Additive manufacturing is a type of 3D printing where products are fabricated with custom geometries by means of sequentially adding layers of material. One form of additive manufacturing is powder bed additive manufacturing (“PBAM”). During this process, a computer-controlled laser is directed into a layer of powder at pre-defined and specific points, forming a solid material at those points. A new layer of powder is then swept over the previous layer and the process is repeated until completion. Once the process is finished, the surrounding powder is removed, usually by vacuum or pressurized air, leaving the underlying products. The finished products are then individually and manually removed by an operator at which point they can be further processed, if necessary.
PBAM provides several advantages over other types of 3D printing involving the use of a build platen, such as larger batch quantities, reduced build time, and reduced scrap. However, when the batch quantity becomes sufficiently large, individual handling of parts may become too difficult and unwieldy, especially where the batch involves a wide variety of different parts and custom geometries. For instance, the lack of product uniformity in the batch may increase the complexity and time taken to process the batch. Additionally, the risk of damage to the individual parts is increased from the operator de-powdering and handling the product for post-processing. All of this increases the inefficiencies in the build process.
Moreover, during PBAM, the surrounding powder may provide structural support to the products as they are being manufactured. However, once the manufacturing is completed, and the excess powder is removed, the finished products may lack sufficient support. This can result in destabilization of the build and/or damage to the individual products. While external supports may be attached to the build plate during manufacturing, this can drastically increase the cost and complications of manufacturing where large batches of products are being fabricated, and may limit the diversity and complexity of products capable of being manufactured.
Another form of additive manufacturing is binder jetting additive manufacturing (“BJAM”). During this process, a binding agent, such as glue, is deposited in a layer of powder, binding the powder at pre-determined and specific points, forming a solid material at those points. Similar to PBAM, above, a new layer of powder is then swept over the previous layer and the process is repeated until completion and de-powdered. At this point in the process, BJAM and its completed product have similar advantages as that of PBAM over other forms of additive manufacturing, including larger batch quantities, reduced build time, and reduced scrap.
However, the same inefficiencies of PBAM are, when product batches become sufficiently large and complex, greatly exacerbated in BJAM. The finished product of BJAM is usually in a brittle state, having high porosity and weak mechanical properties, and requiring a post-processing treatment, such as sintering or infiltration. These post-processing treatments require the finished product to be transported and handled by an operator or machine while in that weakened, brittle state.
Moreover, post-processing treatments usually require the binding agent to be burned out (leaving a porous product) before allowing the remaining material to bond together, as in sintering, or infiltrating the now porous product with an alternative material, such as bronze. During that state of temporarily increased porosity, the product is at an even greater risk of damage, and may require a specific orientation or suspension to avoid damage during post-process treatment. As such, structural support for the finished products is an even more critical consideration in the BJAM process.
Therefore, there is a need for a support frame that reduces the difficulty and time required in processing large batches of products.
Several different support frames, as well as methods of utilizing same, are disclosed herein. The support frames permit a multitude of products, such as orthopedic implants, to be formed and/or coated at a single given time through a binder jetting or powder bed fusion process.
According to one embodiment, the support frame has a runner supporting an object. The runner provides structural support to the object and has a sufficiently small contact with the object to allow the object to be broken off the runners while leaving the runners attached to the support frame.
In another embodiment, the support frame has a plurality of spring runners. The spring runners are designed to have a shape capable of compensating for deformation during post-process treatment, such as sintering or heat treatment.
In another embodiment, a plurality of support frames are connected to form a support batch having a fixture point. The fixture point is located in a location permitting simplified handling of the support batch by an operator.
In another embodiment, the support frame has a plurality of fixture points.
In another embodiment, a plurality of support frames are connected in 2D space to form a support batch.
In a further embodiment, a system for supporting an object created by additive manufacturing comprising the object, and a frame comprising at least one strut having a length and forming a shape at least partially surrounding the object, a runner having first and second ends, the first end integrally connected to a strut and the second end removably attached to the object. Further, the at least one strut may take the form of any one, or any combination, of straight, curved, or angled struts. Further, the runner may further comprise a first circumference and a second circumference, the first and second circumferences being different. Further, the second circumference may be smaller than the first circumference. Further, the at least one runner may take the form of any one, or any combination, of a curved, coiled, flat, clocked, or angled runner. Further, the at least one runner may be deformable upon being heated. Further, the at least one runner may provide the same amount of support before and after being deformed. Further, the at least one fixture may be located on a portion of the at least one frame and configured to interact with an operator. Further, the frame may further comprise a negative having a shape opposite the object. Further, the frame is a material may comprise any one or a combination of stainless steel, titanium, nickel, inconel, cobalt chromium, or aluminum.
