Support for a new insert stream (ISTREAM) operation in complex event processing (CEP)

Information

  • Patent Grant
  • 8990416
  • Patent Number
    8,990,416
  • Date Filed
    Friday, May 6, 2011
    13 years ago
  • Date Issued
    Tuesday, March 24, 2015
    9 years ago
Abstract
One embodiment of the invention includes a method of processing streaming data. The method includes initializing a stream of data and setting a time interval to apply to the stream of data. The time interval comprises a window for analyzing the data within the stream of data. The method further includes identifying one or more columns within the stream of data, designating one or more of the columns to be monitored for differences within the data over the time interval, and monitoring the designated columns over the time interval. Further, the method includes determining that at least one value from at least one of the designated columns has changed and in response to at least one value changing, outputting the changed values from the designated columns.
Description
BACKGROUND OF THE INVENTION

Typically, Complex Event Processing (CEP) is an approach that aggregates information from distributed message-based systems, databases, and applications in real-time and dynamically applies rules to discern patterns and trends that may otherwise go unnoticed. This may give companies the ability to identify and even anticipate exceptions and opportunities represented by seemingly unrelated events across highly complex, distributed, and heterogeneous environments. CEP is also used to correlate, aggregate, enrich, and detect patterns in high speed streaming data in near real time. Furthermore, CEP supports streaming of unbounded data through the notion of a stream. A stream is an unbounded collection of data items and in contrast, a selection is a finite collection of data items—much like in a traditional database system. Presently, there exist various operators that convert from a stream to a relation and vice versa.


Furthermore, ISTREAM (or insert stream) is one of the operators that converts a relation to a stream. ISTREAM calculates a multiset difference of a relation as a function of time R(t) and R(t−1) taking into account all columns of a relation. As such, because all columns are taken into account, the output data may include information which is unnecessary or unwanted. Hence, these and other shortcomings in the art are remedied by the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in conjunction with the appended figures:



FIG. 1 is a flow diagram illustrating processing of streaming data according to embodiments of the present invention;



FIG. 2 is a flow diagram illustrating processing of streaming data according to further embodiments of the present invention;



FIG. 3 is a block diagram illustrating a system for processing streaming data according to embodiments of the present invention;



FIG. 4 is a diagram illustrating a table related to the processing of streaming data according to embodiments of the present invention;



FIG. 5 is a block diagram of an exemplary computer system capable of being used in at least some portion of the apparatuses or systems of the present invention, or implementing at least some portion of the methods of the present invention; and



FIG. 6 is a block diagram illustrating an exemplary networking system for implementing embodiments of the present invention.





In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.


SUMMARY OF THE INVENTION

One embodiment of the invention includes a method of processing streaming data. The method includes initializing a stream of data and setting a time interval to apply to the stream of data. The time interval comprises a window for analyzing the data within the stream of data. The method further includes identifying one or more columns within the stream of data, designating one or more of the columns to be monitored for differences within the data over the time interval, and monitoring the designated columns over the time interval. Further, the method includes determining that at least one value from at least one of the designated columns has changed and in response to at least one value changing, outputting the changed values from the designated columns.


In yet another embodiment, a system for processing streaming data, is described. The system includes a storage memory having sets of instructions stored thereon and a processor coupled with the storage memory. The sets of instructions when executed by the processor, cause the processor to: initialize a stream of data, and set a time interval to apply to the stream of data. The time interval comprises a window for analyzing the data within the stream of data. The instructions further cause the processor to identify one or more columns within the stream of data, designate one or more of the columns to be monitored for differences within the data over the time interval, monitor the designated columns over the time interval, determine that at least one value from at least one of the designated columns has changed, and in response to at least one value changing, output the changed values from the designated columns.


A further embodiment of the invention includes a computer-readable medium for processing streaming data. The computer-readable medium includes instructions for initializing a stream of data and setting a time interval to apply to the stream of data. The time interval comprises a window for analyzing the data within the stream of data. The computer-readable medium further includes instructions for identifying one or more columns within the stream of data, designating one or more of the columns to be monitored for differences within the data over the time interval, and monitoring the designated columns over the time interval. Further, the computer-readable medium includes instructions for determining that at least one value from at least one of the designated columns has changed and in response to at least one value changing, outputting the changed values from the designated columns.


DETAILED DESCRIPTION OF THE INVENTION

The ensuing description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing one or more exemplary embodiments, it being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.


Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, circuits, systems, networks, processes, and other elements in the invention may be shown as components in block diagram form in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.


Also, it is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.


The term “machine-readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels, and various other mediums capable of storing, containing or carrying instruction(s) and/or data. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.


Furthermore, embodiments of the invention may be implemented, at least in part, either manually or automatically. Manual or automatic implementations may be executed, or at least assisted, through the use of machines, hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium. A processor(s) may perform the necessary tasks.


Aspects of the present invention relate to the concept that quite often some column values (or derived values) of tuples change between two consecutive instances of time (i.e., t and t+1), whereas other column values do not change. There may be situations where an application is interested in changes to only a subset of columns; however, ISTREAM currently considers all columns, and reports tuples even when the values (or derived values) of columns of interest do not change. As such, changes in data which are not of interest to the application may be outputted.


To this end, aspects of the present invention provide ISTREAM that not only consider a subset of columns, but also include new semantics, such as NOT IN semantics. Queries can be quite complex, and since ISTREAM actually works on a relation materialized from the execution of a query, aspects of the present invention can also apply the aforementioned logic to SELECT list expressions and apply it to a subset thereof. Applying an ISTREAM operator on a subset of columns with NOT IN semantic provides a convenient syntactic notation to express the output in a succinct manner.


Now, considering the following query:

















CREATE QUERY q0 AS



ISTREAM



(



SELECT * FROM S [RANGE 1 NANOSECONDS]



)



DIFFERENCE USING (c1, c2)











This actually can lead to non-deterministic output (i.e., which tuple (and hence column values for c3) to pick and which one to leave out). Another alternative is to allow only columns or expressions based on columns specified in USING clause:


or

















CREATE QUERY q0 AS



ISTREAM



(



SELECT c1, c2, func(c1,c2) FROM tkdata1_S [RANGE 1









NANOSECONDS]









)



DIFFERENCE USING (c1, c2)



CREATE QUERY tkdata1_q1 AS



ISTREAM



(



SELECT func(c1,c2) FROM tkdata1_S [RANGE 1









NANOSECONDS]









)



DIFFERENCE USING (c1, c2)










However, these expressions are too restrictive to be of any use. Hence, aspects of the present invention may utilize NOT IN (this is same as MINUS semantics except that the MINUS works strictly on a set, whereas the present invention allows for multiset/bag), which precisely results in the desired behavior without any of the aforementioned restrictions. Accordingly, with the given semantics, the output may be as follows for the following query and given input stream:


Query:












CREATE QUERY q0 AS


ISTREAM (SELECT c1 FROM S [RANGE 1 NANOSECONDS])


DIFFERENCE USING (c1) [or (1)]











Input:
Relation(t)
Output







1000: 5
{5}
+5



1000: 6
{5, 6}
+6



1000: 7
{5, 6, 7}
+7



1001: 5
{5, 6, 7, 5}




1001: 6
{5, 6, 7, 5, 6}




1001: 7
{5, 6, 7, 5, 6, 7}




1001: 8
{5, 6, 7, 5, 6, 7, 8}
+8



1002: 5
{5, 6, 7, 5, 6, 7, 8, 5}




1003: −5, −5, −5



1003: −6, −6



1003: −7, −7, 8
{ }



1004: 5
{5}
+5










In one embodiment, the expressions in the using clause can be specified by using number positions (1 . . . N), which refer to positions of select expressions or using attributes, like c1,c2, which refer to aliases in select list. If select list contains a complex expression, then it may be appropriately aliased as the USING clause does not allow expressions to be specified.


A further aspect of the present invention includes the following algorithm. For example, let the timestamp of stream elements which belong to T (i.e., where T is a discrete ordered time domain). The following describes one implementation and algorithm in abstract terms.














public istream ( ) {









/* constructor initializes various data structures used by the



operator */



public istream( );



/* relation synopsis: captures the relation as of time t−1, i.e.



R(t−1). */



private synopsis relsyn;



/* synopsis to capture simultaneous tuples, i.e tuples with the same



timestamp */



private synopsis nowsyn;



/* list of tuple qualified for output */



private List nowList;



/* setup an index on relsyn above on expression of interest for faster



lookup */



private index relidx;



/* setup an index on relsyn above on expression of interest for faster



lookup */



private index nowidx;



/* retrieve the next tuple from the queue.



 * if its timestamp is greater than that of last one, i.e. time has



 advanced:









 * - drain the now list (nowList) and output all tuples therein.



 * - update relsyn by inserting tuples in nowsyn.



 *



 * Depending on the type of the tuple call handlePlus or



 handleMinus method



 */









public void getTuple( );



/* if tuple exists in relsyn, discard it, i.e. it exists in R(t−1).









 * - insert it into nowsyn (to update relsyn later)



 * else



 * - insert it into nowList, nowSyn









 */



public void handlePlus(Tuple t);









/* ISTREAM by definition does not output negative tuples.



 * - insert into nowSyn, if a corresponding +ve tuple is found



 decrement







refcount.









 * if refcount is zero, delete it from nowSyn.



 * - if a +ve tuples exists in nowList, decrement refcount, delete



 if refcount is









 * 0.









 */









public void handleMinus(Tuple t);







}









Some possible advantage of the present invention may be that users are allowed to declaratively and succinctly specify complex logic involving multiset not in semantics. Such functionality may be completely and seamlessly integrated into, for example, a declarative framework within a server without requiring users to write a lot of code and/or resort to expensive operations, such as RSTREAM. The present invention may also be memory optimized. Most users have events with a large number of fields, but only a subset of them are of interest. In such situations the ISTREAM multiset except semantics (previous behavior) may not only be expensive but also undesirable. Furthermore, it may not be possible to combine other current contextual query language (CQL) constructs to come up with semantics (multiset NOT IN), which are supported by the present invention. Furthermore, this new variant of the ISTREAM operator provides users the additional flexibility in designing applications when interested only in a subset of SELECT expressions, with deterministic semantics, significant performance improvement by eliminating events of non-interest, etc.


