186 Zdeblick et al. Jul 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7241303 Reiss et al. Jul 2007 B2
7300440 Zdeblick et al. Nov 2007 B2
7309338 Cragg Dec 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7318826 Teitelbaum et al. Jan 2008 B2
7396360 Lieberman Jul 2008 B2
7431735 Liu et al. Oct 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7488337 Saab et al. Feb 2009 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7582106 Teitelbaum et al. Sep 2009 B2
7601172 Segal et al. Oct 2009 B2
7618457 Hudgins Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7625395 Mückter Dec 2009 B2
7628807 Flanagan Dec 2009 B2
7722674 Grotz May 2010 B1
7749228 Lieberman Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7771463 Ton et al. Aug 2010 B2
7828849 Lim Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7867233 Shaolian et al. Jan 2011 B2
7875035 Boucher et al. Jan 2011 B2
7879036 Biedermann et al. Feb 2011 B2
7879082 Brown Feb 2011 B2
8007498 Mische Aug 2011 B2
8034110 Garner et al. Oct 2011 B2
8062375 Glerum et al. Nov 2011 B2
8105382 Olmos et al. Jan 2012 B2
8142507 McGuckin Mar 2012 B2
8162943 Justin et al. Apr 2012 B2
8206423 Siegal Jun 2012 B2
8246622 Siegal et al. Aug 2012 B2
8262737 Bagga et al. Sep 2012 B2
8425570 Reiley Apr 2013 B2
8465524 Siegal Jun 2013 B2
8486149 Saidha et al. Jul 2013 B2
8512408 Miller et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8551171 Johnson et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8579912 Isaza et al. Nov 2013 B2
8591582 Anderson et al. Nov 2013 B2
8672968 Stone et al. Mar 2014 B2
8672977 Siegal et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685098 Glerum et al. Apr 2014 B2
8709042 Greenhalgh et al. Apr 2014 B2
8777993 Siegal et al. Jul 2014 B2
8845731 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
9216095 Glerum et al. Dec 2015 B2
9402739 Weiman et al. Aug 2016 B2
9408708 Greenhalgh Aug 2016 B2
9510885 Burger et al. Dec 2016 B2
20010007956 Letac et al. Jul 2001 A1
20010034552 Young et al. Oct 2001 A1
20020007218 Cauthen Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020022887 Huene Feb 2002 A1
20020032444 Mische Mar 2002 A1
20020038767 Trozera Apr 2002 A1
20020052656 Michelson May 2002 A1
20020068911 Chan Jun 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020082600 Shaolian et al. Jun 2002 A1
20020091390 Michelson Jul 2002 A1
20020095155 Michelson Jul 2002 A1
20020099378 Michelson Jul 2002 A1
20020111688 Cauthen Aug 2002 A1
20020120337 Cauthen Aug 2002 A1
20020123807 Cauthen Sep 2002 A1
20020128713 Ferree Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020138144 Michelson Sep 2002 A1
20020143401 Michelson Oct 2002 A1
20020151896 Ferree Oct 2002 A1
20020151980 Cauthen Oct 2002 A1
20020156530 Lambrecht et al. Oct 2002 A1
20020161367 Ferree Oct 2002 A1
20020161373 Osorio et al. Oct 2002 A1
20020165542 Ferree Nov 2002 A1
20020189622 Cauthen et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004511 Ferree Jan 2003 A1
20030004574 Ferree Jan 2003 A1
20030009227 Lambrecht et al. Jan 2003 A1
20030014118 Lambrecht et al. Jan 2003 A1
20030026788 Ferree Feb 2003 A1
20030032963 Reiss et al. Feb 2003 A1
20030040796 Ferree Feb 2003 A1
20030040798 Michelson Feb 2003 A1
20030050701 Michelson Mar 2003 A1
20030065394 Michelson Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030074076 Ferree et al. Apr 2003 A1
20030078579 Ferree Apr 2003 A1
20030088249 Furderer May 2003 A1
20030120345 Cauthen Jun 2003 A1
20030125748 Li et al. Jul 2003 A1
20030125807 Lambrecht et al. Jul 2003 A1
20030135220 Cauthen Jul 2003 A1
20030135279 Michelson Jul 2003 A1
20030149482 Michelson Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030158553 Michelson Aug 2003 A1
20030158604 Cauthen et al. Aug 2003 A1
20030163200 Cauthen Aug 2003 A1
20030171813 Kiester Sep 2003 A1
20030181979 Ferree Sep 2003 A1
20030181980 Berry et al. Sep 2003 A1
20030181983 Cauthen Sep 2003 A1
20030187507 Cauthen Oct 2003 A1
20030187508 Cauthen Oct 2003 A1
20030191536 Ferree Oct 2003 A1
20030195514 Trieu et al. Oct 2003 A1
20030195630 Ferree Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030199979 Mcguckin Oct 2003 A1
20030199981 Ferree Oct 2003 A1
20030204189 Cragg Oct 2003 A1
20030204260 Ferree Oct 2003 A1
20030208270 Michelson Nov 2003 A9
20030220643 Ferree Nov 2003 A1
