1. Technical Field
The present disclosure relates to support mechanisms, and more particularly, to a support mechanism for supporting an electronic device.
2. Description of Related Art
Electronic devices such as tablet PCs and electronic books readers are popular due to their portability and a multiplicity of entertainment functions. When in use, such an electronic device may be handheld or set on a desk or a lap. This may not achieve an optimum display angle and is also often inconvenient. In order to solve the problem, a plurality of support mechanisms is provided to support the electronic device. However, these support mechanisms are generally complicated and even in a folded state these support mechanisms are relatively large, thus it is inconvenient to carry such support mechanisms.
Therefore, there is room for improvement in the art.
The components in the drawings are not necessarily drawn to scale, the emphasis instead placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring to
The locking portion 117 is substantially cylindrical, and axially defines a receiving hole 1171 and includes a thread (not shown) along the periphery of the receiving hole 1171. The locking portion 117 further forms a plurality of claws 1175 away from the joint end 111. The plurality of claws 1175 are located around the periphery of an end of the locking portion 117 and extend outwardly along the radial direction of the locking portion 117. The plurality of claws 1175 are flexible and capable of being bent inward.
The support member 13 is similar to the adjustable member 11 and includes a resisting end 131 and a connecting end 133 opposite to the resisting end 131, each has a smoothly rounded end defining an arcuate groove 1313. The arcuate groove 1313 extends along end surface and has an even depth for receiving one of the plurality of anti-skid members 17. The connecting end 133 defines a locking hole 1331 extending though opposite side surfaces, and includes a first resisting portion 1333 and a second resisting portion 1335. The first resisting portion 1333 and the second resisting portion 1335 are positioned side by side and cooperatively form a stepped annular structure. The first resisting portion 1333 is at the end of the locking hole 1331, the second resisting portion 1335 is separated from the locking hole 1331 by the first resisting portion 1333. The internal diameter of the second resisting portion 1335 is greater than that of the first resisting portion 1333. The support member 13 defines a groove 135 on a first side surface and includes a protrusion 137 on a second side surface opposite to the first side surface. The groove 135 extends along the length direction of the support member 13 and has a substantially rectangular shape. The protrusion 137 is in a rectangular shape corresponding to the latching groove 1151.
The pivotal member 15 includes an engaging portion 151 and an adjusting portion 153 opposite to the engaging portion 151. The adjusting portion 153 defines a driving groove 1531 on the end surface away from the engaging portion 151. In the embodiment, the pivotal member 15 is a cross recess head screw. The resisting plate 16 is an annular washer and defines a center hole 161 corresponding to the locking portion 117. The resisting plate 16 is sleeved on the locking portion 117, and resisted between the adjustable member 11 and the support member 13 to enable the adjustable member 11 to smoothly rotate relative to the support member 13.
The plurality of anti-skid members 17 are strips of sticky materials received in the arcuate grooves 119, 1313 and each includes a frictional surface 171 with a high friction coefficient. The frictional surface 171 deviates from the bottom of the arcuate grooves 119, 1313. The plurality of anti-skid members 17 are capable of maintaining the two support assemblies 10 on a desk via the frictional surface 171 sitting on a desk. In the embodiment, each of the plurality of anti-skid members 17 is arced and made of silica gel.
The positioning sleeve 18 is received in the latching groove 1151, and includes a bottom plate 181 and a plurality of sidewalls 183 extending from edges of the bottom plate 181 toward a predetermined direction. The bottom plate 181 and the plurality of sidewalls 183 cooperatively define a latching chamber 185 in a rectangular shape. The plurality of sidewalls 183 are of a high friction coefficient and are capable of maintaining the edges of the electronic device 200 in the latching chamber 185. In the embodiment, the positing sleeve 18 is made of silica gel.
The sealing cover 19 is received in the locking hole 1331 and abuts against the second resisting portion 1335 to seal the locking hole 1331. In the embodiment, the sealing cover 19 is circular and made of silica gel.
In assembling, the positioning sleeve 18 is received in the latching groove 1151 with the latching chamber 185 toward outside. The plurality of anti-skid members 17 are received in the arcuate grooves 119, 1313 with the frictional surface 171 deviating from the arcuate grooves 119, 1313.
Referring to
When in use, the two support assemblies 10 are symmetrically aligned, the support member 13 is parallel to and positioned on a desk with the plurality of anti-skid members 17. The adjustable member 11 is rotated relative to the support member 13 to a predetermined angle, and opposite edges of the electronic device 200 are received in the latching chambers 185 of the two support assemblies 10, thus the electronic device 200 is maintained in the positioning sleeve 18 via the plurality of sidewalls 183. Referring to
Referring to
In both support states, the display angle of the electronic device 200 can be adjusted by rotating the adjustable member 11 relative to the support member 13. The friction force between the locking member 117 and the inner sidewall of the locking hole 1331 can be adjusted by rotating the pivotal member 15.
Referring to
The support mechanism 100 can be easily folded and is convenient to carry. The support mechanism 100 includes only two adjustable members 11 and two support members 13, thus the structure and manufacturing of the support mechanism 100 is very simple. When the adjustable member 11 and the support member 13 are worn, and the friction between the locking hole 1331 and the locking portion 117 is decreased. By driving the adjusting portion 153 of the pivotal member 15 to rotate between the locking hole 1331 and the locking portion 117 the friction can be increased. Thus, the support mechanism 100 can have relatively long service life. Moreover, the position sleeve 18 and the plurality of anti-skid members 17 are made of silica gel, it results in a soft feel in the hand and the support mechanism 100 can be located on surfaces which are slightly irregular and even tilted. The sealing covers 19 seal the locking holes 1331 to prevent the pivotal members 15 from being corroded.
The plurality of anti-skid members 17 may be formed in the arcuate grooves 119, 1313 by injection molding. The positioning sleeve 18 may be omitted and the adjustable member 11 includes a plurality of claws made of sticky material on the side wall of the latching groove 1151.
Finally, while various embodiments have been described and illustrated, the disclosure is not to be construed as being restricted thereto. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0177013 | Jun 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2265579 | Schuck | Dec 1941 | A |
2511187 | Weidauer | Jun 1950 | A |
4105176 | Hill et al. | Aug 1978 | A |
4247072 | McMahan, Sr. | Jan 1981 | A |
5029784 | Blahout | Jul 1991 | A |
5083734 | Ancona et al. | Jan 1992 | A |
5511758 | Hsu | Apr 1996 | A |
D398458 | Martell | Sep 1998 | S |
6797872 | Catalano et al. | Sep 2004 | B1 |
7546992 | Cappolina | Jun 2009 | B1 |
D596187 | Martell | Jul 2009 | S |
D620941 | Stacey et al. | Aug 2010 | S |
8020818 | Chou et al. | Sep 2011 | B2 |
8186639 | Wang | May 2012 | B2 |
20080056840 | Hitchcock | Mar 2008 | A1 |
20090101789 | Chen | Apr 2009 | A1 |
20090140119 | To et al. | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20130001393 A1 | Jan 2013 | US |