The disclosure relates to a support for articles and methods for using the same. In a preferred embodiment, a support is arranged to provide incremental stabilization and compression to a patella and may be used alone or in combination with an orthopedic device.
Supports and straps are used in various articles for supporting, placement or closure about a body part. Straps are conventionally used for being tensioned or used to increase the fit or comfort of the article. The straps may be combined with supports for stabilizing or compressing against a body part. Often, however, supports are statically attached to an article and straps are separately positioned or spaced from the article.
While supports and straps may be used in different articles, they are predominately found in orthopedic devices. In an example, there are numerous orthopedic devices such as braces that provide support around a patella of a user. Many of these braces use a stationary or static support that provides support about the patella of the user.
Some of the known braces include a front central opening that allow for the wearer's patella or kneecap to project therethrough. The front central opening relieves pressure otherwise exerted on the patella, particularly when the knee is bent or in flexion. These braces may include a pad or support located about the front central opening to provide a restraining force to the patella and additional support for preventing lateral or medial displacement of the patella in the femoral groove.
Despite known solutions, many braces fail to maintain the support in a proper position on the patella so the opening or support can prevent patella displacement, in part due to their static arrangement; they are not arranged to accommodate movement or flexion of the knee.
Alternatively, another example of a brace has a strap and a patella support attached to the strap for applying patellar support. One end of the strap has the patella support fixed near the patella of a user and a second end secures to a connection point along a lateral or medial side of the brace. As the strap is tensioned, the support applies pressure about the patella. The support itself, however, does not change in shape according to exertion of tension in the straps; rather they are merely compressed against the knee.
Many known devices fail to maintain the support in a proper position on the patella so the opening or support can prevent patella displacement. Therefore, there is a need for a knee brace that at least provides means for stabilizing and supporting the patella.
A large group of people suffer from patellofemoral osteoarthritis (OA); either stand-alone patellofemoral OA or, in combination with medial or lateral side OA. There are few if any commercial patellofemoral OA solutions on the market.
A purpose of a patellofemoral OA brace is to relieve knee pain caused by OA in the patellofemoral joint. An unloading type knee brace provides a solution for people with medial or lateral side knee OA, such as one described in U.S. Pat. No. 7,198,610, granted Apr. 3, 2007, and incorporated herein by reference. There exists no solution that targets individuals suffering from stand-alone patellofemoral pain and in combination with medial side OA.
The combination of the patellofemoral (PF) joint and OA is a significant problem for the patient as is OA in the tibiofemoral (TF) joint. The solutions described herein are aimed for the sufferer of combined TF/PF OA, as the pain may originate from either or both joints. For the combined TF/PF condition, treating the TF joint alone may not be sufficient. Solutions are also described to treating isolated PF OA or PF instability or deficiencies.
Various solutions relied upon to treat PF OA may employ a compressive sleeve with inelastic or elastic parts, a compressive padding and/or various strap arrangements. Particularly, the compressive padding may include an arcuate pad or strap system with and without variable tensioning, such as in dial tensioning.
In one variation, the solution relies on moving the patella medially and securing it in position by a variety of techniques. Patellar maltracking usually means that the patella is positioned too far on the lateral side. Because of PF problems, the patella is almost always pulled medially.
Embodiments of the patella device are adjustable, reliable and durable, and may mimic various taping techniques. Realignment of the patella places it more properly in the trochlea groove. In the aligned position, the PF joint's articulation surface is increased and the increased surface of articulation means the joint loads are more evenly distributed and high local forces are prevented.
A pad or support may be used or added to the support to contribute to the sideway force. The support creates extra surface area and holds a side of the patella, either alone or in combination with a strap, to focus and direct the force. The support is preferably adjustable and allows adjustment of the direction of the force providing the user the opportunity to adjust the direction of the applied force according to the user's condition. The point of friction in the patellofemoral joint can vary between persons and the support can be positioned around the area of the pain.
In an embodiment, a strap may be attached to a support that sits on top of the sleeve. By attaching the strap to the support, a stable anchoring point is created. There may be a benefit in attaching the strap to the medial side of the sleeve or attaching it to the lateral side of the sleeve and placing the attachment point on the medial side. Attaching the strap to the sleeve may improve comfort and enables the user to use the sleeve independent of an unloader brace.
Embodiments may employ a C-shaped strap or support, and may include a tensioning device that adjusts the C-strap or support. This embodiment rests on the concept of adjustably unloading the patella by tensioning which pushes the knee into the hinge creating an unloading force.
Variations may be arranged to increase forces on the patella as the knee flexes such that as the knee flexes, the force on the patella increases medially. The varations may be adjustable with a dial tensinoing system whereby the support includes at least one adjustable anchor point. This arrangement provides the user the posibility to position the support as needed and apply a suitable amount of force.
In an embodiment, the patella device includes a sleeve defining first and second sides divided by a medial-lateral plane, and a central portion defined along an anterior side of an anterior-posterior plane. A support has a body defining a first end anchored to the first side of the sleeve and a middle portion anchored to the second side of the sleeve. The support is located proximate the central portion which may define an opening. The support may define at least one opening formed along the length of the support and extends from a periphery into a width of the support. The at least one opening may be defined by a first set of openings formed along a first periphery and a second set of openings is formed along a second periphery. The first and second openings alternate relative to one another along a length of the support.
A tensioning device is coupled to the support and adjusts the length of the support by opening or compressing the openings. The support may operate in the manner of an accordion by the openings to conform to the user's anatomy and facilitate force generation over the patella. The tensioning enables selective tensioning of the support.
According to an embodiment, the body defines a length adjustment axis, which may be located generally along a midline of the body. The length adjustment axis depends upon the contour of the body such that the body may bend and the length adjustment axis follows the bend. At least one of the openings overlaps at least part of the length adjustment axis such that length adjustment is governed by modification of the size of the at least one opening according to adjustment by the tensioning device.
In an embodiment, the body defines at least one opening overlapping at least part of the length adjustment axis such that length adjustment is governed by modification of the size of the at least one opening according to adjustment by the tensioning device. The at least one opening may be formed along the length of the support and extend from a periphery into a width of the support. The at least one opening extends past the length adjustment axis of the support from the periphery.
According to an example, the at least one opening may define first and second ends with the first end extending past the length adjustment axis short of a first periphery and the second end defined by opposed side portions arranged to clamp against one another depending on the length of the support. The first and second openings alternating relative to one another along a length of the support.
At least one cable may be linked to the tensioning device and cooperates with the support to adjust the length thereof by actuation of the tensioning device. The at least one cable may extend through a thickness of the body of the support from the first portion to the second portion such that actuation of the tensioning device adjusts the length of the at least one cable to adjust the length of the support. The at least one cable may intersect or pass through one of the openings in the body of the support.
According to a variation, the at least one cable includes first and second cable segments linked to the tensioning device and extending to the first and second portions, respectively. The first and second cable segments are individually attached to the tensioning device and operated independently from one another by each having an end opposite from a portion engaging the tensioning device. The first and second cable segments may form a loop with the tensioning device and are regulated simultaneously and dependently with one another.
The support may be arranged in a variety of geometries, whether shape profile, height, width, thickness or length. The opening can be modified likewise according intended usage of the support.