CQL Terminology:


Streams: A stream is the principal source of data that Oracle CQL queries act on. Stream S is a bag multi-set of elements (s,T) where s is in the schema of S and T is in the time domain. Stream elements are tuple-timestamp pairs, which can be represented as a sequence of timestamped tuple insertions. In other words, a stream is a sequence of timestamped tuples. There could be more than one tuple with the same timestamp. The tuples of an input stream are required to arrive at the system in the order of increasing timestamps. A stream has an associated schema consisting of a set of named attributes, and all tuples of the stream conform to the schema.


Time: Timestamps are an integral part of an Oracle CEP stream. However, timestamps do not necessarily equate to clock time. For example, time may be defined in the application domain where it is represented by a sequence number. Timestamps need only guarantee that updates arrive at the system in the order of increasing timestamp values. Note that the timestamp ordering requirement is specific to one stream or a relation. For example, tuples of different streams could be arbitrarily interleaved. Oracle CEP can observe application time or system time.


For system timestamped relations or streams, time is dependent upon the arrival of data on the relation or stream data source. Oracle CEP generates a heartbeat on a system timestamped relation or stream if there is no activity (no data arriving on the stream or relation's source) for more than a specified time: for example, 1 minute. Either the relation or stream is populated by its specified source or Oracle CEP generates a heartbeat every minute. This way, the relation or stream can never be more than 1 minute behind. For system timestamped streams and relations, the system assigns time in such a way that no two events will have the same value of time. However, for application timestamped streams and relations, events could have the same value of time.


Tuple Kind: CEP tuple kind indicators are: + for inserted tuple, − for deleted tuple. It should be noted that these terms are merely provided for clarity and other definitions and interpretations of these terms may be used as is known by one of ordinary skill in the art.


Turning now to FIG. 1, which illustrates a method 100 of processing streaming data, according to embodiments of the present invention. At process block 105, a data stream may be initialized. In one embodiment, the stream may be associated with a particular application or set of applications. Further, the stream may be a CEP stream or the like. Furthermore, the streaming data may include tables which in turn include columns and/or fields. The streaming data may also be stored in one or more databases.


At process block 110, one or more of the columns within the stream of data may be identified as columns of “interest”. In one embodiment, the columns of interest may be columns for which the application (or the user) is interested in changes that occur to the data within the columns. Furthermore, a time interval for processing the data stream may be associated with the stream of data (process block 115). For example, the time interval may be 1 nanosecond, 10 nanoseconds, 1 millisecond, 10 milliseconds, etc., and the time interval may provide a window for analyzing the data within the stream of data. In one embodiment, the window may provide a relation for creating the table within the stream of data. The table may be populated with data from the stream within the window (i.e., within the time interval).


At process block 120, one or more of the columns within the table may be selected for monitoring differences within the data included in the columns. For example, if a table includes ten columns A-J and columns A and C are selected to be monitored, then the query will only generate output when changes to either column A or C occur. As such, the output will contain information with is considered relevant to the user and/or application.


Accordingly, the selected columns are monitored for changes over the time interval (process block 125). If changes occur (decision block 130), then the differences for the selected column(s) are outputted for the current time interval (process block 135). Alternatively, if no changes occur in the data within the selected column(s), then the selected column(s) is continued to be monitored for subsequent time intervals for the duration of the data stream (process block 140).


One example of an implementation of method 100 may be with regard to traffic data. A stream of traffic data for a given car driving on the highway may include a number of variables (e.g., speed, location, time, segment, etc.). Each of these variables may be translated into columns within a table, and the data within the columns may change continuously. However, only certain changes in the data may be of use to an application. In one embodiment, the application is a toll application which charges tolls based on segments of a road traveled. A such, it may only be valuable to the application to know when the car has traveled from one segment of the highway to another.


Thus, changes in speed, for example, may not be worth outputting. Additionally, it is likely that changes in speed occur within nearly every time interval. Likewise, time and location may not be worth outputting changes, but changes in segment may be worth outputting. As such, as the car moves on the highway, the location (or coordinates) are monitored to determine if the current segment has changed. Thus, if the location changes from a location within one segment to a location within another segment, such a change will be outputted. Accordingly, in this example, the toll application can calculate an additional toll amount based on the segment change, while ignoring the changes in speed, time, and location.


Referring now to FIG. 2, which illustrates a method 200 of processing streaming data, according to embodiments of the present invention. At process block 205, relational data may be converted into streaming data by applying the ISTREAM operation. Then, based on the streaming data as applied to a bounding constraint, segments within the data stream may be determined (process block 210).


At process block 215, at least one column within the data stream may be identified as including data in which an application is interested in viewing changes. At process block 220, the identified column is selected over the determined segment. Changes to the data within the identified column may then be monitored (process block 225). At process block 230, the multiset ISTREAM operation of the selected column over the determined segment as applied to the monitored column is executed. As such, the resulting data from the mutiset ISTREAM operation only includes change data to the columns of interest and such changes are then outputted (process block 235).



FIG. 3 is a block diagram illustrating a system 300 for processing streaming data according to embodiments of the present invention. In one embodiment, system 300 includes a streaming data source 305. The streaming data source 305 may be in communication with an application server 310 which includes a CEP processor 315. In one embodiment, CEP processor 315 may be configured to implement methods 100 and 200 from FIGS. 1 and 2. Furthermore, application server 310 may be in communication with a database 320 and an output device 325. In one embodiment, database 320 may store the data from the streaming data source 305, and output device 325 may be used to display the resulting changes to the monitored data. Furthermore, database 320 may be remotely located from the application server 310 or co-located with the application server 310.


Turning now to FIG. 4, a table related to the processing of streaming data is illustrated, according to embodiments of the present invention. The following query may be used to generate the result table of FIG. 4:

















CREATE QUERY q0 AS



ISTREAM (SELECT c1 FROM S [RANGE 1 NANOSECONDS])







DIFFERENCE USING (c1) [or (1)].









As such, at timestamp 1000, the output would be ‘5’ based on the change which occurred within the interval. At timestamp 1000, the output would be ‘6’ based on the change which occurred within the interval. Similarly, at timestamp 1000, the output would be ‘7’ based on the changes within the interval. Interval 1001 would not have any output due to the fact that ‘5’, ‘6’, and ‘7’ were already included within the data set. At timestamp 1001, ‘8’ would be the output due to the change.


Intervals 1003 and 1004 would not include any output due to the fact that ‘5’ is not a change and the remainder of the intervals include a removal. Subsequently, at timestamp 1004, since ‘5’ was removed from the data set, the addition of ‘5’ is not outputted because it is not a change to the data set.


In one embodiment, nothing is output until there is progression of time. This may be due to the fact that another −ve tuple can come at the same timestamp that has not been seen, thus canceling out the +ve which is already seen. Thus, the output should be at one timestamp later, but still propagating the timestamp at which it was seen. (It may be there in the form of a hidden column of an element time, but some applications may choose to ignore it.)



FIG. 5 is a block diagram illustrating an exemplary computer system 500 in which embodiments of the present invention may be implemented. The computer system 500 is shown comprising hardware elements that may be electrically coupled via a bus 590. The hardware elements may include one or more central processing units 510, one or more input devices 520 (e.g., a mouse, a keyboard, etc.), and one or more output devices 530 (e.g., a display device, a printer, etc.). The computer system 500 may also include one or more storage device(s) 540. By way of example, storage device(s) 540 may be disk drives, optical storage devices, a solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.


The computer system 500 may additionally include a computer-readable storage media reader 550, a communications system 560 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, Bluetooth™ device, cellular communication device, etc.), and working memory 580, which may include RAM and ROM devices as described above. In some embodiments, the computer system 500 may also include a processing acceleration unit 570, which can include a digital signal processor, a special-purpose processor and/or the like.


The computer-readable storage media reader 550 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 540) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 560 may permit data to be exchanged with a network, system, computer and/or other component described above.


The computer system 500 may also comprise software elements, shown as being currently located within a working memory 580, including an operating system 588 and/or other code 584. It should be appreciated that alternate embodiments of a computer system 500 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Furthermore, connection to other computing devices such as network input/output and data acquisition devices may also occur.


Software of computer system 500 may include code 584 for implementing any or all of the functions of the various elements of the architecture as described herein. For example, software, stored on and/or executed by a computer system such as system 500, can provide the functionality and/or other components of the invention such as those discussed above. Methods implementable by software on some of these components have been discussed above in more detail.


Merely by way of example, FIG. 6 illustrates a schematic diagram of a system 600 that can be used in accordance with one set of embodiments. The system 600 can include one or more user computers 605. The user computers 605 can be general purpose personal computers (including, merely by way of example, personal computers and/or laptop computers running any appropriate flavor of Microsoft Corp.'s Windows™ and/or Apple Corp.'s Macintosh™ operating systems) and/or workstation computers running any of a variety of commercially available UNIX™ or UNIX-like operating systems. These user computers 605 can also have any of a variety of applications, including one or more applications configured to perform methods of the invention, as well as one or more office applications, database client and/or server applications, and web browser applications. Alternatively, the user computers 605 can be any other electronic device, such as a thin-client computer, Internet-enabled mobile telephone, and/or personal digital assistant (PDA), capable of communicating via a network (e.g., the network 610 described below) and/or displaying and navigating web pages or other types of electronic documents. Although the exemplary system 600 is shown with three user computers 605, any number of user computers can be supported.


Certain embodiments of the invention operate in a networked environment, which can include a network 610. The network 610 can be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially available protocols, including without limitation TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, the network 610 can be a local area network (“LAN”), including without limitation an Ethernet network, a Token-Ring network and/or the like; a wide-area network (WAN); a virtual network, including without limitation a virtual private network (“VPN”); the Internet; an intranet; an extranet; a public switched telephone network (“PSTN”); an infrared network; a wireless network, including without limitation a network operating under any of the IEEE 802.11 suite of protocols, the Bluetooth™ protocol known in the art, and/or any other wireless protocol; and/or any combination of these and/or other networks.


Embodiments of the invention can include one or more server computers 615. Each of the server computers 615 may be configured with an operating system, including without limitation any of those discussed above, as well as any commercially (or freely) available server operating systems. Each of the servers 615 may also be running one or more applications, which can be configured to provide services to one or more user computers 605 and/or other server computers 615.


Merely by way of example, one of the servers 615 may be a web server, which can be used, merely by way of example, to process requests for web pages or other electronic documents from user computers 605. The web server can also run a variety of server applications, including HTTP servers, FTP servers, CGI servers, database servers, Java™ servers, and the like. In some embodiments of the invention, the web server may be configured to serve web pages that can be operated within a web browser on one or more of the user computers 605 to perform methods of the invention.