In a yet further embodiment, a method comprising binding a bed of powder to create an object, and a frame comprising forming a shape at least partially surrounding the object, at least one strut, and a runner having first and second ends, the first end integrally connected to the at least one strut and the second end removably attached to the object, and detaching the object from the frame. Further, the method may further comprise heating the at least one object. Further, the heating step may include a temperature between 100° C. and 1400° C. Further, the method may further comprise transporting the frame to a location. Further, the method may further comprise combining the object with a material. Further, the method may further comprise attaching a negative having the opposite shape of the object to the frame.
In a yet further embodiment, a method of forming a structure comprising the steps of placing a layer of powder on a substrate, partially fusing the powder at specific location to create a fused structure and an unfused structure, repeating the placing and fusing steps to create the structure and a frame at least partially surrounding and attached to the structure, and removing the structure from the frame. Further, the method may further comprise heating the fused structure. Further, the heating step includes a temperature between 100° C. and 1400° C. Further, the method may further comprise moving the structure and frame by grabbing a portion of the frame. Further, the method may further comprise infusing the structure with a material. Further, the method may further comprise attaching a negative having the opposite shape of the object to the frame.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings.
Struts 130a-1 are configured to form a geometric shape capable of maintaining its structural integrity while supporting object 111 during transport and post-processing treatment. Although
Runners 113a-d are integrally connected with the object 111 at object contact points 115a-d and with struts 130a-d at strut contact points 114a-d. Strut contact points 114a-d are chosen to provide maximal support and even distribution of force along the support frame 110 when holding object 111 while maintaining the structural integrity of support frame 110. In other embodiments, strut contact points 114 may be placed at any point along the length of struts 130. Object contact points 115a-d are chosen to provide sufficient support for object 111 during suspension while the tips of runners 113a-d may be fabricated such that object contact points 115a-d can be broken with minimal force and decreased risk of damage to object 111. In this manner, an operator may remove object 111 from support frame 110 by applying sufficient torsion, shearing, or pulling force on object contact points 115a-d such that object 111 may be detached from runners 113a-d while runners 113a-d remain connected to struts 130a-d at strut contact points 114a-d. Runners 113a-d can be straight, as seen in runner 113d, or spring-like, as seen in runners 113a-c. Spring runners will be discussed in more detail in
Although
Support frame 110 may be formed, at least in part, in a layer-by-layer fashion using an additive layer manufacturing (ALM), i.e. 3D printing, such as PBAM, which uses a high energy beam, such as a laser beam or an electron beam, to solidify or bind materials together. Such ALM processes preferably may be powder-bed based processes including selective laser sintering (SLS), selective laser melting (SLM), and electron beam melting (EBM), as disclosed in U.S. Pat. Nos. 7,537,664, 8,728,387, 9,135,374, 9,180,010 and 9,456,901, U.S. Prov. Pat. App. Nos. 62/517,456 and 62/520,221, and U.S. patent application Ser. Nos. 15/982,704, 15/277,744, 14/276,483 and 14/969,695, the disclosures of each of which are hereby incorporated by reference herein, or other ALM processes such as BJAM, stereolithography, multi-jet fusion, or powder-fed based processes including fused filament fabrication (FFF), e.g., fused deposition modeling (FDM). Preferably, support frame 110 is formed at the same time, utilizing the same process as object 111.
In another embodiment, illustrated in
In another embodiment, illustrated in
In another embodiment, illustrated in
Fixture point 616 connects support frames 610 and 620 while providing a secure location for an operator to grab. For instance, fixture point 616 may be manufactured in a shape that is capable of carrying the weight of support batch 600 and ergonomically designed to be grasped, such as in the form of a handle or another structure designed to be grasped by a robot or the like. Additionally, fixture point 616 may be manufactured in a location designed to most equally distribute the stress of support batch 600 when being lifted. In this manner, fixture point 616 may allow an operator to transport and handle support batch 600 with increased ease and greater security. For instance, rather than de-powdering a product by handling it directly—thus increasing the risk of damage to the product—de-powdering a product may alternatively be performed by having an operator lift support batch 600 by fixture point 616 and removing the powder using vacuum or pressurized air. In this manner, the risk to damage to the product may be minimized.