A method for adjusting a length of the support includes adjusting tension in the at least one cable by regulating the tensioning device and causing geometry of the at least one opening to modify according to tension in the cable. Depending on usage and application of the support, additional steps may include anchoring first and second ends of the support to first and second locations, the length of the support adjusting along the length adjustment axis according to regulation of the tensioning device; providing at least one peripheral opening along a periphery of the support; and contouring a shape of the support according to regulation of the tensioning device by modifying a geometry of the peripheral opening as a result in adjustment of tension in the at least one cable.
According to an embodiment in the form of an orthopedic device, the support tracks the patella and provides support. The support and straps associated with the sleeve creates a medial/lateral force that tracks the patella in a desired direction (lateral or medial). The support may be used along or in combination with an OA brace.
The support provides dynamic tracking of the patella by its ability to adapt in shape as the support is tensioned. The support combines function of both a strap and a support because the support itself is tensioned and adapted to adjust in geometry according to the tensioning of the support. The support may have compressible features, such as a body forming part of the support as constructed from a porous or compressible material such as foam.
The support may be adapted as a strap in part due to its ability to resize according to tension in the support. An advantage of the strap is that it may cover greater surface area to better distribute tension over the object by which it is secured, as in a body part. In another use, the support may be arranged to provide increased or decreased rigidity because of tensioning the support, in part by adjusting rigidity of a support body or geometry of the support body.
The support is not limited to use in a PF support, but may be used in articles and applications requiring stabilization, closure, compression, rigidity and other expedients.
The support is described referring to the accompanying drawings, which show preferred embodiments according to the device described. The device and method as disclosed in the accompanying drawings are illustrated for example only. The elements and combinations of elements described below and illustrated in the drawings can be arranged and organized differently to result in embodiments still within the spirit and scope of the device described.
A better understanding of different embodiments of the support may be gained from the following description read with the accompanying drawings in which like reference characters refer to like elements.
While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments are in the drawings and will be described below. It should be understood, however, there is no intention to limit the disclosure to the embodiments disclosed, but on the contrary, the invention covers all modifications, alternative constructions, combinations, and equivalents falling within the spirit and scope of the disclosure and defined by the appended claims.
It will be understood that, unless a term is defined in this disclosure to possess a described meaning, there is no intent to limit the meaning of such term, either expressly or indirectly, beyond its plain or ordinary meaning.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. § 112, paragraph 6.
B. Environment and Context of Embodiments
The supports and methods for use herein may be used in various articles including braces, medical devices, clothing, apparel, bags, safety restraints and the like. In a preferred embodiment, the supports and methods are described in connection with orthopedic devices.
Numerous orthopedic devices and components (e.g., subshells and strap retainers) for use therewith are described, with particular focus given to braces and components directed to the knee joint and surrounding areas. The orthopedic device embodiments may serve in protective, preventative or remedial capacities. While the orthopedic device is described within the context of a preferred embodiment directed to securing the knee joint, many of the features described may be extended to orthopedic devices and components that secure other joints and body parts, such as the wrist, elbow, shoulder, ankle and neck.
The orthopedic device embodiments and components for use therewith may be dimensioned to accommodate different types, shapes and sizes of human joints and appendages. In addition, embodiments may be modified to orient principal forces exerted by support systems of the embodiments at any desirable location to secure the brace onto a leg to stabilize the knee.
The knee joint comprises two joints, lateral and medial, between the femur and tibia, and one arthrodial joint between the patella and femur. The primary movements of the knee comprise flexion, i.e., rearward rotational movement of the tibia relative to the femur, and extension, i.e., forward rotational movement of the tibia relative to the femur.
For explanatory purposes, each orthopedic device embodiment or component thereof described may be divided into sections denoted by general anatomical terms for the human body. Such anatomical terms are provided to distinguish various elements of the brace embodiments from one another, but which are not to be considered to limit the invention.
Each of these terms may be used regarding a human leg, which is divided in similar sections with a proximal-distal plane generally extending along the meniscus of the knee between the femur and tibia. The terms “proximal” and “distal” generally refer to locations of the brace that correspond to the location of leg relative to the point of attachment of the leg to the body. The terms “upper” and “lower” may be used in combination with “proximal” and “distal” to connote gradations in-location of “proximal” and “distal.” The location where the brace corresponds to the knee joint is used to generally delimit the proximal and distal sections of the brace.
The embodiments of the knee brace can also be considered to fall within “anterior” and “posterior” sections by an anterior-posterior plane. The anterior-posterior plane generally corresponds to the coronal or frontal plane of a human leg, which lies along the central longitudinal axis of a body. A posterior side or element is therefore behind this anterior-posterior plane, whereas an anterior side or element is in front of the anterior-posterior plane.
The terms “inwardly” or “inner” are commonly used to distinguish the side of the brace that may be directed to the posterior side of the brace and specifically adjacent to the leg of the wearer of the brace. Contrariwise, the term “outwardly” or “outer” are used to denote the side of the brace opposite to the inwardly side.
The terms “medial” and “lateral” are relative terms generally understood as indicating location near the midsagittal plane or midline. Therefore, elements located near the midline are referred to as “medial” and those elements further from the midline are “lateral.” The term “central” is used to denote the area along the midline of a joint dividing and sharing regions of the medial and lateral regions.
In an embodiment of an orthopedic device, regions of the device may fall within the following quadrants: (I) proximal-medial, (II) distal-medial, (III) distal-lateral, and (IV) proximal-lateral. The posterior section of the brace has the following quadrants: (V) proximal-medial, (VI) distal-medial, (VII) distal-lateral, and (VIII) proximal-lateral. Structural members and features thereof will fall within one of the quadrants is specifically referenced in relation to such quadrant, either in its entirety or partially.
The terms “rigid” and “flexible” are repeatedly used to distinguish characteristics of portions of the brace. The term “rigid” should denote that the frame is devoid of flexibility. Within the context of frame members that are “rigid,” it should indicate that they might break if bent with sufficient force. The term “flexible” should denote that features are capable of repeated bending. The term “resilient” is used to qualify such flexible features as generally returning to the initially molded shape with permanent deformation.
The anatomical and characteristic terms described herein are not intended to detract from the normal understanding of such terms as readily understood by one of ordinary skill in the art of orthopedics. The elements of the embodiments described should embrace embodiments that generally correspond to the aforementioned anatomical sections. It is understood that the elements of the brace embodiments described may deviate from falling exactly within the confines of the aforementioned anatomical sections.
C. Various Embodiments
In observing the
The sleeve 12 is preferably short enabling it to be worn as a stand-alone orthopedic device or in combination with a brace, as depicted in
The support 14 may define an arcuate shape or a C-shape, and is flexible to conform to anatomy of a wearer of the orthopedic device 10. The support 14 is preferably adjustable in length such that a first end 17 of the support 14 includes first and second straps 34, 35 removably securable to a surface of the sleeve 12. The sleeve 12 defines a fastener segment 38 arranged to secure to a corresponding connection feature carried by the first and second straps 34, 35.
The patella device 10 includes first and second flaps 36, 37 each having a first end 39 secured to the sleeve 12 and a second end 41 flexibly extending from the sleeve 12. The second ends 41 are arranged to adjustably secure to an outer surface of the sleeve 12 for adjusting a circumference of the sleeve. The sleeve 12 defines a fastener segment 38 arranged to secure to a corresponding connection feature carried by the first and second straps 34, 35. The second end 41 of the first and second flaps 36, 37 secure to the fastener segment 38.