The server computers 615, in some embodiments, might include one or more application servers, which can include one or more applications accessible by a client running on one or more of the user computers 605 and/or other server computers 615. Merely by way of example, the server computers 615 can be one or more general purpose computers capable of executing programs or scripts in response to the user computers 605 and/or other server computers 615, including without limitation web applications (which might, in some cases, be configured to perform methods of the invention). Merely by way of example, a web application can be implemented as one or more scripts or programs written in any suitable programming language, such as Java™, C, C#™ or C++, and/or any scripting language, such as Perl, Python, or TCL, as well as combinations of any programming/scripting languages. The application server(s) can also include database servers, including without limitation those commercially available from Oracle™, Microsoft™, Sybase™, IBM™ and the like, which can process requests from clients (including, depending on the configuration, database clients, API clients, web browsers, etc.) running on a user computer 605 and/or another server computer 615. In some embodiments, an application server can create web pages dynamically for displaying the information in accordance with embodiments of the invention. Data provided by an application server may be formatted as web pages (comprising HTML, Javascript, etc., for example) and/or may be forwarded to a user computer 605 via a web server (as described above, for example). Similarly, a web server might receive web page requests and/or input data from a user computer 605 and/or forward the web page requests and/or input data to an application server. In some cases a web server may be integrated with an application server.


In accordance with further embodiments, one or more server computers 615 can function as a file server and/or can include one or more of the files (e.g., application code, data files, etc.) necessary to implement methods of the invention incorporated by an application running on a user computer 605 and/or another server computer 615. Alternatively, as those skilled in the art will appreciate, a file server can include all necessary files, allowing such an application to be invoked remotely by a user computer 605 and/or server computer 615. It should be noted that the functions described with respect to various servers herein (e.g., application server, database server, web server, file server, etc.) can be performed by a single server and/or a plurality of specialized servers, depending on implementation-specific needs and parameters.


In certain embodiments, the system can include one or more database(s) 620. The location of the database(s) 620 is discretionary. Merely by way of example, a database 620a might reside on a storage medium local to (and/or resident in) a server computer 615a (and/or a user computer 605). Alternatively, a database 620b can be remote from any or all of the computers 605, 615, so long as the database can be in communication (e.g., via the network 610) with one or more of these. In a particular set of embodiments, a database 620 can reside in a storage-area network (“SAN”) familiar to those skilled in the art. (Likewise, any necessary files for performing the functions attributed to the computers 605, 615 can be stored locally on the respective computer and/or remotely, as appropriate.) In one set of embodiments, the database 620 can be a relational database, such as an Oracle™ database, that is adapted to store, update, and retrieve data in response to SQL-formatted commands. The database might be controlled and/or maintained by a database server, as described above, for example.


