This invention relates to devices commonly known as chairs, separators or supports of metallic reinforcement elements in reinforced concrete, whose purpose is to establish a separation or spacing among structural elements themselves or between them and the surface of the form, wooden frame or surface on which the concrete is going to be poured or the concrete surface, thereby obtaining the coatings or layers of concrete desired.
There is a wide variety of devices intended to support steel reinforced concrete, which will be integrated inside of the concrete. Its purpose is to separate and provide a predetermined spacing (coatings or concrete layers) to those structural elements among each other, between them and the surface of the form or wooden frame, or between them and the surface of the slabs that make the “mold” for “pouring” the concrete, or the form or wooden frame or any other surface that contains the flow of concrete.
Some examples of such devices, “chairs”, have been described in numerous patents, of which some examples are presented below, whose teachings form part of the state of the art on which the development of this invention is based:
U.S. Pat. No. 5,595,039 (Lowery, 1997) describes a very simplified support device, of the kind of a solid rod with circular cross section vertically oriented, with its upper end being free and designed in order to a rod can lay on it transversely, and the other end being adjusted to a broad circular support base; the device is intended to support a transverse structural element and it permits spacing to be maintained between that element and the surface on which the device is placed, that distance is equivalent to the total height of the device and, therefore, to the thickness of the coating layer; therefore, the structural element has only one point of support in the device.
The device described in U.S. Pat. No. 4,682,471 (Sizemore, 1987), a chair made of molded plastic elements of different sizes forming the letter “A” between them, functions similarly, with the posts placed divergently with a reinforcement element that crosses on the upper part and another on the lower part. The element of minor dimensions is adjusted through the opening of the major element and fits in its place perpendicularly to the major element by specially designed cavities in the respective transversal elements; in this case, the structural element that lays on the crosshead generated in the upper part of the device also has a point of support, although the device seems to offer a better balance by having four points of support.
In U.S. Pat. No. 6,089,522 (Haslem, et al, 2000) and design U.S. Pat. No. 421,709 (Haslem, et al, 2000), which refer to the same device, a high chair comprised of four vertical posts joined to one another by a band that runs approximately to half of its height, is described; joint elements are observed between diagonally opposite posts in the upper end, shaping a supporting surface for the structural elements to be supported. The laterals are “H” shaped with their upper ends slightly closer than the lower ends, and the crosshead comprised by the crossbars in the upper part show elements to position the structural element to be supported, so that this element is oriented on one of de diagonals, offering a full line of contact between said structural element and the supporting device (chair); however, to achieve that contact on all the line it is required that the chair be adequately positioned for the diagonal to be collinear with the structural element; otherwise, contact is restricted to only one point.
U.S. Pat. No. 5,729,949 (Hartzheim, 1998) describes a chair used to support and space out meshes of reinforcing bars, wherein it has a cone-shaped hollow body, a flat base that provides great stability, an opening that permits concrete to flow in and around the chair, and pre-shaped notches on the upper part at two levels to keep the bars in the desired position.
U.S. Pat. No. design 334,133 illustrates a chair that has a curved upper end shaped to receive a circular section structural element, the chair rests on four legs with very reduced contact zones and shows a reinforcing ring in the proximity to its base.
In view of limitations and problems presented by developments proposed in the previous art up to now, an objective of this invention is to provide an element of support for a metallic structure of the type known as a chair, with a structural design that permits achieving a great load capacity.
Another objective of this' invention is to provide a chair, whose base is equipped with lower extremities or legs whose distribution and shape assure significant stability of the chair itself, as well as of the metallic structure that it supports.
Still another objective of this invention is to provide an improved chair, whose shape assures optimum behavior with concrete and its aggregates, thereby permitting passage of those aggregates and optimum integration into the structure.
Another objective of this invention is to provide a chair that offers two points of support for steel; the chair then, by acting as a double separator, offers advantages of stability with respect to those of the state of the art.
Another objective of this invention yet, is to provide a chair on which its structure is shaped and reinforced in such a way that there is a load axis between the two points of support that permits achieving greater load capacity, assuring that the reinforcing steel for the concrete is maintained aligned on the load axis, maximum resistance is achieved and assures that the assembly will maintain its position.
Another objective of this invention is to provide a chair on which the load area of the separator is greater than any separator with a point of support, by possessing two points of support situated longitudinally, thereby achieving greater productivity by achieving better performance per square meter.
These and other objectives and advantages of this invention will become evident from the following description, which is accompanied by a series of Figures for the preferred embodiments of the invention that should be understood, are drawn up for illustrative but not limitative purposes of the teachings of the invention.
In accordance with this invention, the main purpose of the chair is to serve as a support and separator of steel reinforcement conventionally used to shape concrete slabs. The chair is shaped by a single piece that includes a body with two upper ends and a plurality of supporting elements or elongated legs aligned in two parallel rows with one another to both sides of the main body, the legs actually constitute the body of the device and extend from the upper end in contact with the steel downwards, thereby forming the base of the device that will be in contact with the concrete contention surface, form or wooden frame, the thickness of the concrete coatings is then established by the distance from the point of contact with reinforcing steel to the lower end of the legs or bases, that is, by the height of the device.