The flaps 36, 37 may be arranged to secure over and onto the first and second straps 34, 35 and the fastener segment 38. Adjustment of the flaps 36, 37 enable circumferential adjustment of the sleeve to assure it is retained on the leg of the user.
The support 14 may define first and second ends 17, 19 each extending toward the first side 13. The first and second ends 17, 19 have first and second straps 34, 35 securable to the sleeve 12. The middle portion 21 of the support 14 is arranged to resist adjustment of the first and second straps 34, 35. The main body 22 forming the support 14 is preferably formed from a resilient compressible material, such as foam, textile, synthetic or natural rubber, polymer and the like. The elasticity or inelasticity of the material forming the support will depend on the application. In the patella device 10, the support 14 is preferably inelastic to prevent the material of the support from significantly yielding to movement of the user's knee.
The support may vary in width and thickness over its length or cross-section. For example, in
Referring to the thickness, the thickness of the main body 22 may vary along the length of the support 14 and over its cross-section. For example,
The main body 22 may be arranged so different surfaces may have varying contours according to desired areas of support and anatomy or other upon which the support extends. For example,
Although exemplary widths, thicknesses and surface contours are described, the support is not limited to the depicted examples, but may include any combination and varying properties taking the examples in consideration.
A stay 18 may be at one or both of the first and second sides 13, 15 and extending between first and second ends 31, 33 of sleeve 12. The stay 18 is preferably within the sleeve 12.
According to an embodiment in
As shown in
The at least one opening 28 may be formed as a slit and define first and second ends 62, 64. The first end 62 may extend past the midline 65 short of a first periphery 61, 63 and the second end 64 is defined by opposed side portions 66, 67 clamped against one another depending on the length of the support 14.
According to the variation in
The tensioning device 26 is preferably secured to the support 14 so actuation of the tensioning device 26 shortens or lengthens a length of the support 14. The a least one cable segment 24, 25 is linked to the tensioning device 26 and cooperates with the support 14 to adjust the length thereof by actuation of the tensioning device 26. The at least one cable segment 24, 25 extends through the thickness of the support 14 and extends from the first end 17 to a second end 19 opposed to the first end 17 such that actuation of the tensioning device 26 adjusts the length of the at least one cable segment 24, 25 to modify the length of the support 14. The support 14 defines at least one opening 28 through which the at least one cable segment 24, 25 extends.
Various cable types can be used, including but not limited to stranded steel cable with no coating, stranded steel cable with a polymer coating (e.g., nylon coating), monofilament (e.g., nylon), or other suitable elongate elements. In some embodiments, standard conventional shoe laces or textile cords can be used for the cable.
According to the illustrated embodiments, the tensioning device is configured to incrementally provide or release tension to the cable by tensioning. The tensioning device may correspond to a strap tightener assembly for an orthopedic device according to U.S. application Ser. No. 13/739,491, filed on Jan. 11, 2013 and published as U.S. patent application publication no. 2013/0184628 A1 on Jul. 18, 2013. A variation of the tensioning device is also described in U.S. Pat. No. 7,198,610, granted on Apr. 3, 2007, and U.S. Pat. No. 9,125,730, granted Sep. 8, 2015, which are incorporated herein by reference and belong to the assignee of this disclosure. Commercial examples of a tensioning device that may also be used with different embodiments of the support include the BOA lacing system of BOA Technology Inc. of Steamboat Springs, Colo.
The tensioning device is not limited to dial tensioning or a winding system but may include other ratcheting type systems such as a ladder ratchet strap, as discussed in U.S. Pat. No. 7,198,610. Alternatively, the tensioning device can be simplified as a clasp arranged to disengage from the cables and lockingly engage upon a desired tension in the cable by applying traction or wedging. Examples of clasp or blocking devices are described in U.S. Pat. No. 5,566,474, granted Oct. 22, 1996, U.S. Pat. No. 7,082,652, granted Aug. 1, 2006, U.S. Pat. No. 7,360,282, granted Apr. 22, 2008, each of which are incorporated by reference. From the foregoing, a variety of tensioning devices may be employed in combination with the cable that enable locking of a desired tension in the cable and the selective release of tension of the cable.
In observing
In an alternative, the support may be arranged so that openings do not overlap. While in this alternative the support may not shorten or lengthen according to an increase in tension in the cable, the support can still adapt to a surface along which it is located. A variation of such alternative may include different cables extending along across the openings rather than a cable extending about the guide 171. The cable ends may be anchored at the head portion 172 or other suitable location, and each cable may be adjusted differently so as to create different shape profiles of the first and second peripheries 161, 162.
One of the features the support may have is the overlapping shape described with
The support 194 may likewise have different patterns of openings according to the sections, or may have yet further varying openings within a section itself. The first section 174 is shown with elongate openings 195 generally uniformly spaced apart by height H4, whereas the second section 175 has circular openings 196 spaced apart by height H5 which may be different from height H4. Alternatively, the second section 175 may be devoid of openings so that this region is substantially non-adjustable in height. The third section 176 has openings 197 of differing lengths to cross the length adjustment axis 165, and may be spaced apart differently according to where they are located within the third section 176. For example, some openings are spaced apart by height H6 whereas other openings are spaced apart by height H7 which is different from height H6.
According to the embodiments described herein, a cable system and a tensioning device may be adapted to different configurations.
In any of the cable configurations, the tensioning device is not limited to being centrally located along the cable configuration but may be located so the initial lengths of the first and second cable segments are disproportionate relative to one another to achieve different contouring and tensioning of each of the first and second cable segments. By placing the tensioning device generally in the middle of the cable configuration, the support may probably have a generally uniform contraction. Alternatively, by disproportionately placing the tensioning device in the cable configuration, there may be non-uniform contraction so the shape of the support may contort.
The cable configuration is not limited to a single tensioning device, however it is envisioned that multiple cables may be employed that are respectively tensioned independently from one another by their own or shared tensioning devices. Additionally, while the cable configurations schematically show the cable as generally linearly extending through or relative to the body of the support, the cable may be arranged so that it alternates between opposed sides of the length adjustment axis, either terminating at an anchor or returning toward or to the tensioning device much like lacing of shoes.
While the cable is described as extending through the body of the support in certain embodiments, it may be located along at least one of the surfaces of the body with external guides channeling the course of the cable. Alternatively, the support body may define channels within the thickness of the body through which the cable extends. Essentially, the cable configuration is arranged so that adjusting a length of the cable relative to the support enables length adjustment and/or shape contouring of the support, whether the cable is internally or externally mounted relative to the support.
From these cable configurations and the aforementioned embodiments, a method for adjusting a length involves adjusting tension in the at least one cable or cable segments by regulating the tensioning device and causing geometry of the at least one opening to modify according to tension in the cable. Ends of the support are preferably anchored at first and second locations such that the length of the support adjusts along the length adjustment axis according to regulation of the tensioning device. By providing at least one peripheral opening along a periphery of the support, the shape of the support may be contoured according to regulation of the tensioning device by modifying a geometry of the peripheral opening as a result in adjustment of tension in the at least one cable.
As with the embodiment of
The shape of the main body 302 may vary depending on the tension of the cables 316, 318 such that the opening 329 may be elongate, whereas reducing the tension will cause the opening 329 to reflect a more circular profile. As with the embodiment of
In this embodiment, a rear surface of the elongate body 82 may include silicone to assist in maintaining the support 80 in position over the knee. The strap is particularly used to exert a downward force on the patella and a lateral to medial pull. As with any of the embodiments, the connection assembly 88 may be secured to the elongate body 82 by stitching 44 extending through a plurality of apertures 46 formed by the connection assembly 88.