The invention has now been described in detail for the purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A method of processing streaming data, the method comprising: initializing, by a computer processor, a stream of data for a continuous query logic (CQL) operation;setting, by the computer processor, a time interval of the CQL operation to apply to the stream of data, wherein the time interval comprises a window for analyzing the data within the stream of data;identifying, by the computer processor, one or more columns within the stream of data;designating, by the computer processor in the CQL operation, one or more of the columns to be monitored for differences within the data over the time interval by executing a SELECT list expressions and applying the SELECT list expressions to a subset of the stream of data, wherein the one or more designated column are columns of interest;monitoring, by the computer processor, the designated columns over the time interval of the CQL operation;determining, by the computer processor, that at least one value from at least one of the designated columns has changed by applying an ISTREAM operator of the CQL operation on a subset of the one or more columns with a NOT IN semantic to provide a syntactic notation to express output, wherein the ISTREAM operator currently considers all of the one or more columns and reports tuples even when values of the one or more columns of interest do not change and further outputs changes in values in the one or more columns which are not columns of interest; andin response to at least one value changing, outputting, by the computer processor, the changed values from the designated columns using the syntactic notation of the CQL operation and outputting changes in data in the one or more columns which are not columns of interest.
  • 2. The method of processing streaming data as in claim 1, further comprising continuing to receive data from the stream of data for a next time interval.
  • 3. The method of processing streaming data as in claim 2, wherein the receiving of the data from the stream of data is substantially in real-time.
  • 4. The method of processing streaming data as in claim 1, wherein the one or more columns are included in one or more tables constructed from the stream of data over the time interval.
  • 5. The method of processing streaming data as in claim 1, wherein the output only includes changes within the stream of data.
  • 6. The method of processing streaming data as in claim 1, wherein the processing of the streaming data comprises complex event processing (CEP).
  • 7. The method of processing streaming data as in claim 1, wherein the output comprises a subset of data within the streaming data which has changed over the time interval.
  • 8. A non-transitory computer-readable medium for processing streaming data having sets of instructions stored thereon which, when executed by a computer, cause the computer to: convert relational data into streaming data by applying an istream operator of a continuous query logic (CQL) operation;determine one or more segments within the streaming data as applied by a bounding constraint, wherein the bounding constraint designates segment boundaries of the CQL operation;identify a column from the data stream for the CQL operation;select the identified column over the determined segment;select a column to monitor changes in the data within the column over the determined segment by executing a single SELECT list expressions and applying the single SELECT list expressions to a subset of the stream of data for the CQl operation;monitoring the designated columns over a time interval of the CQL operation, wherein the designated column are columns of interest;determining that at least one value from at least one of the designated columns has changed by applying an istream operator of the CQL operation on a subset of the one or more columns with a NOT IN semantic to provide a syntactic notation to express output, wherein the ISTREAM operator currently considers all of the columns and reports tuples even when values of the columns of interest do not change and further outputs changes in values in the columns which are not columns of interest;execute a multiset istream operation of the CQL operation of the selected column over the determined segment as applied to the monitored column; andin response to at least one value changing, output the resulting data from the multiset istream operation using the syntactic notation of the CQL operation and output changes in data in the columns which are not columns of interest.
  • 9. The non-transitory computer-readable medium for processing streaming data as in claim 8, wherein the sets of instructions when further executed by the computer, cause the computer to convert the streaming data back into relational data.
  • 10. The non-transitory computer-readable medium for processing streaming data as in claim 8, wherein the segment boundaries comprise a time interval.
  • 11. The non-transitory computer-readable medium for processing streaming data as in claim 10, wherein the time interval comprises a time window for analyzing changes within the designated column data.
  • 12. The non-transitory computer-readable medium for processing streaming data as in claim 10, wherein the output comprises a subset of data within the data stream which has changed over the segment.
  • 13. A system for processing streaming data, the system comprising: a storage memory having sets of instructions stored thereon; anda processor coupled with the storage memory, wherein the sets of instructions when executed by the processor, cause the processor to:initialize a stream of data for a continuous query logic (CQL) operation;set a time interval to apply to the stream of data of the CQL operation, wherein the time interval comprises a window for analyzing the data within the stream of data;identify one or more columns within the stream of data;designate in the CQL operation one or more of the columns to be monitored for differences within the data over the time interval by executing a SELECT list expressions and applying the SELECT list expressions to a subset of the stream of data, wherein the one or more designated column are columns of interest;monitor the designated columns over the time interval of the CQL operation;determine that at least one value from at least one of the designated columns has changed by applying an ISTREAM operator if the CQL operation on a subset of the one or more columns with a NOT IN semantic to provide a syntactic notation to express output, wherein the ISTREAM operator currently considers all of the one or more columns and reports tuples even when values of the one or more columns of interest do not change and further outputs changes in values in the one or more columns which are not columns of interest; andin response to at least one value changing, output the changed values from the designated columns using the syntactic notation of the CQL operation and output changes in data in the one or more columns which are not columns of interest.
  • 14. The system for processing streaming data as in claim 13, further comprising a database, wherein the database is configured to store the data within the stream of data.
  • 15. The system for processing streaming data as in claim 14, wherein the sets of instructions further cause the processor to continue to receive data from the stream of data for a next time interval.
  • 16. The system for processing streaming data as in claim 15, wherein the receiving of the data from the stream of data is substantially in real-time.
  • 17. The system for processing streaming data as in claim 13, wherein the one or more columns are included in one or more tables constructed from the stream of data over the time interval.
  • 18. The system for processing streaming data as in claim 13, wherein the output only includes changes within the stream of data over the time interval.
  • 19. The system for processing streaming data as in claim 13, wherein the processor is configured to implement a monitoring application which implements the sets of instructions executed by the processor.
  • 20. The method for processing streaming data as in claim 13, wherein the processing of the streaming data comprises complex event processing (CEP).
US Referenced Citations (378)
Number Name Date Kind
4996687 Hess et al. Feb 1991 A
5051947 Messenger et al. Sep 1991 A
5495600 Terry et al. Feb 1996 A
5706494 Cochrane et al. Jan 1998 A
5802262 Van De Vanter Sep 1998 A
5802523 Jasuja et al. Sep 1998 A
5822750 Jou et al. Oct 1998 A
5826077 Blakeley et al. Oct 1998 A
5850544 Parvathaneny et al. Dec 1998 A
5857182 DeMichiel et al. Jan 1999 A
5918225 White et al. Jun 1999 A
5920716 Johnson et al. Jul 1999 A
5937195 Ju et al. Aug 1999 A
5937401 Hillegas Aug 1999 A
6006235 Macdonald et al. Dec 1999 A
6011916 Moore et al. Jan 2000 A
6041344 Bodamer et al. Mar 2000 A
6081801 Cochrane et al. Jun 2000 A
6092065 Floratos et al. Jul 2000 A
6108666 Floratos et al. Aug 2000 A
6112198 Lohman et al. Aug 2000 A
6128610 Srinivasan et al. Oct 2000 A
6158045 You Dec 2000 A
6219660 Haderle et al. Apr 2001 B1
6263332 Nasr et al. Jul 2001 B1
6278994 Fuh et al. Aug 2001 B1
6282537 Madnick et al. Aug 2001 B1
6341281 MacNicol et al. Jan 2002 B1
6353821 Gray Mar 2002 B1
6367034 Novik et al. Apr 2002 B1
6370537 Gilbert et al. Apr 2002 B1
6389436 Chakrabarti et al. May 2002 B1
6397262 Hayden et al. May 2002 B1
6418448 Sarkar Jul 2002 B1
6438540 Nasr et al. Aug 2002 B2
6438559 White et al. Aug 2002 B1
6439783 Antoshenkov Aug 2002 B1
6449620 Draper et al. Sep 2002 B1
6453314 Chan et al. Sep 2002 B1
6507834 Kabra et al. Jan 2003 B1
6523102 Dye et al. Feb 2003 B1
6546381 Subramanian et al. Apr 2003 B1
6615203 Lin et al. Sep 2003 B1
6681343 Nakabo Jan 2004 B1
6708186 Claborn et al. Mar 2004 B1
6718278 Steggles Apr 2004 B1
6748386 Li Jun 2004 B1
6751619 Rowstron et al. Jun 2004 B1
6766330 Chen et al. Jul 2004 B1
6785677 Fritchman Aug 2004 B1
6826566 Lewak et al. Nov 2004 B2
6836778 Manikutty et al. Dec 2004 B2
6850925 Chaudhuri et al. Feb 2005 B2
6856981 Wyschogrod et al. Feb 2005 B2
6985904 Kaluskar et al. Jan 2006 B1
6996557 Leung et al. Feb 2006 B1
7020696 Perry et al. Mar 2006 B1
7047249 Vincent May 2006 B1
7051034 Ghosh et al. May 2006 B1
7062749 Cyr et al. Jun 2006 B2
7080062 Leung et al. Jul 2006 B1
7093023 Lockwood et al. Aug 2006 B2
7145938 Takeuchi et al. Dec 2006 B2
7146352 Brundage et al. Dec 2006 B2
7167848 Boukouvalas et al. Jan 2007 B2
7203927 Al-Azzawe et al. Apr 2007 B2
7224185 Campbell et al. May 2007 B2
7225188 Gai et al. May 2007 B1
7236972 Lewak et al. Jun 2007 B2
7305391 Wyschogrod et al. Dec 2007 B2
7308561 Cornet et al. Dec 2007 B2
7310638 Blair Dec 2007 B1
7376656 Blakeley et al. May 2008 B2