20030220650 Major et al. Nov 2003 A1
20030220690 Cauthen Nov 2003 A1
20030220693 Cauthen Nov 2003 A1
20030220694 Cauthen Nov 2003 A1
20030233097 Ferree Dec 2003 A1
20030233148 Ferree Dec 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040002759 Ferree Jan 2004 A1
20040002760 Boyd et al. Jan 2004 A1
20040002769 Ferree Jan 2004 A1
20040006341 Shaolian et al. Jan 2004 A1
20040006344 Nguyen et al. Jan 2004 A1
20040010315 Song Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040019386 Ferree Jan 2004 A1
20040024400 Michelson Feb 2004 A1
20040024459 Ferree Feb 2004 A1
20040024460 Ferree Feb 2004 A1
20040024461 Ferree Feb 2004 A1
20040024462 Ferree et al. Feb 2004 A1
20040024469 Ferree Feb 2004 A1
20040024471 Ferree Feb 2004 A1
20040028718 Ferree Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040030389 Ferree Feb 2004 A1
20040030390 Ferree Feb 2004 A1
20040030391 Ferree Feb 2004 A1
20040030398 Ferree Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044410 Ferree et al. Mar 2004 A1
20040049289 Tordy et al. Mar 2004 A1
20040059418 Mckay et al. Mar 2004 A1
20040059419 Michelson Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040068259 Michelson Apr 2004 A1
20040082954 Teitelbaum et al. Apr 2004 A1
20040082961 Teitelbaum Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040087950 Teitelbaum May 2004 A1
20040092933 Shaolian et al. May 2004 A1
20040092946 Bagga et al. May 2004 A1
20040092988 Shaolian May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040102848 Michelson May 2004 A1
20040111108 Farnan Jun 2004 A1
20040133229 Lambrecht et al. Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040138673 Lambrecht et al. Jul 2004 A1
20040153064 Foley et al. Aug 2004 A1
20040153065 Lim Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040172019 Ferree Sep 2004 A1
20050010292 Carrasco Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050022839 Savas et al. Feb 2005 A1
20050033431 Gordon et al. Feb 2005 A1
20050038512 Michelson Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050080422 Otte et al. Apr 2005 A1
20050085910 Sweeney Apr 2005 A1
20050107863 Brown May 2005 A1
20050113919 Cragg et al. May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050119561 Kienzle Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050209698 Gordon et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050228472 Case et al. Oct 2005 A1
20050240188 Chow et al. Oct 2005 A1
20050249776 Chen et al. Nov 2005 A1
20050261683 Veldhuizen et al. Nov 2005 A1
20050261695 Cragg et al. Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050261781 Sennett et al. Nov 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060004455 Leonard et al. Jan 2006 A1
20060015184 Winterbottom et al. Jan 2006 A1
20060022180 Selness Feb 2006 A1
20060036241 Siegal Feb 2006 A1
20060036273 Siegal Feb 2006 A1
20060052788 Thelen et al. Mar 2006 A1
20060052870 Ferree Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 Mckinley Mar 2006 A1
20060058880 Wysocki et al. Mar 2006 A1
20060079898 Ainsworth et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060095123 Flanagan May 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060106460 Messerli et al. May 2006 A1
20060122701 Kiester Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060142859 Mcluen Jun 2006 A1
20060149239 Winslow et al. Jul 2006 A1
20060149349 Garbe Jul 2006 A1
20060149385 Mckay Jul 2006 A1
20060155379 Heneveld et al. Jul 2006 A1
20060161261 Brown et al. Jul 2006 A1
20060178694 Greenhalgh et al. Aug 2006 A1
20060184188 Li et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060200166 Hanson et al. Sep 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060235414 Lim et al. Oct 2006 A1
20060235423 Cantu Oct 2006 A1
20060241764 Michelson Oct 2006 A1
20060253201 Mcluen Nov 2006 A1
20060264968 Frey et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060287725 Miller Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20060287727 Segal et al. Dec 2006 A1
20060287729 Segal et al. Dec 2006 A1
20060287730 Segal et al. Dec 2006 A1
20070027363 Gannoe et al. Feb 2007 A1
20070032791 Greenhalgh Feb 2007 A1
20070043440 William et al. Feb 2007 A1
20070055375 Ferree Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070067034 Chirico et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070093897 Gerbec et al. Apr 2007 A1