The first and second extensions 218, 219 include connection elements 220 for securing to the orthopedic device 270 at frame supports 276, 278 spaced apart by struts 280, 282. The second side portion 217 includes bifurcated first and second extensions 221, 222. The first and second extensions 221, 222 of the second side 217 include connection elements 223, and may extend over or underneath the strap assembly 272, 274 supported by the unloading device 270.
Referring to
The support may be constructed of a material that is substantially rigid or becomes sufficiently rigid to place and maintain an ankle in a desired eversion or inversion configuration according adjustment by the tensioning device. The support may be sufficiently compressible to enable comfort to the user's ankle as the support is adjusted. The shape or geometry of the support may be adapted for contouring to a user's ankle such in the illustrated example whereby the width of the support tapers from the foot plate to the upper portion.
The embodiments of the support described above in accordance with the present disclosure reduce pain, speed healing processes, and impart improved stability and mobility in numerous indications. In an orthopedic device, for example, the support permits more precise adjustment and enables efficient coordination between a medical professional and the wearer on the degree the orthopedic device should be configured. Patient comfort is also enhanced and donning and doffing of the orthopedic device is eased with the novel features described.
It is to be understood that not necessarily all such objects or advantages may be achieved under any embodiment of the disclosure. Those skilled in the art will recognize that the support, either by itself or combined with another article such as an orthopedic device, may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught without achieving other objects or advantages as taught or suggested.
The skilled artisan will recognize the interchangeability of various features from different embodiments. Besides the variations described, other known equivalents for each feature can be mixed and matched by one of ordinary skill in this art to construct a support or an orthopedic device under principles of the present disclosure.
Although the support has been disclosed in certain preferred embodiments and examples, it therefore will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the support and obvious modifications and equivalents thereof. It is intended that the present disclosure should not be limited by the particular disclosed embodiments described above.
Number | Name | Date | Kind |
---|---|---|---|
59332 | White | Oct 1866 | A |
80834 | Prussia | Aug 1868 | A |
117530 | Foote | Aug 1871 | A |
228946 | Schulz | Jun 1880 | A |
230759 | Drummond | Aug 1880 | A |
746563 | McMahon | Dec 1903 | A |
819993 | Haws et al. | May 1906 | A |
908704 | Sprinkle | Jan 1909 | A |
1060422 | Bowdish | Apr 1913 | A |
1062511 | Short | May 1913 | A |
1083775 | Thomas | Jan 1914 | A |
1090438 | Worth et al. | Mar 1914 | A |
1170472 | Barber | Feb 1916 | A |
1288859 | Feller et al. | Dec 1918 | A |
1390991 | Fotchuk | Sep 1921 | A |
1393188 | Whiteman | Oct 1921 | A |
1412486 | Paine | Apr 1922 | A |
1416203 | Hobson | May 1922 | A |
1429657 | Trawinski | Sep 1922 | A |
1466673 | Solomon et al. | Sep 1923 | A |
1469661 | Migita | Oct 1923 | A |
1481903 | Hart | Jan 1924 | A |
1502919 | Seib | Jul 1924 | A |
1530713 | Clark | Mar 1925 | A |
1862047 | Boulet et al. | Jun 1932 | A |
1995243 | Clarke | Mar 1935 | A |
2070093 | Roe | Feb 1937 | A |
2088851 | Gantenbein | Aug 1937 | A |
2109751 | Matthias et al. | Mar 1938 | A |
2124310 | Murr, Jr. | Jul 1938 | A |
2316102 | Preston | Apr 1943 | A |
2539026 | Mangold | Jan 1951 | A |
2611940 | Cairns | Sep 1952 | A |
2673381 | Dueker | Mar 1954 | A |
2779110 | Howell | Jan 1957 | A |
2907086 | Ord | Oct 1959 | A |
2991523 | Del Conte | Jul 1961 | A |
3035319 | Wolff | May 1962 | A |
3112545 | Williams | Dec 1963 | A |
3163900 | Martin | Jan 1965 | A |
3169325 | Fesl | Feb 1965 | A |
3193950 | Liou | Jul 1965 | A |
3197155 | Chow | Jul 1965 | A |
3221384 | Aufenacker | Dec 1965 | A |
3276090 | Nigon | Oct 1966 | A |
3401437 | Christophersen | Sep 1968 | A |
3430303 | Perrin et al. | Mar 1969 | A |
3491465 | Martin | Jan 1970 | A |
3545106 | Martin | Dec 1970 | A |
3618232 | Shnuriwsky | Nov 1971 | A |
3668791 | Salzman et al. | Jun 1972 | A |
3678539 | Graup | Jul 1972 | A |
3703775 | Gatti | Nov 1972 | A |
3729779 | Porth | May 1973 | A |
3738027 | Schoch | Jun 1973 | A |
3793749 | Gertsch et al. | Feb 1974 | A |
3808644 | Schoch | May 1974 | A |
3889664 | Heuser et al. | Jun 1975 | A |
3926182 | Stabholz | Dec 1975 | A |
3934346 | Sasaki et al. | Jan 1976 | A |
3975838 | Martin | Aug 1976 | A |
4130949 | Seidel | Dec 1978 | A |
4142307 | Martin | Mar 1979 | A |
4227322 | Annovi | Oct 1980 | A |
4261081 | Lott | Apr 1981 | A |
4267622 | Burnett-Johnston | May 1981 | A |
4296744 | Palumbo | Oct 1981 | A |
4370978 | Palumbo | Feb 1983 | A |
4408403 | Martin | Oct 1983 | A |
4423720 | Meier et al. | Jan 1984 | A |
4425912 | Harper | Jan 1984 | A |