There can be various alternatives in the arrangement of the supporting elements of the chair of the invention, the preferred embodiments are illustrated in this description in which it should be noted that the legs of the chairs are preferably four-sided structures that are reduced toward the lower part, ending in a sharpened figure with little contact surface, but in cases in which the load is notable, the legs have a cross section that is essentially shaped like a cross, that gives high resistance, and since greater resistance against deformation is successfully achieved with the same quantity of material, thereby offering greater resistance to the load; in all cases, the main body is formed by the two walls that form the sets of legs which are connected by another transverse wall to the first two walls; on their upper ends are located cavities shaped to receive the elongated elements of the metallic structure to be supported. These supporting cavities are essentially concave, semi-circular, and appropriate for receiving the profile of the steel structural elements, so as to offer the greatest possible area of contact between the body of the chair and the metallic structure.
In some of the tallest chair embodiments, the intermediate wall takes an “H” form, and the arch-shaped cavities permit the passage of concrete through it, and they also permit structural elements oriented transversely to be supported, by going through the cavities if so desired.
Some advantages of the proposed device that will be evident for a person knowledgeable in the area include the following:
The following description will refer to the attached drawings described above, that should be understood as illustrative of a preferred embodiment of the invention and not limited to the scope of the inventive matter. The common elements in the Figures have the same numerical references in all of them.
The chair, support or vertical plastic separator, subject matter of this invention, is a device designed to wedge or space reinforcing steel uniformly at different heights in reinforced concrete structures, thereby assuring the position of the steel and the projected concrete coverings, as well as achieving correct structural functioning.
The chair (100) functions as a double chair, since it has two points of support of steel (110) and (110′) on the same axis (115), which results in greater strength and better stability, thereby achieving the projected concrete coatings accurately.
The device (100) has a series of advantages with respect to the devices described in the previous art. The clearest advantages encompass offering greater load capacity and greater performance, as well as reducing structural failures for erroneously placed steel, and avoid variations in projected concrete coatings, which are their two basic functions.
Since it is manufactured from plastic materials, basically polypropylene due to low costs, properties, availability, and knowledge of associated processes, although it could be manufactures on a similar fashion from other plastic resins employing the same injection molded technique, it is desired to avoid the use of waste materials which promote the diminishing of the useful life due to pollution and corrosion thereof.
Performance and efficiency per square meter of the proposed device is better than those of other accessories used for the same purposes, thereby reducing costs.
By returning to
The chair (100) has a main body comprised of two vertical walls parallel to one another (101) and (101′), joined by a transversal wall (130) and a reinforcing horizontal surface (120). Vertical walls (101) and (101′) are built by joining a plurality of vertical elements or legs (140) and (140′) that extend from the base of the chair (100) to its upper ends (110) and (110′); the walls in all embodiments illustrated present an essentially polygonal form, preferably hexagonal with its upper and lower sides parallel to one another and horizontal with respect to the floor when the chair is in a position of use; the angle of the vertically inclined sides depends on the height of the metallic structure with respect to the floor, as well as the desired width of the chair as a whole, width and height maintain a proportionate ratio in the range from 30% to 60%, so as not to alter its stability. All modalities illustrated differ from one another, due basically to the heights and disposition of the angles of those walls, as can be observed in the following Figures and description. In the first embodiment illustrated, the sides inclined next to the base of the walls (101) and (101′) are essentially vertical.
In the upper end of the vertical walls (101) and (101′), semi-circular cavities (110) and (110′) are observed that are intended to receive and accommodate an enlarged element of the metallic structure to be supported. The two semi-circular cavities are aligned with one another, so that a steel structural element can lay on both cavities as shown in
The vertical walls (101) and (101′) are maintained equally distant and aligned to one another by a third joining wall (130) located transversely to the other two and aligned with the plane that joins the symmetry axes thereof. Geometry of this third wall (130) is similar to that of the other two (101) and (101′), since their external inclined sides form the central leg of the plurality of legs (140) and (140′); just like the other vertical walls, the wall (130) shows an arch (135) on its lower end of a height similar to the arches of the other walls, although the width is proportionate to the height.
On the upper end, the wall (130) can show different configurations, pursuant to the total height of the chair, as shown in the pertinent Figures; in the embodiment described and due to the low height of the overall device, the wall (130) presents a straight edge that joins the low points of the cavities (110) and (110′) and is even projected beyond the walls (101) and (101′), as observed in
In an alternative of the first modality that has been shown in previous figures, illustrated in
In the preferred embodiments for distances exceeding 3 inches shown in
Returning to the embodiment of
Finally,
The description that has been made of some of the preferred embodiments of this invention makes it clear that changes can be made to the geometric configuration device, however, those changes that can be evident for a person with average knowledge of the subject matter will be understood to be included in the scope of this invention, which is defined by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MX2005/000017 | 3/10/2005 | WO | 00 | 9/7/2007 |