7383253 Tsimelzon et al. Jun 2008 B1
7403959 Nishizawa et al. Jul 2008 B2
7430549 Zane et al. Sep 2008 B2
7451143 Sharangpani et al. Nov 2008 B2
7483976 Ross Jan 2009 B2
7516121 Liu et al. Apr 2009 B2
7519577 Brundage et al. Apr 2009 B2
7519962 Aman Apr 2009 B2
7533087 Liu et al. May 2009 B2
7546284 Martinez et al. Jun 2009 B1
7552365 March et al. Jun 2009 B1
7567953 Kadayam et al. Jul 2009 B2
7580946 Mansour et al. Aug 2009 B2
7587383 Koo et al. Sep 2009 B2
7603674 Cyr et al. Oct 2009 B2
7613848 Amini et al. Nov 2009 B2
7620851 Leavy et al. Nov 2009 B1
7630982 Boyce Dec 2009 B2
7634501 Yabloko Dec 2009 B2
7636703 Taylor Dec 2009 B2
7653645 Stokes Jan 2010 B1
7672964 Yan et al. Mar 2010 B1
7673065 Srinivasan et al. Mar 2010 B2
7676461 Chikodrov et al. Mar 2010 B2
7689622 Liu et al. Mar 2010 B2
7693891 Stokes et al. Apr 2010 B2
7702629 Cytron et al. Apr 2010 B2
7702639 Stanley et al. Apr 2010 B2
7711782 Kim et al. May 2010 B2
7716210 Ozcan et al. May 2010 B2
7739265 Jain et al. Jun 2010 B2
7805445 Boyer et al. Sep 2010 B2
7814111 Levin Oct 2010 B2
7823066 Kuramura Oct 2010 B1
7827146 De Landstheer et al. Nov 2010 B1
7827190 Pandya Nov 2010 B2
7844829 Meenakshisundaram Nov 2010 B2
7870124 Liu et al. Jan 2011 B2
7877381 Ewen et al. Jan 2011 B2
7895187 Bowman Feb 2011 B2
7912853 Agrawal Mar 2011 B2
7917299 Buhler et al. Mar 2011 B2
7930322 MacLennan Apr 2011 B2
7945540 Park et al. May 2011 B2
7953728 Hu et al. May 2011 B2
7954109 Durham et al. May 2011 B1
7979420 Jain et al. Jul 2011 B2
7987204 Stokes Jul 2011 B2
7988817 Son Aug 2011 B2
7991766 Srinivasan et al. Aug 2011 B2
7996388 Jain et al. Aug 2011 B2
8019747 Srinivasan et al. Sep 2011 B2
8032544 Jing et al. Oct 2011 B2
8046747 Cyr et al. Oct 2011 B2
8073826 Srinivasan et al. Dec 2011 B2
8099400 Haub et al. Jan 2012 B2
8103655 Srinivasan et al. Jan 2012 B2
8134184 Becker et al. Mar 2012 B2
8155880 Patel et al. Apr 2012 B2
8195648 Zabback et al. Jun 2012 B2
8204873 Chavan Jun 2012 B2
8204875 Srinivasan et al. Jun 2012 B2
8290776 Moriwaki et al. Oct 2012 B2
8296316 Jain et al. Oct 2012 B2
8315990 Barga et al. Nov 2012 B2
8346511 Schoning et al. Jan 2013 B2
8392402 Mihaila et al. Mar 2013 B2
8447744 Alves et al. May 2013 B2
8458175 Stokes Jun 2013 B2
8498956 Srinivasan et al. Jul 2013 B2
8521867 Srinivasan et al. Aug 2013 B2
8527458 Park et al. Sep 2013 B2
8543558 Srinivasan et al. Sep 2013 B2
8572589 Cataldo et al. Oct 2013 B2
8589436 Srinivasan et al. Nov 2013 B2
8676841 Srinivasan et al. Mar 2014 B2
8775412 Day et al. Jul 2014 B2
20020023211 Roth et al. Feb 2002 A1
20020032804 Hunt Mar 2002 A1
20020038313 Klein et al. Mar 2002 A1
20020049788 Lipkin et al. Apr 2002 A1
20020116362 Li et al. Aug 2002 A1
20020116371 Dodds et al. Aug 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020169788 Lee et al. Nov 2002 A1
20030037048 Kabra et al. Feb 2003 A1
20030046673 Copeland et al. Mar 2003 A1
20030065655 Syeda-Mahmood Apr 2003 A1
20030065659 Agarwal et al. Apr 2003 A1
20030120682 Bestgen et al. Jun 2003 A1
20030135304 Sroub et al. Jul 2003 A1
20030200198 Chandrasekar et al. Oct 2003 A1
20030229652 Bakalash et al. Dec 2003 A1
20030236766 Fortuna et al. Dec 2003 A1
20040010496 Behrendt et al. Jan 2004 A1
20040019592 Crabtree Jan 2004 A1
20040024773 Stoffel et al. Feb 2004 A1
20040064466 Manikutty et al. Apr 2004 A1
20040073534 Robson Apr 2004 A1
20040088404 Aggarwal May 2004 A1
20040117359 Snodgrass et al. Jun 2004 A1
20040151382 Stellenberg et al. Aug 2004 A1
20040153329 Casati et al. Aug 2004 A1
20040167864 Wang et al. Aug 2004 A1
20040168107 Sharp Aug 2004 A1
20040177053 Donoho et al. Sep 2004 A1
20040201612 Hild et al. Oct 2004 A1
20040205082 Fontoura et al. Oct 2004 A1
20040220896 Finlay et al. Nov 2004 A1
20040220912 Manikutty et al. Nov 2004 A1
20040220927 Murthy et al. Nov 2004 A1
20040267760 Brundage et al. Dec 2004 A1
20040268314 Kollman et al. Dec 2004 A1
20050010896 Meliksetian et al. Jan 2005 A1
20050055338 Warner et al. Mar 2005 A1
20050065949 Warner et al. Mar 2005 A1
20050096124 Stronach May 2005 A1
20050097128 Ryan et al. May 2005 A1
20050154740 Day Jul 2005 A1
20050174940 Iny Aug 2005 A1
20050177579 Blakeley et al. Aug 2005 A1
20050204340 Ruminer et al. Sep 2005 A1
20050229158 Thusoo et al. Oct 2005 A1
20050273450 McMillen et al. Dec 2005 A1
20050289125 Liu et al. Dec 2005 A1
20060007308 Ide et al. Jan 2006 A1
20060015482 Beyer et al. Jan 2006 A1
20060031204 Liu et al. Feb 2006 A1
20060047696 Larson et al. Mar 2006 A1
20060064487 Ross Mar 2006 A1
20060080646 Aman Apr 2006 A1
20060085592 Ganguly et al. Apr 2006 A1
20060089939 Broda et al. Apr 2006 A1
20060100969 Wang et al. May 2006 A1
20060106786 Day et al. May 2006 A1
20060106797 Srinivasa et al. May 2006 A1
20060129554 Suyama et al. Jun 2006 A1
20060155719 Mihaeli et al. Jul 2006 A1
20060167856 Angele et al. Jul 2006 A1
20060212441 Tang et al. Sep 2006 A1
20060224576 Liu et al. Oct 2006 A1
20060230029 Yan Oct 2006 A1
20060235840 Manikutty et al. Oct 2006 A1
20060242180 Graf et al. Oct 2006 A1
20060282429 Hernandez-Sherrington et al. Dec 2006 A1
20060294095 Berk et al. Dec 2006 A1
20070016467 John et al. Jan 2007 A1
20070022092 Nishizawa et al. Jan 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050340 von Kaenel et al. Mar 2007 A1
20070076314 Rigney Apr 2007 A1
20070118600 Arora May 2007 A1
20070136239 Lee et al. Jun 2007 A1
20070136254 Choi et al. Jun 2007 A1
20070156964 Sistla Jul 2007 A1
20070192301 Posner Aug 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070226188 Johnson et al. Sep 2007 A1
20070226239 Johnson et al. Sep 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20080005093 Liu et al. Jan 2008 A1
20080010093 LaPlante et al. Jan 2008 A1
20080010241 McGoveran Jan 2008 A1
20080016095 Bhatnagar et al. Jan 2008 A1
20080028095 Lang et al. Jan 2008 A1
20080033914 Cherniack et al. Feb 2008 A1
20080034427 Cadambi et al. Feb 2008 A1
20080046401 Lee et al. Feb 2008 A1
20080071904 Schuba et al. Mar 2008 A1
20080077570 Tang et al. Mar 2008 A1
20080077587 Wyschogrod et al. Mar 2008 A1
20080082484 Averbuch et al. Apr 2008 A1
20080082514 Khorlin et al. Apr 2008 A1
20080086321 Walton Apr 2008 A1
20080098359 Ivanov et al. Apr 2008 A1
20080110397 Son May 2008 A1
20080114787 Kashiyama et al. May 2008 A1
20080120283 Liu et al. May 2008 A1
20080195577 Fan et al. Aug 2008 A1
20080235298 Lin et al. Sep 2008 A1
20080243451 Feblowitz et al. Oct 2008 A1
20080243675 Parsons et al. Oct 2008 A1
20080250073 Nori et al. Oct 2008 A1
20080255847 Moriwaki et al. Oct 2008 A1
20080263039 Van Lunteren Oct 2008 A1
20080270764 McMillen et al. Oct 2008 A1
20080281782 Agrawal Nov 2008 A1
20080301124 Alves et al. Dec 2008 A1
20080301125 Alves et al. Dec 2008 A1
20080301135 Alves et al. Dec 2008 A1
20080301256 McWilliams et al. Dec 2008 A1
20080313131 Friedman et al. Dec 2008 A1
20090006320 Ding et al. Jan 2009 A1
20090006346 C N et al. Jan 2009 A1
20090007098 Chevrette et al. Jan 2009 A1
20090019045 Amir et al. Jan 2009 A1
20090024622 Chkodrov et al. Jan 2009 A1
20090043729 Liu et al. Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090070785 Alvez et al. Mar 2009 A1
20090070786 Alves et al. Mar 2009 A1
20090076899 Gbodimowo Mar 2009 A1
20090088962 Jones Apr 2009 A1
20090100029 Jain et al. Apr 2009 A1
20090106189 Jain et al. Apr 2009 A1
20090106190 Srinivasan et al. Apr 2009 A1
20090106198 Srinivasan et al. Apr 2009 A1
20090106214 Jain et al. Apr 2009 A1
20090106215 Jain et al. Apr 2009 A1
20090106218 Srinivasan et al. Apr 2009 A1
20090106321 Das et al. Apr 2009 A1
20090106440 Srinivasan et al. Apr 2009 A1
20090112802 Srinivasan et al. Apr 2009 A1
20090112803 Srinivasan et al. Apr 2009 A1
20090112853 Nishizawa et al. Apr 2009 A1
20090125550 Barga et al. May 2009 A1
20090144696 Andersen Jun 2009 A1
20090172014 Huetter Jul 2009 A1
20090187584 Johnson et al. Jul 2009 A1
20090216747 Li et al. Aug 2009 A1
20090216860 Li et al. Aug 2009 A1
20090228434 Krishnamurthy et al. Sep 2009 A1
20090245236 Scott et al. Oct 2009 A1
20090248749 Gu et al. Oct 2009 A1
20090254522 Chaudhuri et al. Oct 2009 A1
20090257314 Davis et al. Oct 2009 A1
20090265324 Mordvonov Oct 2009 A1
20090293046 Cheriton Nov 2009 A1
20090300093 Griffiths et al. Dec 2009 A1
20090300181 Marques Dec 2009 A1
20090300580 Heyhoe et al. Dec 2009 A1
20090300615 Andrade et al. Dec 2009 A1
20090327102 Maniar et al. Dec 2009 A1
20100017379 Naibo et al. Jan 2010 A1
20100017380 Naibo et al. Jan 2010 A1
20100023498 Dettinger et al. Jan 2010 A1
20100036831 Vemuri Feb 2010 A1
20100049710 Young, Jr. et al. Feb 2010 A1
20100057663 Srinivasan et al. Mar 2010 A1
20100057727 Srinivasan et al. Mar 2010 A1
20100057735 Srinivasan et al. Mar 2010 A1
20100057736 Srinivasan et al. Mar 2010 A1
20100057737 Srinivasan et al. Mar 2010 A1
20100094838 Kozak Apr 2010 A1
20100106946 Imaki et al. Apr 2010 A1
20100125584 Navas May 2010 A1
20100161589 Nica et al. Jun 2010 A1
20100223305 Park et al. Sep 2010 A1
20100223437 Park et al. Sep 2010 A1
20100223606 Park et al. Sep 2010 A1
20100312756 Zhang et al. Dec 2010 A1
20100318652 Samba Dec 2010 A1
20110004621 Kelley et al. Jan 2011 A1
20110022618 Thatte et al. Jan 2011 A1
20110023055 Thatte et al. Jan 2011 A1
20110029484 Park et al. Feb 2011 A1
20110029485 Park et al. Feb 2011 A1
20110040746 Handa et al. Feb 2011 A1
20110055192 Tang et al. Mar 2011 A1
20110055197 Chavan Mar 2011 A1
20110093162 Nielsen et al. Apr 2011 A1
20110105857 Zhang et al. May 2011 A1
20110161321 de Castro Alves et al. Jun 2011 A1
20110161328 Park et al. Jun 2011 A1
20110161352 de Castro Alves et al. Jun 2011 A1
20110161356 de Castro Alves et al. Jun 2011 A1
20110161397 Bekiares et al. Jun 2011 A1
20110173231 Drissi et al. Jul 2011 A1
20110173235 Aman et al. Jul 2011 A1
20110196891 de Castro Alves et al. Aug 2011 A1
20110270879 Srinivasan et al. Nov 2011 A1
20110302164 Krishnamurthy et al. Dec 2011 A1
20110314019 Jimenez Peris et al. Dec 2011 A1
20110321057 Mejdrich et al. Dec 2011 A1
20120041934 Srinivasan et al. Feb 2012 A1
20120130963 Luo et al. May 2012 A1
20120166469 Cammert et al. Jun 2012 A1
20120191697 Sherman et al. Jul 2012 A1
20120259910 Andrade et al. Oct 2012 A1
20120290715 Dinger et al. Nov 2012 A1
20130144866 Jerzak et al. Jun 2013 A1
20140095444 Deshmukh et al. Apr 2014 A1
20140095445 Deshmukh et al. Apr 2014 A1
20140095446 Deshmukh et al. Apr 2014 A1
20140095447 Deshmukh et al. Apr 2014 A1
20140095462 Park et al. Apr 2014 A1
20140095471 Deshmukh et al. Apr 2014 A1
20140095473 Srinavasan et al. Apr 2014 A1
20140095483 Toillion et al. Apr 2014 A1
20140095525 Hsiao et al. Apr 2014 A1
20140095529 Deshmukh et al. Apr 2014 A1
20140095533 Shukla et al. Apr 2014 A1
20140095535 Deshmukh et al. Apr 2014 A1
20140095537 Park et al. Apr 2014 A1
20140095540 Hsiao et al. Apr 2014 A1
20140095541 Herwadkar et al. Apr 2014 A1
20140095543 Hsiao et al. Apr 2014 A1
20140136514 Jain et al. May 2014 A1
20140156683 de Castro Alves Jun 2014 A1