4433456 | Baggio | Feb 1984 | A |
4445505 | Labour et al. | May 1984 | A |
4463761 | Pols et al. | Aug 1984 | A |
4480395 | Schoch | Nov 1984 | A |
4506661 | Foster | Mar 1985 | A |
4507878 | Semouha | Apr 1985 | A |
4551932 | Schoch | Nov 1985 | A |
4555830 | Petrini et al. | Dec 1985 | A |
4574500 | Aldinio et al. | Mar 1986 | A |
4607628 | Dashefsky | Aug 1986 | A |
4616524 | Bidoia | Oct 1986 | A |
4619057 | Sartor et al. | Oct 1986 | A |
4619657 | Keates et al. | Oct 1986 | A |
4620378 | Sartor | Nov 1986 | A |
4631839 | Bonetti et al. | Dec 1986 | A |
4631840 | Gamm | Dec 1986 | A |
4633599 | Morell et al. | Jan 1987 | A |
4654985 | Chalmers | Apr 1987 | A |
4660300 | Morell et al. | Apr 1987 | A |
4660302 | Arieh et al. | Apr 1987 | A |
4680878 | Pozzobon et al. | Jul 1987 | A |
4719670 | Kurt | Jan 1988 | A |
4719709 | Vaccari | Jan 1988 | A |
4719710 | Pozzobon | Jan 1988 | A |
4722477 | Floyd | Feb 1988 | A |
4741115 | Pozzobon | May 1988 | A |
4748726 | Schoch | Jun 1988 | A |
4760653 | Baggio | Aug 1988 | A |
4780969 | White, Jr. | Nov 1988 | A |
4787124 | Pozzobon et al. | Nov 1988 | A |
4790081 | Benoit et al. | Dec 1988 | A |
4796829 | Pozzobon et al. | Jan 1989 | A |
4799297 | Baggio et al. | Jan 1989 | A |
4802291 | Sartor | Feb 1989 | A |
4811503 | Iwama | Mar 1989 | A |
4826098 | Pozzobon et al. | May 1989 | A |
4841649 | Baggio et al. | Jun 1989 | A |
4856207 | Datson | Aug 1989 | A |
4870723 | Pozzobon et al. | Oct 1989 | A |
4870761 | Tracy | Oct 1989 | A |
4884760 | Baggio et al. | Dec 1989 | A |
4924605 | Spademan | May 1990 | A |
4937953 | Walkhoff | Jul 1990 | A |
4961544 | Bidoia | Oct 1990 | A |
5001817 | De Bortoli et al. | Mar 1991 | A |
5002045 | Spademan | Mar 1991 | A |
5016327 | Klausner | May 1991 | A |
5024216 | Shiono | Jun 1991 | A |
5042177 | Schoch | Aug 1991 | A |
5062225 | Gorza | Nov 1991 | A |
5065480 | De Bortoli | Nov 1991 | A |
5065481 | Walkhoff | Nov 1991 | A |
5092321 | Spademan | Mar 1992 | A |
5117567 | Berger | Jun 1992 | A |
5152038 | Schoch | Oct 1992 | A |
5157813 | Carroll | Oct 1992 | A |
5158428 | Gessner et al. | Oct 1992 | A |
5177882 | Berger | Jan 1993 | A |
5181331 | Berger | Jan 1993 | A |
5183036 | Spademan | Feb 1993 | A |
5184378 | Batra | Feb 1993 | A |
D333552 | Berger et al. | Mar 1993 | S |
5249377 | Walkhoff | Oct 1993 | A |
5259094 | Zepeda | Nov 1993 | A |
5277697 | France et al. | Jan 1994 | A |
5315741 | Dubberke | May 1994 | A |
5319868 | Hallenbeck | Jun 1994 | A |
5319869 | McDonald et al. | Jun 1994 | A |
5325613 | Sussmann | Jul 1994 | A |
5327662 | Hallenbeck | Jul 1994 | A |
5335401 | Hanson | Aug 1994 | A |
5341583 | Hallenbeck | Aug 1994 | A |
5345697 | Quellais | Sep 1994 | A |
5355596 | Sussmann | Oct 1994 | A |
5357654 | Hsing-Chi | Oct 1994 | A |
5365947 | Bonutti | Nov 1994 | A |
5371957 | Gaudio | Dec 1994 | A |
5381609 | Hieblinger | Jan 1995 | A |
5392535 | Van Noy et al. | Feb 1995 | A |
5411037 | Hess et al. | May 1995 | A |
5417646 | Gauvry | May 1995 | A |
5425161 | Schoch | Jun 1995 | A |
5425185 | Gansler | Jun 1995 | A |
5430960 | Richardson | Jul 1995 | A |
5433648 | Frydman | Jul 1995 | A |
5437619 | Malewicz et al. | Aug 1995 | A |
5463822 | Miller | Nov 1995 | A |
5477593 | Leick | Dec 1995 | A |
5502902 | Sussmann | Apr 1996 | A |
5511325 | Hieblinger | Apr 1996 | A |
5535531 | Karabed et al. | Jul 1996 | A |
5537763 | Donnadieu et al. | Jul 1996 | A |
5554105 | Taylor | Sep 1996 | A |
5557864 | Marks | Sep 1996 | A |
5566474 | Leick et al. | Oct 1996 | A |
5596820 | Edauw et al. | Jan 1997 | A |
5599000 | Bennett | Feb 1997 | A |
5599288 | Shirley et al. | Feb 1997 | A |
5600874 | Jungkind | Feb 1997 | A |
5606778 | Jungkind | Mar 1997 | A |
5613943 | Palumbo | Mar 1997 | A |
D379113 | McDonald et al. | May 1997 | S |
5638588 | Jungkind | Jun 1997 | A |
5640785 | Egelja | Jun 1997 | A |
5647104 | James | Jul 1997 | A |
5651198 | Sussmann | Jul 1997 | A |
5669116 | Jungkind | Sep 1997 | A |
5685830 | Bonutti | Nov 1997 | A |
5692319 | Parker et al. | Dec 1997 | A |
5718021 | Tatum | Feb 1998 | A |
5718065 | Locker | Feb 1998 | A |
5720084 | Chen | Feb 1998 | A |
5732483 | Cagliari | Mar 1998 | A |
5736696 | Del Rosso | Apr 1998 | A |
5737854 | Sussmann | Apr 1998 | A |
5755044 | Veylupek | May 1998 | A |
5756298 | Burczak et al. | May 1998 | A |
5759167 | Shields, Jr. et al. | Jun 1998 | A |
5761777 | Leick | Jun 1998 | A |
5772146 | Kawamoto et al. | Jun 1998 | A |
5784809 | McDonald | Jul 1998 | A |
5791068 | Bernier et al. | Aug 1998 | A |
5797864 | Taylor | Aug 1998 | A |
5807298 | Palumbo | Sep 1998 | A |
5819378 | Doyle | Oct 1998 | A |
5845371 | Chen | Dec 1998 | A |
5848979 | Bonutti et al. | Dec 1998 | A |
5865776 | Springs | Feb 1999 | A |
5891061 | Kaiser | Apr 1999 | A |
5909946 | Okajima | Jun 1999 | A |
5934599 | Hammerslag | Aug 1999 | A |
5937542 | Bourdeau | Aug 1999 | A |
5956823 | Borel | Sep 1999 | A |
6052921 | Oreck | Apr 2000 | A |
6070886 | Cornelius et al. | Jun 2000 | A |
6083857 | Bottger et al. | Jul 2000 | A |
6088936 | Bahl | Jul 2000 | A |
6102412 | Staffaroni | Aug 2000 | A |
D430724 | Matis et al. | Sep 2000 | S |
6119372 | Okajima | Sep 2000 | A |
6148489 | Dickie et al. | Nov 2000 | A |