20070093899 Dutoit et al. Apr 2007 A1
20070112428 Lancial May 2007 A1
20070118222 Lang May 2007 A1
20070123877 Goldin et al. May 2007 A1
20070123986 Schaller May 2007 A1
20070162044 Marino Jul 2007 A1
20070162135 Segal et al. Jul 2007 A1
20070173824 Rosen Jul 2007 A1
20070173830 Rosen Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070213717 Trieu et al. Sep 2007 A1
20070225703 Schmitz et al. Sep 2007 A1
20070233260 Cragg Oct 2007 A1
20070239162 Bhatnagar et al. Oct 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070255408 Castleman et al. Nov 2007 A1
20070255409 Dickson et al. Nov 2007 A1
20070260270 Assell Nov 2007 A1
20070260315 Foley et al. Nov 2007 A1
20070270956 Heinz Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276377 Yundt Nov 2007 A1
20070282342 Niederberger et al. Dec 2007 A1
20070288028 Gorensek et al. Dec 2007 A1
20080015694 Tribus Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080021559 Thramann Jan 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080077150 Nguyen Mar 2008 A1
20080082162 Boismier et al. Apr 2008 A1
20080124865 Lutze et al. May 2008 A1
20080125865 Abdelgany May 2008 A1
20080133012 McGuckin Jun 2008 A1
20080140082 Erdem et al. Jun 2008 A1
20080140179 Ladisa Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188941 Grotz Aug 2008 A1
20080208255 Siegal Aug 2008 A1
20080221687 Viker Sep 2008 A1
20080243254 Butler Oct 2008 A1
20080243255 Butler et al. Oct 2008 A1
20080249625 Waugh et al. Oct 2008 A1
20080249628 Altarac et al. Oct 2008 A1
20080294205 Greenhalgh et al. Nov 2008 A1
20080312743 Vila et al. Dec 2008 A1
20080312744 Vresilovic et al. Dec 2008 A1
20090005871 White et al. Jan 2009 A1
20090018524 Greenhalgh et al. Jan 2009 A1
20090024204 Greenhalgh et al. Jan 2009 A1
20090024217 Levy et al. Jan 2009 A1
20090054991 Biyani et al. Feb 2009 A1
20090076511 Osman Mar 2009 A1
20090143859 McClellan et al. Jun 2009 A1
20090149956 Greenhalgh et al. Jun 2009 A1
20090163918 Levy et al. Jun 2009 A1
20090177207 Schaller Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090182431 Butler et al. Jul 2009 A1
20090198338 Phan Aug 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090318928 Purcell et al. Dec 2009 A1
20100004750 Segal et al. Jan 2010 A1
20100004751 Segal et al. Jan 2010 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100125274 Greenhalgh et al. May 2010 A1
20100168862 Edie et al. Jul 2010 A1
20100262147 Siegal et al. Oct 2010 A1
20100292796 Greenhalgh et al. Nov 2010 A1
20100324560 Suda Dec 2010 A1
20110009869 Marino et al. Jan 2011 A1
20110009969 Puno Jan 2011 A1
20110029083 Hynes et al. Feb 2011 A1
20110046737 Teisen Feb 2011 A1
20110054621 Lim Mar 2011 A1
20110087296 Reiley et al. Apr 2011 A1
20110106260 Laurence et al. May 2011 A1
20110118785 Reiley May 2011 A1
20110125266 Rodgers May 2011 A1
20110153019 Siegal Jun 2011 A1
20110166575 Assell et al. Jul 2011 A1
20110184519 Trieu Jul 2011 A1
20110230884 Mantzaris et al. Sep 2011 A1
20110230966 Trieu Sep 2011 A1
20110257684 Sankaran Oct 2011 A1
20110282387 Suh et al. Nov 2011 A1
20110319898 O'Neil et al. Dec 2011 A1
20110320000 O'Neil et al. Dec 2011 A1
20120004731 Viker Jan 2012 A1
20120029518 Blackwell et al. Feb 2012 A1
20120071962 Huang et al. Mar 2012 A1
20120071980 Purcell et al. Mar 2012 A1
20130035723 Donner Feb 2013 A1
20130053852 Greenhalgh et al. Feb 2013 A1
20130085535 Greenhalgh et al. Apr 2013 A1
20130138214 Greenhalgh et al. May 2013 A1
20130173004 Greenhalgh et al. Jul 2013 A1
20130304224 Schmidt et al. Nov 2013 A1
20140088713 Greenhalgh et al. Mar 2014 A1
20140155980 Turjman et al. Jun 2014 A1
Foreign Referenced Citations (4)
Number Date Country
19710392 Jul 1999 DE
WO 2009067568 May 2009 WO
WO 2012040272 Mar 2012 WO
WO 2012083173 Jun 2012 WO
Non-Patent Literature Citations (1)
Entry
Gun Choi, Kim Jin-Sung, Pramod Lokhande, and Lee Sang-Ho. “Percutaneous Endoscopic Lumbar Discemtomy by Transiliac Approach.” SPINE 34.12 (2009): E443-446.
Related Publications (1)
Number Date Country
20160022429 A1 Jan 2016 US
Provisional Applications (2)
Number Date Country
61376626 Aug 2010 US
61526630 Aug 2011 US
Continuations (2)
Number Date Country
Parent 13773100 Feb 2013 US
Child 14874150 US
Parent PCT/US2011/048992 Aug 2011 US
Child 13773100 US