20140172914 Elnikety et al. Jun 2014 A1
20140201225 Deshmukh et al. Jul 2014 A1
20140201355 Bishnoi et al. Jul 2014 A1
20140236983 Alves et al. Aug 2014 A1
20140237289 de Castro Alves et al. Aug 2014 A1
Foreign Referenced Citations (9)
Number Date Country
1241589 Sep 2002 EP
2474922 Jul 2012 EP
0049533 Aug 2000 WO
WO0049533 Aug 2000 WO
0118712 Mar 2001 WO
0159602 Aug 2001 WO
0165418 Sep 2001 WO
03030031 Apr 2003 WO
2012050582 Apr 2012 WO
Non-Patent Literature Citations (301)
Entry
“SQL Tutorial—In”, Published on Feb. 16, 2009, Tizag.com, http://web.archive.org/web/20090216215219/http://www.tizag.com/sqlTutorial/sqlin.php, pp. 1-3.
Sansoterra “Empower SOL with Java User-Defined Functions,” IT Jungle.com (Oct. 9, 2003).
Ullman et al., “Introduction to JDBC,” Stanford University (2005).
Non-Final Office Action for U.S. Appl. No. 12/957,194 dated Dec. 7, 2012.
Non-Final Office Action for U.S. Appl. No. 13/089,556 dated Nov. 6, 2012.
Notice of Allowance for U.S. Appl. No. 12/534,398 dated Nov. 27, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,905 dated Dec. 14, 2012.
Non-Final Office Action for U.S. Appl. No. 12/957,201 dated Dec. 19, 2012.
Office Action for U.S. Appl. No. 12/548,187 (Jun. 20, 2012).
Notice of Allowance for U.S. Appl. No. 12/395,871 (May 4, 2012).
Office Action for U.S. Appl. No. 12/548,222 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/534,398 (Jun. 5, 2012).
Office Action for U.S. Appl. No. 12/548,281 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/913,636 (Jun. 7, 2012).
Notice of Allowance for U.S. Appl. No. 12/874,197 (Jun. 22, 2012).
International Search Report for PCT/US2012/034970 (Jul. 16, 2012).
Esper Reference Documentation, Copyright 2009, ver. 3.1.0, 293 pages.
Final Office Action for U.S. Appl. No. 12/548,290 dated Jul. 30, 2012.
Office Action for U.S. Appl. No. 13/193,377 dated Aug. 23, 2012.
Office Action for U.S. Appl. No. 11/977,437 dated Aug. 3, 2012.
Final Office Action for U.S. Appl. No. 11/601,415 dated Jul. 2, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,891 dated Jul. 25, 2012.
Final Office Action for U.S. Appl. No. 12/506,905 dated Aug. 9, 2012.
International Search Report dated Sep. 12, 2012 for PCT/US2012/036353.
Office Action for U.S. Appl. No. 13/396,464 dated Sep. 7, 2012.
Office Action for U.S. Appl. No. 13/244,272 dated Oct. 14, 2012.
Notice of Allowance for U.S. Appl. No. 12/548,209 dated Oct. 24, 2012.
Nah et al. “A Cluster-Based THO-Structured Scalable Approach for Location Information Systems,” The Ninth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'03), pp. 225-233 (Jan. 1, 2003).
Hulton et al. “Mining Time-Changing Data Streams,” Proceedings of the Seventh ACM SIGKDD, pp. 10 (Aug. 2001).
Stump et al. (ed.) Proceedings of IJCAR '06 Workshop “PLPV '06: Programming Languages meets Program Verification,” pp. 1-113 (Aug. 21, 2006).
Vijayalakshmi et al. “Processing location dependent continuous queries in distributed mobile databases using mobile agents,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), pp. 1023-1030 (Dec. 22, 2007).
Wang et al. “Distributed Continuous Range Query Processing on Moving Objects,” Proceedings of the 17th international Conference on Database and Expert Systems Applications (DEXA'06), Berlin, DE, pp. 655-665 (Jan. 1, 2006).
Wu et al.“Dynamic Data Management for Location Based Services in Mobile Environments,” IEEE Proceedings of the Seventh International Database Engineering and Applications Symposium 2003 Piscataway. NJ. USA., pp. 172-181 (Jul. 16, 2003).
Final Office Action for U.S. Appl. No. 12/396,464 dated Jan. 16, 2013, 16 pages.
Final Office Action for U.S. Appl. No. 12/913,636 dated Jan. 8, 2013, 20 pages.
Non-Final Office Action for U.S. Appl. No. 12/949,081 dated Jan. 9, 2013, 12 pages.
Final Office Action for U.S. Appl. No. 12/193,377 dated Jan. 17, 2013, 24 pages.
Final Office Action for U.S. Appl. No. 12/534,384 dated Feb. 12, 2013, 13 pages.
Final Office Action for U.S. Appl. No. 13/107,742 dated Feb. 14, 2013, 15 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Mar. 4, 2013. 9 pages.
Final Office Action for U.S. Appl. No. 13/244,272 dated Mar. 28, 2013, 29 pages.
Notice of Allowance for U.S. Appl. No. 12/957,194 dated Mar. 20, 2013. 9 pages.
U.S. Appl. No. 11/927,683, Notice of Allowance mailed on Nov. 9, 2011, 10 pages.
U.S. Appl. No. 12/534,384, Notice of Allowance mailed on May 7, 2013, 12 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action mailed on Apr. 9, 2013, 17 pages.
U.S. Appl. No. 12/548,222, Non-Final Office Action mailed on Apr. 10, 2013, 16 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Apr. 13, 2013, 16 pages.
U.S. Appl. No. 12/548,290, Non-Final Office Action mailed on Apr. 15, 2013, 17 pages.
U.S. Appl. No. 12/957,201, Final Office Action mailed on Apr. 25, 2013, 11 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Apr. 10, 2013, 10 pages.
Oracle Database Data Cartridge Developers Guide, B28425-03, 11g Release 1 (11.1), Oracle, Mar. 2008, 372 pages.
“Complex Event Processing in the Real World,” an Oracle White Paper, Sep. 2007, 13 pages.
“Creating WebLogic Domains Using the Configuration Wizard,” BEA Products, Dec. 2007, ver. 10.0, 78 pages.
“Creating Weblogic Event Server Applications,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 90 pages.
“Dependency Injection,” Wikipedia, Dec. 30, 2008, printed on Apr. 29, 2011, at URL: http:en.wikipedia.org/w/index.php?title=Dependency—injection&oldid=260831402, pp. 1-7.
“Deploying Applications to WebLogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 164 pages.
“Developing Applications with Weblogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 254 pages.
“EPL Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 82 pages.
“Fast Track Deployment and Administrator Guide for BEA WebLogic Server,” BEA WebLogic Server 10.0 Documentation, printed on May 10, 2010, at URL: http://download.oracle.com/docs/cd/E13222—01/wls/docs100/quickstart/quick—start.html, 1 page.
“Getting Started with WebLogic Event Server,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 66 pages.
“Installing Weblogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 64 pages.
“Introduction to BEA WebLogic Server and BEA WebLogic Express,” BEA WebLogic Server, Mar. 2007, ver. 10.0, 34 pages.
“Introduction to WebLogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 20 pages.
“Jboss Enterprise Application Platform 4.3 Getting Started Guide CP03, for Use with Jboss Enterprise Application Platform 4.3 Cumulative Patch 3,” Jboss a division of Red Hat, Red Hat Documentation Group, Publication date Sep. 2007, Copyright 2008, 68 pages, Red Hat, Inc.
“Managing Server Startup and Shutdown,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 134 pages.
“Matching Behavior,” .NET Framework Developers Guide, pp. 1-2, Copyright 2008 Microsoft Corporation, downloaded Jul. 1, 2008 from URL: http://msdn.microsoft.com/en-us/library/Oyzc2yb0(printer).aspx.
“New Project Proposal for Row Pattern Recognition—Amendment to SQL with Application to Streaming Data Queries,” H2-2008-027, H2 Teleconference Meeting, Jan. 9, 2008, pp. 1-6.
“Oracle CEP Getting Started,” Release 11gR1 (11.1.1) E14476-01, May 2009, 172 pages.
“Oracle Complex Event Processing CQL Language Reference,” 11g Release 1 (11.1.1) E12048-01, Apr. 2010, 540 pages.
“OSGI Service Platform Core Specification, The OSGI Alliance,” Apr. 2007, ver. 4.1, release 4, 288 pages, OSGI Alliance.
“Release Notes,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 8 pages.
“Stanford Stream Data Manager,” at URL: http://infolab.stanford.edu/stream/, last modified Jan. 5, 2006, pp. 1-9.
“Stream: The Stanford Stream Data Manager,” IEEE Data Engineering Bulletin, Mar. 2003, pp. 1-8.
“StreamBase New and Noteworthy,” StreamBase, dated Jan. 12, 2010, 878 pages.
“Understanding Domain Configuration,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 38 pages.
“WebLogic Event Server Administration and Configuration Guide,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 108 pages.
“WebLogic Event Server Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 52 pages.
“Weblogic Server Performance and Tuning,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 180 pages.
“WebSphere Application Server V6.1 Problem Determination: IBM Redpaper Collection,” WebSphere Software, IBM/Redbooks, Dec. 2007, 634 pages.
“Coral8 Complex Event Processing Technology Overview,” Coral8, Inc., Make it Continuous, pp. 1-8, Copyright 2007 Coral8, Inc.
Abadi, D., et al., “Aurora: A Data Stream Management System,” International Conference on Management of Data, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, ACM Press, 2003, 4 pages.
Aho, A. et al., “Efficient String Matching: An Aid to Bibliographic Search,” Communications of the ACM, Jun. 1975, vol. 18, No. 6, pp. 333-340, Copyright 1975, Association for Computing Machinery, Inc.
Arasu, “CQL: A language for Continuous Queries over Streams and Relations,” Lecturs Notes in Computer Science, 2004, vol. 2921/2004, pp. 1-19.
Arasu, A., et al., “The CQL Continuous Query Language: Semantic Foundations and Query Execution,” Stanford University, The VLDB Journal—The International Journal on Very Large Data Bases, vol. 15, Issue 2, Springer-Verlag New York, Inc., Jun. 2006, pp. 1-32.
Arasu, et al., “An Abstract Semantics and Concrete Language for Continuous Queries over Streams and Relations,” 9th International Workshop on Database programming languages, Sep. 2003, 12 pages.
Arasu, et al., “STREAM: The Stanford Data Stream Management System,” Department of Computer Science, Stanford University, 2004, p. 21.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” In Proceedings of the 2000 ACM SIGMOD International Conference on Data, Dallas TX, May 2000, 12 pages.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” slide show, believed to be prior to Oct. 17, 2007, 4 pages.
Babu, et al., “Continuous Queries over Data Streams,” SIGMOD Record, Sep. 2001, vol. 30, No. 3, pp. 109-120.
Bai, Y., et al., “A Data Stream Language and System Designed for Power and Extensibility,” Conference on Information and Knowledge Management, Proceedings of the 15th ACM International Conference on Information and Knowledge Management, Arlington, Virginia, Nov. 5-11, 2006, 10 pages, ACM Press, Copyright 2006.
Bose, S. et al., “A Query Algebra for Fragmented XML Stream Data”, 9th International Conference on Data Base Programming Languages (DBPL), Sep. 6-8, 2003, Postdam, Germany, at URL: http://lambda,uta.edu/dbp103.pdf, 11 pages.
Buza, “Extension of CQL over Dunamic Databases,” Journal of Universial Computer Science, 2006, vol. 12, No. 9, pp. 1165-1176.
Carpenter, “User Defined Functions,” Oct. 12, 2000, at URL:http://www.sqlteam.com/itemprint.asp?ItemID=979, 4 pages.
Chan, et al., “Efficient Filtering of XML documents with Xpath expressions,” VLDB Journal, 2002, pp. 354-379.