6159248 | Gramnas | Dec 2000 | A |
6202953 | Hammerslag | Mar 2001 | B1 |
6206932 | Johnson | Mar 2001 | B1 |
6240657 | Weber et al. | Jun 2001 | B1 |
6256798 | Egolf et al. | Jul 2001 | B1 |
6267390 | Maravetz et al. | Jul 2001 | B1 |
6286233 | Gaither | Sep 2001 | B1 |
6287269 | Osti et al. | Sep 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6311633 | Keire | Nov 2001 | B1 |
6393736 | Greer, Jr. et al. | May 2002 | B1 |
6401364 | Burt | Jun 2002 | B1 |
6413232 | Townsend et al. | Jul 2002 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6436066 | Lockhart | Aug 2002 | B1 |
6467195 | Pierre et al. | Oct 2002 | B2 |
6477793 | Pruitt et al. | Nov 2002 | B1 |
6502577 | Bonutti | Jan 2003 | B1 |
6503213 | Bonutti | Jan 2003 | B2 |
6543159 | Carpenter et al. | Apr 2003 | B1 |
6551264 | Cawley et al. | Apr 2003 | B1 |
6568103 | Durocher | May 2003 | B2 |
6606804 | Kaneko et al. | Aug 2003 | B2 |
6689080 | Castillo | Feb 2004 | B2 |
6694643 | Hsu | Feb 2004 | B1 |
6708376 | Landry | Mar 2004 | B1 |
6711787 | Jungkind et al. | Mar 2004 | B2 |
6735829 | Hsu | May 2004 | B2 |
6757991 | Sussmann | Jul 2004 | B2 |
6769155 | Hess et al. | Aug 2004 | B2 |
6770047 | Bonutti | Aug 2004 | B2 |
6775928 | Grande et al. | Aug 2004 | B2 |
6792702 | Borsoi et al. | Sep 2004 | B2 |
6802439 | Azam et al. | Oct 2004 | B2 |
6823610 | Ahsley | Nov 2004 | B1 |
6827653 | Be | Dec 2004 | B2 |
6877256 | Martin et al. | Apr 2005 | B2 |
6921377 | Bonutti | Jul 2005 | B2 |
6922917 | Kerns et al. | Aug 2005 | B2 |
6938913 | Elkington | Sep 2005 | B2 |
6945543 | De Bortoli et al. | Sep 2005 | B2 |
6976972 | Bradshaw | Dec 2005 | B2 |
6993859 | Martin et al. | Feb 2006 | B2 |
7004919 | Gaylord et al. | Feb 2006 | B2 |
7011641 | Detoro et al. | Mar 2006 | B1 |
D519637 | Nordt et al. | Apr 2006 | S |
D520141 | Nordt et al. | May 2006 | S |
D521226 | Douglas et al. | May 2006 | S |
D521644 | Nordt et al. | May 2006 | S |
7060045 | Mason et al. | Jun 2006 | B2 |
7076843 | Sakabayashi | Jul 2006 | B2 |
7082652 | St-Louis et al. | Aug 2006 | B2 |
7082701 | Dalgaard et al. | Aug 2006 | B2 |
7083586 | Simmons et al. | Aug 2006 | B2 |
7096559 | Johnson | Aug 2006 | B2 |
7128724 | Marsh | Oct 2006 | B2 |
7134224 | Elkington et al. | Nov 2006 | B2 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7207126 | Gantier | Apr 2007 | B2 |
7235059 | Mason et al. | Jun 2007 | B2 |
7266911 | Holzer et al. | Sep 2007 | B2 |
7281341 | Reagan et al. | Oct 2007 | B2 |
7293373 | Reagan et al. | Nov 2007 | B2 |
7306573 | Bonutti | Dec 2007 | B2 |
7331126 | Johnson | Feb 2008 | B2 |
7343701 | Pare et al. | Mar 2008 | B2 |
7360282 | Borsoi | Apr 2008 | B2 |
7367522 | Chen | May 2008 | B2 |
7386947 | Martin et al. | Jun 2008 | B2 |
7392602 | Reagan et al. | Jul 2008 | B2 |
7401423 | Reagan et al. | Jul 2008 | B2 |
7402147 | Allen | Jul 2008 | B1 |
7404804 | Bonutti | Jul 2008 | B2 |
7416565 | Al-Turaikl | Aug 2008 | B1 |
7438698 | Daiju | Oct 2008 | B2 |
7490458 | Ford | Feb 2009 | B2 |
7513018 | Koenig et al. | Apr 2009 | B2 |
7568298 | Kerns | Aug 2009 | B2 |
7584528 | Hu | Sep 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7597675 | Ingimundarson et al. | Oct 2009 | B2 |
7600660 | Kasper et al. | Oct 2009 | B2 |
7617573 | Chen | Nov 2009 | B2 |
7618386 | Nordt, III et al. | Nov 2009 | B2 |
7618389 | Nordt, III et al. | Nov 2009 | B2 |
7624517 | Smith | Dec 2009 | B2 |
7648404 | Martin | Jan 2010 | B1 |
7650705 | Donnadieu et al. | Jan 2010 | B2 |
7662122 | Sterling | Feb 2010 | B2 |
7670306 | Nordt, III et al. | Mar 2010 | B2 |
7694354 | Philpott et al. | Apr 2010 | B2 |
7699797 | Nordt, III et al. | Apr 2010 | B2 |
7704219 | Nordt, III et al. | Apr 2010 | B2 |
7713225 | Ingimundarson et al. | May 2010 | B2 |
7749181 | Simmons et al. | Jul 2010 | B2 |
7757412 | Farys | Jul 2010 | B2 |
7774956 | Dua et al. | Aug 2010 | B2 |
7794418 | Ingimundarson et al. | Sep 2010 | B2 |
7806842 | Stevenson et al. | Oct 2010 | B2 |
7819830 | Sindel et al. | Oct 2010 | B2 |
7841106 | Farys | Nov 2010 | B2 |
7857776 | Frisbie | Dec 2010 | B2 |
7862528 | Scott | Jan 2011 | B2 |
7862621 | Kloos et al. | Jan 2011 | B2 |
7867183 | Kazmierczak et al. | Jan 2011 | B2 |
7871334 | Young et al. | Jan 2011 | B2 |
7877845 | Signori | Feb 2011 | B2 |
7878998 | Nordt, III et al. | Feb 2011 | B2 |
7887500 | Nordt, III et al. | Feb 2011 | B2 |
7896827 | Ingimundarson et al. | Mar 2011 | B2 |
7908769 | Pellegrini | Mar 2011 | B2 |
7922680 | Nordt, III et al. | Apr 2011 | B2 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
7959590 | Scott | Jun 2011 | B2 |
7963049 | Messmer | Jun 2011 | B2 |
7992261 | Hammerslag et al. | Aug 2011 | B2 |
7993296 | Nordt, III et al. | Aug 2011 | B2 |
8002724 | Hu et al. | Aug 2011 | B2 |
D646790 | Castillo et al. | Oct 2011 | S |
8038635 | Dellanno | Oct 2011 | B2 |
8038637 | Bonutti | Oct 2011 | B2 |
8056150 | Stokes et al. | Nov 2011 | B2 |
8074379 | Robinson, Jr. et al. | Dec 2011 | B2 |
8091182 | Hammerslag et al. | Jan 2012 | B2 |
8109015 | Signori | Feb 2012 | B2 |
D663850 | Joseph | Jul 2012 | S |
D663851 | Joseph | Jul 2012 | S |
8215033 | Carboy et al. | Jul 2012 | B2 |
8231074 | Hu et al. | Jul 2012 | B2 |
D665088 | Joseph | Aug 2012 | S |