In another embodiment, illustrated in
Objects 711, 721, 731, 741, 751 may include both a part of a product and a support for that part. For instance, both a part of a product and a negative of that part, as described below, may be detached from support batch 700 to simplify the post-process treatment and assist in the protection of that part during treatment.
In another embodiment, illustrated in
In another embodiment, the negative does not have any connectors and is instead coated with a sintering inhibitor that has a higher melting point than the material of the negative (e.g. ceramic paint where the negative is a metal, or an alternative material). In this manner, the object would be allowed to sag onto the negative during prost-processing, allowing for the surface of the object to have a smoother finish.
In another embodiment, the negative is separately manufactured and attached to the support frame for each post-processing cycle. The separately attached negative may be made by a reusable material (e.g. solid ceramic, or the like) or a single use material (e.g. printed ceramic, or the like).
In addition to that described above and illustrated in the figures, various other operations will now be described. It should be understood that the following operations do not have to be performed in the exact order described below. Instead, various steps may be handled in a different order or simultaneously. Steps may also be omitted or added unless otherwise stated therein.
In an embodiment of use, support frame 100 in
Support frame 110 is then transported to a different station for further processing. An operator, robot, or the like may grasp onto supports 130a-1 and/or strut connections 135 to transport support frame 110. Once the operator has arrived at a desired location with support frame 110, object 111 may be removed from support frame 110 by applying a torsion, shearing, or pulling force on object contact points 115a-d such that object 111 is detached from runners 113a-d while runners 113a-d remain connected to struts 130a-d at strut contact points 114a-d.
In another method of use of support frame 110, object 111 may require further post-processing treatment after the de-powdering process. In this embodiment, object 111 is not detached from support frame 110 after transportation. Rather, object 111 remains in a preferred orientation within support frame 110 and undergoes post-processing treatment, such as sintering, heat treatment, or machining once the post-processing treatment has been completed, object 111 may be detached from support frame 110, as described above.
In another method of use, support batch 600 in
In the case of the use of a robot, fixture point 616 may be fabricated at a pre-determined and consistent location so that the robot may be programmed to grasp onto fixture point 616 and transport support batch 600 to a location for post-process treatment. After treatment has been finished, the robot transports support batch 600 by grasping onto fixture point 616, to a final processing location. The robot then detaches objects 611 and 621 by applying a pre-calculated amount of force on object contact points 615a-c and 625. The robot may then return to its starting location and repeat the process again. In this manner, the entire post-processing treatment may be completed with minimal or no human operators.
It is to be understood that any of the embodiments described above and illustrated in the figures, may be constructed of various different materials. For instance, it is contemplated to utilize metals, such as titanium, or polymers, such as PEEK. Support frames and support batches may be fabricated from other various materials as well. For instance, using PBAM, the powder bed may be metal powders such as stainless steels, titanium alloy, nickel-based alloys (e.g., inconel), cobalt chromium, aluminum alloy, or the like. The laser used to solidify or bind the materials in PBAM may be an electron beam, a fiber-optic laser beam, a thermal print head, or the like. It is also contemplated to form different portions of the objects and support frames from different materials. For example, it is contemplated to form the latter from softer material that can easily be broken away from the former.
With BJAM, the powder bed may be metal powders such as stainless steel, aluminum alloy, nickel alloys or iron alloys, ceramics such as silica sand or ceramic beads, polymers such as acrylonitrile butadiene styrene, polyamide or polycarbonate, or the like. BJAM binding agents may be, for instance, PM-B-SR-1-04 for binding metals, or any binding agent known to one skilled in the art.
Support frames manufactured in a 3D space, as shown in
Struts, as shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application claims the benefit of, and priority to, U.S. Provisional Patent Application Ser. No. 62/789,152, filed on Jan. 7, 2019, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62789152 | Jan 2019 | US |