Chandrasekaran, et al., “TelegraphCQ: Continuous Dataflow Processing for an Uncertain World,” Proceedings of CIDR 2003, p. 12.
Chen, J., et al., “NiagaraCQ: A Scalable Continuous Query System for Internet Databases,” Proceedings of the 2000 SIGMOD International Conference on Management of Data, May 2000, pp. 379-390.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.0.3, 73 pages.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.1.3, 96 pages.
Conway, N., “An Introduction to Data Stream Query Processing,” Truviso, Inc., May 24, 2007, 71 pages, downloaded from: http://neilconway.org/talks/stream—intro.pdf.
Demers, A. et al., “Towards Expressive Publish/Subscribe Systems,” in Proceedings of the 10th International Conference on Extending Database Technology (EDBT 2006), Munich, Germany, Mar. 2006, pp. 1-18.
DeMichiel, et al., “JSR 220: Enterprise JavaBeans™, EJB 3.0 Simplified API,” EJB 3.0 Expert Group, Sun Microsystems, May 2, 2006, ver. 3.0, 59 pages.
Deshpande, et al., “Adaptive Query Processing,” slide show believed to be prior to Oct. 17, 2007, 27 pages.
Diao, Y. “Query Processing for Large-Scale XML Message Brokering”, 2005, University of California Berkeley, 226 pages.
Diao, Y. et al. “Query Processing for High-Volume XML Message Brokering”, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 12 pages.
Dindar, N., et al., “Event Processing Support for Cross-Reality Environments,” Pervasive Computing, IEEE CS, Jul.-Sep. 2009, pp. 2-9, Copyright 2009 IEEE.
Esper Reference Documentation, Copyright 2007, ver. 1.12.0, 158 pages.
Esper Reference Documentation, Copyright 2008, ver. 2.0.0, 202 pages.
Fernandez, Mary et al., “Build your own XQuery processor”, slide show, at URL: http://www.galaxquery.org/slides/edbt-summer-school2004.pdf, 2004, 116 pages.
Fernandez, Mary et al., Implementing XQuery 1.0: The Galax Experience:, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 4 pages.
Florescu, Daniela et al., The BEA/XQRL Streaming XQuery Processor, Proceedings of the 29th VLDB Conference, 2003, Berlin, Germany, 12 pages.
Gilani, A. Design and implementation of stream operators, query instantiator and stream buffer manager, Dec. 2003, 137 pages.
Golab, “Sliding Window Query Processing Over Data Streams,” University of Waterloo, Waterloo, Ont. Canada, Aug. 2006, 182 pages.
Golab, L., et al., “Issues in Data Stream Management,” ACM SIGMOD Record, vol. 32, Issue 2, Jun. 2003, ACM Press, pp. 5-14.
Gosling, et al., “The Java Language Specification,” Book, copyright 1996-2005, 3rd edition, 684 pages, Sun Microsystems USA.
Hao et al. “Achieving high performance web applications by service and database replications at edge servers,” proceedings of IPCCC 2009, IEEE 28th International Performance Computing and Communications Conference, pp. 153-160 (Dec. 2009).
Hopcroft, J. E., “Introduction to Automata Theory, Languages, and Computation,” Second Edition, Addison-Wesley, Copyright 2001, 1-521 pages.
Jin, C. et al. “ARGUS: Efficient Scalable Continuous Query Optimization for Large-Volume Data Streams” 1Oth International Database Engineering and Applications Symposium (IDEAS'06), 2006, pp. 7.
Kawaguchi, Kohsuke, “Java Architecture for XML Binding —(JAXB) 2.0 ”, Sun Microsystems, Inc., Apr. 19, 2006, 384 pages.
Knuth, D. E., et al., “Fast Pattern Matching in Strings,” Siam J. Comput., vol. 6, No. 2, Jun. 1977, pp. 323-350.
Lakshmanan, et al., “On efficient matching of streaming XML documents and queries,” 2002, 18 pages.
Lindholm, T. and Yellin, F., “Java Virtual Machine Specification, 2nd Edition”, Prentice Hall, Apr. 1999, 484 pages.
Liu, et al., “Efficient XSLT Processing in Relational Database System,” Proceeding of the 32nd. International Conference on Very Large Data Bases (VLDB), Sep. 2006, 1106-1116, 11 pages.
Luckham, D., “What's the Difference Between ESP and CEP?” Complex Event Processing, downloaded Apr. 29, 2011, 5 pages, at URL: http://complexevents.com/?p=103.
Madden, et al., “Continuously Adaptive Continuous Queries (CACQ) over Streams,” SIGMOD 2002, Jun. 4-6, 2002, 12 pages.
Martin et al “Finding application errors and security flaws using PQL: a program query language,” Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications 40:1-19 (Oct. 2005).
Babcock et al., “Models and Issues in Data Streams,” Proceedings of the 21st ACM SIGMOD-SIGACT-SIDART symposium on Principles of database systems, 2002, 30 pages.
Motwani, et al., “Query Processing Resource Management, and Approximation in a Data Stream Management System,” Proceedings of CIDR 2003, Jan. 2003, 12 pages.
Munagala, et al., “Optimization of Continuous Queries with Shared Expensive Filters,” Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, believed to be prior to Oct. 17, 2007, p. 14.
Novick, “Creating a User Definded Aggregate with SQL Server 2005,” at URL: http://novicksoftware.com/Articles/sql-2005-product-user-defined-aggregate.html, 2005, 6 pages.
Oracle Application Server 10g, Release 2 and 3, New Features Overview, an Oracle White Paper, Oct. 2005, 48 pages.
Oracle Application Server, Administrators Guide, 10g Release 3 (10.1.3.2.0), B32196-01, Jan. 2007, 376 pages, Oracle.
Oracle Application Server, Enterprise Deployment Guide, 10g Release 3 (10.1.3.2.0), B32125-02, Apr. 2007, 120 pages, Oracle.
Oracle Application Server, High Availability Guide, 10g Release 3 (10.1.3.2.0), B32201-01, Jan. 2007, 314 pages, Oracle.
Oracle Database, SQL Language Reference, 11g Release 1 (11.1), B28286-02, Sep. 2007, 1496 pages.
Oracle Database, SQL Reference, 10g Release 1 (10.1), Part No. B10759-01, Dec. 2003, pp. 7-1 to 7-17; 7-287 to 7-290; 14-61 to 14-74.
Peng, et al., “Xpath Queries on Streaming Data,” 2003, pp. 1-12, ACM Press.
Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice Hall, 1981, 301 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: Create Aggregate, believed to be prior to Apr. 21, 2007, 4 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: User-Defined Aggregates, believed to be prior to Apr. 21, 2007, 4 pages.
Sadri, R., et al., “Expressing and Optimizing Sequence Queries in Database Systems,” ACM Transactions on Database Systems, vol. 29, No. 2, Jun. 2004, pp. 282-318, ACM Press, Copyright 2004.
Sadtler, et al., “WebSphere Application Server Instalation Problem Determination,” Copyright 2007, pp. 1-48, IBM Corp.
Sharaf, et al., Efficient Scheduling of Heterogeneous Continuous Queries, VLDB '06, Sep. 12-15, 2006, pp. 511-522.
Spring Dynamic Modules for OSGi Service Platforms product documentation, SpringSource, Jan. 2008, 71 pages.
Stolze, “User-defined Aggregate Functions in DB2 Universal Database,” at URL: http://www.128.ibm.com/developerworks/db2/library/tacharticle/0309stolze/0309stolze.html, Sep. 11, 2003, 9 pages.
Stream Query Repository: Online Auctions (CQL Queries), at URL: http://www-db.stanford.edu/strem/sqr/cql/onauc.html, Dec. 2, 2002, 4 pages.
Stream Query Repository: Online Auctions, at URL: http://www-db.stanford.edu/stream/sqr/onauc.html#queryspecsend, Dec. 2, 2002, 2 pages.
Terry, et al., “Continuous queries over append-only database,” Proceedings of 1992 ACM SIGMOD, pp. 321-330.
Vajjhala, et al, “The Java™ Architecture for XML Binding (JAXB) 2.0,” Sun Microsystem, Inc., Final Release Apr. 19, 2006, 384 pages.
W3C, “XML Path Language (Xpath),” W3C Recommendation, Nov. 16, 1999, ver. 1.0, at URL: http://www.w3.org/TR/xpath, 37 pages.
White, S., et al., “WebLogic Event Server: A Lightweight, Modular Application Server for Event Processing,” 2nd International Conference on Distributed Event-Based Systems, Jul. 2-4, 2008, Rome, Italy, 8 pages, ACM Press, Copyright 2004.
Widom, et al., “CQL: A Language for Continuous Queries over Streams and Relations,” believed to be prior to Oct. 17, 2007, 62 pages.
Widom, et al., “The Stanford Data Stream Management System,” PowerPoint Presentation, believed to be prior to Oct. 17, 2007, 110 pages.
Zemke,“XML Query,” Mar. 14, 2004, 29 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,290, mailed on Oct. 3, 2011.
Non-Final Office Action for U.S. Appl. No. 12/548,281, mailed on Oct. 3, 2011.
Non-Final Office Action for U.S. Appl. No. 12/534,398, mailed on Nov. 1, 2011.
Non-Final Office Action for U.S. Appl. No. 12/548,222, mailed on Oct. 17, 2011.
Non-Final Office Action for U.S. Appl. No. 12/548,187, mailed on Sep. 27, 2011.
Non-Final Office Action for U.S. Appl. No. 12/396,008, mailed on Jun. 8, 2011.
Notice of Allowance for U.S. Appl. No. 12/396,008, mailed on Nov. 16, 2011.
Non-Final Office Action for U.S. Appl. No. 12/395,871, mailed on May 27, 2011.
Final Office Action for U.S. Appl. No. 12/395,871, mailed on Oct. 19, 2011.
Non-Final Office Action for U.S. Appl. No. 11/874,202, mailed on Dec. 3, 2009.
Final Office Action for U.S. Appl. No. 11/874,202, mailed on Jun. 8, 2010.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Dec. 22, 2010.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Mar. 31, 2011.
Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Nov. 24, 2009.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Dec. 11, 2009.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Jan. 27, 2010.
Non-Final Office Action for U.S. Appl. No. 11/874,896, mailed on Dec. 8, 2009.
Final Office Action for U.S. Appl. No. 11/874,896, mailed on Jul. 23, 2010.
Non-Final Office Action for U.S. Appl. No. 11/874, 896, mailed on Nov. 22, 2010.
Notice of Allowance for U.S. Appl. No. 11/874,896, mailed on Jun. 23, 2011.
Non-Final Office Action for U.S. Appl. No. 11/977,439, mailed on Apr. 13, 2010.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Aug. 18, 2010.
Supplemental Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Sep. 28, 2010.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Nov. 24, 2010.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Mar. 16, 2011.
Non-Final Office Action for U.S. Appl. No. 11/977,437, mailed on Oct. 13, 2009.
Final Office Action for U.S. Appl. No. 11/977,437, mailed on Apr. 8, 2010.
Notice of Allowance for U.S. Appl. No. 11/977,440, mailed on Oct. 7, 2009.
Office Action for U.S. Appl. No. 11/874,197, mailed on Nov. 10, 2009.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Jun. 29, 2010.
Non-Final Office Action for U.S. Appl. No. 11/874,197, mailed on Dec. 22, 2010.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Aug. 12, 2011, 26 pp.
Non-Final Office Action for U.S. Appl. No. 11/873,407, mailed on Nov. 13, 2009.
Final Office Action for U.S. Appl. No. 11/873,407, mailed on Apr. 26, 2010.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Nov. 10, 2010.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Mar. 7, 2011.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Sep. 17, 2008.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on May 27, 2009.