8235321 | Chen | Aug 2012 | B2 |
8245371 | Chen | Aug 2012 | B2 |
8266827 | Dojan et al. | Sep 2012 | B2 |
8277401 | Hammerslag et al. | Oct 2012 | B2 |
8302329 | Hurd et al. | Nov 2012 | B2 |
8303527 | Joseph | Nov 2012 | B2 |
8308098 | Chen | Nov 2012 | B2 |
8353087 | Chen | Jan 2013 | B2 |
8434200 | Chen | May 2013 | B2 |
8713820 | Kerns et al. | May 2014 | B2 |
9125730 | Ingimundarson et al. | Sep 2015 | B2 |
20020050076 | Borsoi et al. | May 2002 | A1 |
20020062579 | Caeran | May 2002 | A1 |
20020095750 | Hammerslag | Jul 2002 | A1 |
20020129518 | Borsoi et al. | Sep 2002 | A1 |
20020133108 | Jagodzinski | Sep 2002 | A1 |
20020148142 | Oorei et al. | Oct 2002 | A1 |
20020166260 | Borsoi | Nov 2002 | A1 |
20020178548 | Freed | Dec 2002 | A1 |
20030079376 | Oorei et al. | May 2003 | A1 |
20030093882 | Gorza et al. | May 2003 | A1 |
20030177662 | Elkington et al. | Sep 2003 | A1 |
20030204156 | Nelson et al. | Oct 2003 | A1 |
20030204938 | Hammerslag | Nov 2003 | A1 |
20040054307 | Mason et al. | Mar 2004 | A1 |
20040176715 | Nelson | Sep 2004 | A1 |
20050004499 | Bauerfeind et al. | Jan 2005 | A1 |
20050054962 | Bradshaw | Mar 2005 | A1 |
20050060912 | Holzer et al. | Mar 2005 | A1 |
20050081339 | Sakabayash | Apr 2005 | A1 |
20050081403 | Mathieu | Apr 2005 | A1 |
20050087115 | Martin | Apr 2005 | A1 |
20050098673 | Huang | May 2005 | A1 |
20050102861 | Martin | May 2005 | A1 |
20050126043 | Reagan et al. | Jun 2005 | A1 |
20050160627 | Dalgaard et al. | Jul 2005 | A1 |
20050198866 | Wiper et al. | Sep 2005 | A1 |
20050247813 | Kovacevich et al. | Nov 2005 | A1 |
20050273025 | Houser | Dec 2005 | A1 |
20050284003 | Dalgaard et al. | Dec 2005 | A1 |
20060015980 | Nordt, III et al. | Jan 2006 | A1 |
20060015988 | Philpott et al. | Jan 2006 | A1 |
20060020237 | Nordt, III et al. | Jan 2006 | A1 |
20060026732 | Nordt, III et al. | Feb 2006 | A1 |
20060026733 | Nordt, III et al. | Feb 2006 | A1 |
20060026736 | Nordt, III et al. | Feb 2006 | A1 |
20060030802 | Nordt, III et al. | Feb 2006 | A1 |
20060030803 | Nordt, III et al. | Feb 2006 | A1 |
20060030804 | Nordt, III et al. | Feb 2006 | A1 |
20060030805 | Nordt, III et al. | Feb 2006 | A1 |
20060030806 | Nordt, III et al. | Feb 2006 | A1 |
20060070164 | Nordt, III et al. | Apr 2006 | A1 |
20060070165 | Nordt, III et al. | Apr 2006 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060174516 | Peruzzo | Aug 2006 | A1 |
20060179685 | Borel et al. | Aug 2006 | A1 |
20060185193 | Pellegrini | Aug 2006 | A1 |
20060185357 | Kovacevich et al. | Aug 2006 | A1 |
20060202077 | Kovacevich et al. | Sep 2006 | A1 |
20060202078 | Kovacevich et al. | Sep 2006 | A1 |
20070039085 | Kovacevich et al. | Feb 2007 | A1 |
20070063459 | Kavarsky | Mar 2007 | A1 |
20070068040 | Farys | Mar 2007 | A1 |
20070084956 | Chen | Apr 2007 | A1 |
20070113524 | Lander | May 2007 | A1 |
20070128959 | Cooke | Jun 2007 | A1 |
20070169378 | Sodeberg et al. | Jul 2007 | A1 |
20080016717 | Ruban | Jan 2008 | A1 |
20080034459 | Nordt, III et al. | Feb 2008 | A1 |
20080039757 | Nordt, III et al. | Feb 2008 | A1 |
20080039764 | Nordt, III et al. | Feb 2008 | A1 |
20080039765 | Nordt, III et al. | Feb 2008 | A1 |
20080039767 | Nordt, III et al. | Feb 2008 | A1 |
20080060167 | Hammerslag et al. | Mar 2008 | A1 |
20080060168 | Hammerslag et al. | Mar 2008 | A1 |
20080066272 | Hammerslag et al. | Mar 2008 | A1 |
20080066345 | Hammerslag et al. | Mar 2008 | A1 |
20080066346 | Hammerslag et al. | Mar 2008 | A1 |
20080083135 | Hammerslag et al. | Apr 2008 | A1 |
20080091132 | Bonutti | Apr 2008 | A1 |
20080139985 | Gilmour | Jun 2008 | A1 |
20080172848 | Chen | Jul 2008 | A1 |
20080319362 | Joseph | Dec 2008 | A1 |
20090030353 | Bonutti et al. | Jan 2009 | A1 |
20090054819 | Einarsson | Feb 2009 | A1 |
20090071041 | Hooper | Mar 2009 | A1 |
20090090026 | Mosher | Apr 2009 | A1 |
20090090029 | Kishino | Apr 2009 | A1 |
20090131844 | Dean et al. | May 2009 | A1 |
20090172928 | Messmer et al. | Jul 2009 | A1 |
20090184189 | Soderberg et al. | Jul 2009 | A1 |
20090277043 | Graser et al. | Nov 2009 | A1 |
20090287128 | Ingimundarson et al. | Nov 2009 | A1 |
20100064547 | Kaplan et al. | Mar 2010 | A1 |
20100101061 | Ha | Apr 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100154254 | Fletcher | Jun 2010 | A1 |
20100175163 | Litke | Jul 2010 | A1 |
20100251524 | Chen | Oct 2010 | A1 |
20100268139 | Garth | Oct 2010 | A1 |
20100274364 | Pacanowsky et al. | Oct 2010 | A1 |
20100299959 | Hammerslag et al. | Dec 2010 | A1 |
20100319216 | Grenzke et al. | Dec 2010 | A1 |
20110000173 | Lander | Jan 2011 | A1 |
20110046528 | Stevenson et al. | Feb 2011 | A1 |
20110071647 | Mahon | Mar 2011 | A1 |
20110082402 | Oddou et al. | Apr 2011 | A1 |
20110098618 | Fleming | Apr 2011 | A1 |
20110137220 | Vollbrecht et al. | Jun 2011 | A1 |
20110144554 | Weaver, II et al. | Jun 2011 | A1 |
20110167543 | Kovacevich et al. | Jul 2011 | A1 |
20110178448 | Einarsson | Jul 2011 | A1 |
20110184326 | Ingimundarson et al. | Jul 2011 | A1 |
20110191992 | Chen | Aug 2011 | A1 |
20110197362 | Chella et al. | Aug 2011 | A1 |
20110258876 | Baker et al. | Oct 2011 | A1 |
20110266384 | Goodman et al. | Nov 2011 | A1 |
20120000091 | Cotterman et al. | Jan 2012 | A1 |