Advisory Action for U.S. Appl. No. 11/601,415, mailed on Aug. 18, 2009.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Nov. 30, 2009.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on Jun. 30, 2010.
Non-Final Office Action for U.S. Appl. No. 11/927,681, mailed on Mar. 24, 2011.
Notice of Allowance for U.S. Appl. No. 11/927,681, mailed on Jul. 1, 2011.
Non-Final Office Action for U.S. Appl. No. 11/927,683, mailed on Mar. 24, 2011.
Final Office Action for U.S. Appl. No. 11/927,683, mailed on Sep. 1, 2011.
Notice of Allowance for U.S. Appl. No. 11/927,683, mailed on Nov. 9, 2011.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jan. 22, 2007.
Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jul. 6, 2007.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed Dec. 11, 2007.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Jul. 8, 2008.
Supplemental Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Aug. 25, 2008.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Dec. 1, 2010.
International Search Report dated for PCT/US2011/052019 (Nov. 17, 2011).
Notice of allowance U.S. Appl. No. 12/396,008 (Nov. 16, 2011).
Office Action for U.S. Appl. No. 12/506,891 (Dec. 14, 2011).
Office Action for U.S. Appl. No. 12/534,398 (Nov. 11, 2011).
Office Action for U.S. Appl. No. 11/601,415 (Dec. 9, 2011).
Office Action for U.S. Appl. No. 12/534384 (Feb. 28, 2012).
Office Action for U.S. Appl. No. 12/506,905 (Mar. 26, 2012).
Notice of Allowance for U.S. Appl. No. 13/184,528 (Mar. 1, 2012).
Office Action for U.S. Appl. No. 12/548,209 (Apr. 16, 2012).
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 10, 2013, 18 pages.
U.S. Appl. No. 12/548,222, Notice of Allowance mailed on Jul. 18, 2013, 12 pages.
U.S. Appl. No. 13/107,742, Final Office Action mailed on Jul. 3, 2013, 19 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Jul. 10, 2013, 10 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Feb. 13, 2014, 16 pages.
U.S. Appl. No. 13/177,748, Final Office Action mailed on Mar. 20, 2014, 23 pages.
International Search Report dated Apr. 3, 2014 for PCT/US2014/010832, 9 pages.
Cadonna et al. “Efficient event pattern matching with match windows,” Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 471-479 (Aug. 2012).
Nichols et al. “A faster closure algorithm for pattern matching in partial-order event data,” IEEE International Conference on Parallel and Distributed Systems, pp. 1-9 (Dec. 2007).
U.S. Appl. No. 12/548,281, Final Office Action mailed on Oct. 10, 2013, 21 pages.
U.S. Appl. No. 12/548,290, Notice of Allowance mailed on Sep. 11, 2013, 6 pages.
U.S. Appl. No. 12/949,081, Final Office Action mailed on Aug. 27, 2013, 13 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Aug. 29, 2013, 10 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Aug. 30, 2013, 24 pages.
U.S. Appl. No. 13/193,377, Notice of Allowance mailed on Aug. 30, 2013, 19 pages.
Bottom-up parsing, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Bottom-up—parsing, Sep. 8, 2014, pp. 1-2.
Branch Predication, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Branch—predication, Sep. 8, 2014, pp. 1-4.
Microsoft Computer Dictionary, 5th Edition, Microsoft Press, Redmond, WA, 2002, pp. 238-239 and 529.
Notice of Allowance for U.S. Appl. No. 13/089,556 dated Oct. 6, 2014, 9 pages.
U.S. Appl. No. 12/396,464, Notice of Allowance mailed on Sep. 3, 2014, 7 pages.
U.S. Appl. No. 12/548,187, Advisory Action mailed on Sep. 26, 2014, 6 pages.
U.S. Appl. No. 12/548,281, Final Office Action mailed on Aug. 13, 2014, 6 pages.
U.S. Appl. No. 12/913,636, Non-Final Office Action mailed on Jul. 24, 2014, 22 pages.
U.S. Appl. No. 12/957,201, Non-Final Office Action mailed on Jul. 30, 2014, 12 pages.
U.S. Appl. No. 13/764,560, Non-Final Office Action mailed on Sep. 12, 2014, 23 pages.
U.S. Appl. No. 13/770,969, Non-Final Office Action mailed on Aug. 7, 2014, 9 pages.
U.S. Appl. No. 14/302,031, Non-Final Office Action mailed on Aug. 7, 2014, 9 pages.
Abadi et al., Aurora: a new model and architecture for data stream management, The VLDB Journal The International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 120-139.
Balkesen et al., Scalable Data Partitioning Techniques for Parallel Sliding Window Processing over Data Streams, 8th International Workshop on Data Management for Sensor Networks, Aug. 29, 2011, pp. 1-6.
Chandrasekaran et al., PSoup: a system for streaming queries over streaming data, The VLDB Journal The International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 140-156.
Dewson, Beginning SOL Server 2008 for Developers: From Novice to Professional, A Press, Berkeley, CA, 2008, pp. 337-349 and 418-438.
Harish D et al., Identifying robust plans through plan diagram reduction, PVLDB '08, Auckland, New Zealand, Aug. 23-28, pp. 1124-1140.
Krämer, Continuous Queries Over Data Streams—Semantics and Implementation, Fachbereich Mathematik und Informatik der Philipps-Universitat, Marburg, Germany, 313 pages.
International Application No. PCT/US2013/062047, International Search Report and Written Opinion mailed on Jul. 16, 2014, 12 pages.
International Application No. PCT/US2013/062050, International Search Report & Written Opinion mailed on Jul. 2, 2014, 13 pages.
International Application No. PCT/US2013/062052, International Search Report & Written Opinion mailed on Jul. 3, 2014, 12 pages.
International Application No. PCT/US2013/073086, International Search Report and Written Opinion mailed on Mar. 14, 2014.
International Application No. PCT/US2014/017061, International Search Report and Written Opinion mailed on Sep. 9, 2014, 12 pages.
Rao et al., Compiled Query Execution Engine using JVM, ICDE '06, Atlanta, GA, Apr. 3-7, 2006, 12 pages.
Ray et al., Optimizing complex sequence pattern extraction using caching, data engineering workshops (ICDEW)˜ 2011 IEEE 27th international conference on IEEE, Apr. 11, 2011, pp. 243-248.
Shah et al., Flux: an adaptive partitioning operator for continuous query systems, Proceedings of the 19th International Conference on Data Engineering, Mar. 5-8, 2003, pp. 25-36.
Stillger et al., Leo—DB2's Learning Optimizer, Proc. of the VLDB, Roma, Italy, Sep. 2001, pp. 19-28.
U.S. Appl. No. 13/838,259, filed Mar. 15, 2013, Deshmukh et al.
U.S. Appl. No. 13/839,288, filed Mar. 15, 2013, Deshmukh et al.
Call User Defined Functions from Pig, Amazon Elastic MapReduce, Mar. 2009, 2 pages.
Strings in C, retrieved from the internet: <URL: https://web.archive.org/web/20070612231205/http:l/web.cs.swarthmore.edu/-newhall/unixhelp/C—strings.html> [retrieved on May 13, 2014], Swarthmore College, Jun. 12, 2007, 3 pages.
U.S. Appl. No. 11/874,197, Notice of Allowance mailed on Jun. 22, 2012, 20 pages.
U.S. Appl. No. 12/396,464, Final Office Action mailed on May 16, 2014, 16 pages.
U.S. Appl. No. 12/396,464, Non-Final Office Action mailed on Sep. 7, 2012, 18 pages.
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 4, 2014, 64 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Jun. 13, 2014, 14 pages.
U.S. Appl. No. 13/107,742, Non-Final Office Action mailed on Jun. 19, 2014, 20 pages.
U.S. Appl. No. 13/244,272, Notice of Allowance mailed on Aug. 12, 2013, 12 pages.
International Application No. PCT/US2011/052019, International Preliminary Report on Patentability mailed on Mar. 28, 2013, 5 pages.
International Application No. PCT/US2012/036353, International Preliminary Report on Patentability mailed on Nov. 28, 2013, 6 pages.
Oracle™ Fusion Middleware CQL Language Reference, 11g Release 1 (11.1.1.6.3) E12048-10, Aug. 2012, pp. 6-1 to 6-12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1.4.0) E12048-04, Jan. 2011, pp. 6.1 to 6.12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-03, Apr. 2010, sections 18-4 to 18.4.2.
Pattern Recognition With Match—Recognize, Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-01, May 2009, pp. 15.1 to 15.20.
Supply Chain Event Management: Real-Time Supply Chain Event Management, product information Manhattan Associates, 2009-2012.
U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Dec. 11, 2013, 58 pages.
U.S. Appl. No. 12/396,464, Non Final Office Action mailed on Dec. 31, 2013, 58 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action Jan. 9, 2014, 14 Pages.
Non-Final Office Action for U.S. Appl. No. 12/548,187 dated Feb. 6, 2014, 53 pages.
Agrawal et al. “Efficient pattern matching over event streams,” Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp. 147-160 (Jun. 2008).
Chandramouli et al., High-Performance Dynamic Pattern Matching over Disordered Streams, Proceedings of the VLDB Endowment, vol. 3, Issue 1-2, Sep. 2010, pp. 220-231.
Chapple “Combining Query Results with the Union Command,” ask.com Computing Databases, downloaded from: http://databases.about.com/od/sql/a/union.htm (no date, printed on Oct. 14, 2013).
Fantozzi, A Strategic Approach to Supply Chain Event Management, student submission for Masters Degree, Massachusetts Institute of Technology, Jun. 2003.
Komazec et al., Towards Efficient Schema-Enhanced Pattern Matching over RDF Data Streams, Proceedings of the 1st International Workshop on Ordering and Reasoning (OrdRing 2011), Bonn, Germany, Oct. 2011.
Ogrodnek, Custom UDFs and hive, Bizo development blog http://dev.bizo.com, Jun. 23, 2009, 2 pages.
International Patent Application No. PCT/US2012/034970, International Preliminary Report on Patentability mailed on Nov. 21, 2013, 7 pages.
Pradhan, Implementing and Configuring SAP® Event Management, Galileo Press, 2010, pp. 17-21.
Wilson et al., SAP Event Management, an Overview, Q Data USA, Inc., 2009.
Babu et al., “Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries Over Data Streams”, ACM Transactions on Database Systems (TODS) vol. 29 Issue 3, Sep. 2004, 36 pages.
Tho et al. “Zero-latency data warehousing for heterogeneous data sources and continuous data streams,” 5th International Conference on Information Integrationand Web-based Applications Services (Sep. 2003) 12 pages.
“SQL Subqueries” —Dec. 3, 2011, 2 pages.
“Caching Data with SqiDataSource Control” —Jul. 4, 2011, 3 pages.
“SCD—Slowing Changing Dimensions in a Data Warehouse”—Aug. 7, 2011, one page.
Non-Final Office Action for U.S. Appl. No. 13/838,259 dated Oct. 24, 2014, 21 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,631 dated Nov. 13, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,987 dated Nov. 6, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415 dated Oct. 6, 2014, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/077,230 dated Dec. 4, 2014, 30 pages.
Non-Final Office Action for U.S. Appl. No. 13/828,640 dated Dec. 2, 2014, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,428 dated Dec. 5, 2014, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Nov. 20, 2014, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/839,288 dated Dec. 4, 2014, 30 pages.
Related Publications (1)
Number Date Country
20120284420 A1 Nov 2012 US