20120004587 | Nickel et al. | Jan 2012 | A1 |
20120005995 | Emery | Jan 2012 | A1 |
20120010547 | Hinds | Jan 2012 | A1 |
20120023717 | Chen | Feb 2012 | A1 |
20120029404 | Weaver, II et al. | Feb 2012 | A1 |
20120101417 | Joseph | Apr 2012 | A1 |
20120102783 | Swigart et al. | May 2012 | A1 |
20120157902 | Castillo et al. | Jun 2012 | A1 |
20120204381 | Ingimundarson et al. | Aug 2012 | A1 |
20120228419 | Chen | Sep 2012 | A1 |
20120246974 | Hammerslag et al. | Oct 2012 | A1 |
20130012856 | Hammerslag et al. | Jan 2013 | A1 |
20130014359 | Chen | Jan 2013 | A1 |
20130025100 | Ha | Jan 2013 | A1 |
20130091667 | Zerfas et al. | Apr 2013 | A1 |
20130092780 | Soderberg et al. | Apr 2013 | A1 |
20130172797 | Merkley et al. | Jul 2013 | A1 |
20130184628 | Ingimundarson et al. | Jul 2013 | A1 |
20130245522 | Modglin | Sep 2013 | A1 |
20130317788 | Summit et al. | Nov 2013 | A1 |
20130340283 | Bell et al. | Dec 2013 | A1 |
20140123440 | Capra et al. | May 2014 | A1 |
20140123449 | Soderberg et al. | May 2014 | A1 |
20150150705 | Capra et al. | Jun 2015 | A1 |
20150190262 | Capra et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
127075 | Feb 1932 | AT |
244804 | Jan 1966 | AT |
361 808 | Apr 1981 | AT |
2 112 789 | Aug 1994 | CA |
2 114 387 | Aug 1994 | CA |
41765 | Nov 1908 | CH |
111341 | Nov 1925 | CH |
199766 | Sep 1938 | CH |
204834 | May 1939 | CH |
471553 | Apr 1969 | CH |
523669 | Jun 1972 | CH |
537164 | May 1973 | CH |
562015 | May 1975 | CH |
577 282 | Jul 1976 | CH |
612 076 | Jul 1979 | CH |
624 001 | Jul 1981 | CH |
555 211 | Jul 1932 | DE |
641 976 | Feb 1937 | DE |
1661668 | Aug 1953 | DE |
7043154 | Mar 1971 | DE |
1 785 220 | May 1971 | DE |
2 062 795 | Jun 1972 | DE |
2 341 658 | Mar 1974 | DE |
24 14 439 | Oct 1975 | DE |
29 00 077 | Jul 1980 | DE |
29 14 280 | Oct 1980 | DE |
31 01 952 | Sep 1982 | DE |
36 26 837 | Feb 1988 | DE |
38 13 470 | Nov 1989 | DE |
38 22 113 | Jan 1990 | DE |
43 02 401 | Aug 1994 | DE |
94 13 147 | Oct 1994 | DE |
93 15 776.2 | Feb 1995 | DE |
295 03 552.8 | Apr 1995 | DE |
196 24 553 | Jan 1998 | DE |
199 45 045 | Mar 2001 | DE |
201 16 755 | Jan 2002 | DE |
100 57 286 | May 2002 | DE |
0 123 050 | Oct 1984 | EP |
0 081 042 | Dec 1984 | EP |
0 056 953 | Nov 1985 | EP |
0 201 051 | Nov 1986 | EP |
0 099 504 | Jan 1987 | EP |
0 155 596 | Jan 1988 | EP |
0 393 380 | Sep 1992 | EP |
0 255 869 | Jan 1993 | EP |
0 474 708 | Sep 1993 | EP |
0 589 233 | Mar 1994 | EP |
0 614 624 | Sep 1994 | EP |
0 614 625 | Sep 1994 | EP |
0 589 232 | Nov 1995 | EP |
0 679 346 | Nov 1995 | EP |
0 717 942 | Jun 1996 | EP |
0 734 662 | Oct 1996 | EP |
0 693 260 | Sep 1998 | EP |
0 651 954 | Feb 1999 | EP |
0 858 621 | Mar 1999 | EP |
0 858 619 | Apr 1999 | EP |
0 937 467 | Aug 1999 | EP |
0 941 722 | Sep 1999 | EP |
1 219 195 | Jul 2002 | EP |
1 236 412 | Sep 2002 | EP |
0 848 917 | Mar 2004 | EP |
1 163 860 | Jul 2005 | EP |
0 923 965 | Nov 2005 | EP |
2 359 708 | Aug 2011 | EP |
1 349 832 | Jan 1964 | FR |
1 374 110 | Oct 1964 | FR |
1 404 799 | Jul 1965 | FR |
2 019 991 | Jul 1970 | FR |
2 108 428 | May 1972 | FR |
2 108 429 | May 1972 | FR |
2 173 451 | Oct 1973 | FR |
2 175 684 | Oct 1973 | FR |
2 177 294 | Nov 1973 | FR |
2 399 811 | Mar 1979 | FR |
2 565 795 | Dec 1985 | FR |
2 598 292 | Nov 1987 | FR |
2 726 440 | May 1996 | FR |
2 770 379 | May 1999 | FR |
2 814 919 | Apr 2002 | FR |
216 400 | May 1924 | GB |
2 449 722 | May 2010 | GB |
1220811 | Jun 1990 | IT |
PD20030197 | Oct 2003 | IT |
S51-2776 | Jan 1976 | JP |
S51-121375 | Oct 1976 | JP |
S51-131978 | Oct 1976 | JP |
S53-124987 | Oct 1978 | JP |
S54-108125 | Aug 1979 | JP |
S62-57346 | Apr 1987 | JP |
S62-84906 | May 1987 | JP |
S63-80736 | May 1988 | JP |
7-208 | Jun 1995 | JP |
3030988 | Nov 1996 | JP |
H08-308608 | Nov 1996 | JP |
3031760 | Dec 1996 | JP |
H10-199366 | Jul 1998 | JP |
2001-197905 | Jul 2001 | JP |
2004-016732 | Jan 2004 | JP |
2004-041666 | Feb 2004 | JP |
4928618 | May 2012 | JP |
20-0367882 | Nov 2004 | KR |
20-0400568 | Nov 2005 | KR |
10-0598627 | Jul 2006 | KR |
10-0953398 | Apr 2010 | KR |
10-1028468 | Apr 2011 | KR |
9427456 | Dec 1994 | WO |
9503720 | Feb 1995 | WO |
9511602 | May 1995 | WO |
9703581 | Feb 1997 | WO |
9837782 | Sep 1998 | WO |
9909850 | Mar 1999 | WO |
9915043 | Apr 1999 | WO |
9943231 | Sep 1999 | WO |
0053045 | Sep 2000 | WO |
0076337 | Dec 2000 | WO |
0108525 | Feb 2001 | WO |
02051511 | Jul 2002 | WO |
2004093569 | Nov 2004 | WO |
2004110197 | Dec 2004 | WO |
2007016983 | Feb 2007 | WO |
2008015214 | Feb 2008 | WO |
2013138214 | Sep 2013 | WO |
2015035885 | Mar 2015 | WO |
Entry |
---|
“Rollerblade TFS Skate Laces AERO”, http://www.inlinewarehouse.com/viewlarge.html?PCODE=TFS, retrieved on Jan. 7, 2010, 1 page. |
“Rollerblade TFS Skate Laces MICRO”, http://www.inlinewarehouse.com/viewlarge.html?PCODE=MILC, retrieved on Jan. 7, 2010, 1 page. |
International Search Report from International Application No. PCT/US2013/030711, dated Jun. 12, 2013. |
International Search Report from PCT Application No. PCT/US2015/053401, dated Oct. 1, 2015. |
Number | Date | Country | |
---|---|---|---|
20160095734 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62058306 | Oct 2014 | US |