The present invention relates to bed frames, and, more particularly, to a support member that spans and thus interconnects the side rails of a bed frame.
In general, bed frames are comprised of a pair of generally parallel, spaced apart, side rails and one or more cross support members that span between the side rails in order to assemble and complete the bed frame structure. The bed frame, once assembled is adapted to support a box spring and a mattress to make up the bed itself.
Conventionally, with a bed frame, the side rails can be metal angle irons or wooden side rails and the cross or support members can be wooden slats or can be other structural components such as angle irons that are L-shaped and which have legs that extends downwardly from the angle irons to contact the floor in order to support the weight imposed on the support members by the presence of the box spring, mattress and, of course, an individual or individuals sleeping in the completed bed.
One of the difficulties, however, with the use of an L-shaped angle iron as the cross or support member is that the cross sectional profile of the L-shaped angle iron renders the member susceptible to a bending weakness, that is, for example, when the bed is slid along the floor, the leg supporting the support member and being dragged across the underlying floor can cause the support member to twist and the twisting action can damage an L-shaped angle iron support member that is not particularly resistant to such twisting action.
In addition, there is a bending action that is created by a downward force on the surface of an L-shaped support member tending to turn the L-shape into a downward V-shape and continued downward force tends to try to flatten that V-shape. Basically, the L-shape angle iron will twist away from the vertical flange, that is, the distal end of the horizontal flange will twist away from the vertical flange in the downward direction by the load imposed on the L-shaped angle iron. Thus, the problem with the use of an L-shaped angle iron is not limited to the possible bending caused by the leg being twisted by encountering a snag in a carpet as the leg extending downwardly from an L-shaped support member is moved across that carpet but also simply by the weight of the load imposed on the angle iron support member tending to twist that angle iron.
As a further problem, the conventional legs that extend downwardly from the angle iron support members are sometimes difficult to adjust to achieve the proper height of the support member from the floor. If the height of the leg is too long, the support member will bow upwardly and, if too short, the support member will bow downwardly. As such, it is important for the user to set the height of the leg correctly so that the support member is located at the proper height from the floor and it is also important to make that height adjustment easy to carry out by the user. With some current adjustable legs, the leg is threaded to a leg bracket such that the assembler must unscrew the leg to reach the desired length to contact the floor. There is a problem, however, as the unscrewing of the threaded leg is fairly time consuming to reach the desired position and there is no clear indication when the proper length o the leg has been reached and the threaded leg can be extended too far or not far enough for the proper support of the support member.
Also, the length of the support member must be adjustable so that the support member can be readily installed, for example, between wooden side rails, and be easy to affix the ends of the support member to those wooden side rails. For a wooden support member the solution is to simply saw the support member to the correct length, however there is an advantage in having a metal support member to eliminate the sawing process and the saw such that it is advantageous to have some adjustment system to allow the assembler to adjust the length of a metal support member to accommodate the varied widths between side rails.
It thus would be advantageous to have a support member for a bed frame that would be inexpensive to produce and yet which is sufficiently strong so as to resist twisting forces while supporting the box spring and mattress. In addition, it would be advantageous to have a leg assembly affixed to the support member that can be easily adjusted to achieve the proper height of the leg assembly to provide support to that support member by means of contact with the floor. It would be further advantageous if the support member had a length adjustment to allow it to be the proper length so as to be dimensionally affixed between two parallel side rails.
Now, in accordance with the present invention, there is provided a support member for attachment between parallel side rails in constructing a bed frame.
The support member includes a substantially straight member that is specially configured to have a T-shaped cross section with the flat upper surface of the T-shape having the box spring and mattress resting thereon and with the intermediate vertical flange extending downwardly therefrom. The downwardly extending flange is, of course, perpendicular to the upper flat surface of the T shaped support member.
The use of a T-shaped support member greatly improves the twist resistance of the support member and therefore reduces the potential of damaging bending of that support member over the normal L-shaped angle iron cross section. Thus, a twisting force imposed by a load on either of the distal ends of the horizontal flanges is resisted by the other distal end such that there is less likelihood of a downward deflection of either distal end of the horizontal flange, thereby, providing a resistance to the twisting of the support member under load.
There is also a leg assembly that is affixed to the support member, generally intermediate its ends or basically located midway between the parallel side rails. The leg assembly extends downwardly from the support member in order to make contact with the floor on which the bed frame of bed rails are located and comprises a housing, preferably constructed of a plastic material and a leg that extends downwardly from that housing to actually contact the floor. The leg is also preferably constructed of a plastic material.
Since the actual length that the leg extends from the housing is an important dimension and must be carefully controlled to avoid a bowing upwardly or downwardly of the support member, there is, in an embodiment of the present invention, a mechanism that allows the leg to self adjust for the correct length, that is, there is a mechanism that has an unlocked position where the leg is free to move axially with respect to the housing and can, in that position fall by gravity, or be pulled downwardly, to the floor contacting length and the mechanism then allows the user to place the mechanism into a locked position where the leg is locked into a particular extended length.
In the embodiment shown, the locking and unlocking is carried out by a twisting motion such that in one position, the leg is in the unlocked position and the leg can be simply twisted a predetermined amount in order to place it in the locked position. That twisting action also serves to extend the leg a slight amount to assure that the leg is in good solid contact with the floor in supporting the support member. Thus, the length the leg is extended from the housing and, therefore, from the support member, can readily be arrived at by allowing the leg to drop by gravity and then just as readily be locked into that particular length.
Other features of the present support member and leg assembly combined therewith will become more apparent in light of the following detailed description of a preferred embodiment thereof and as illustrated in the accompanying drawings.
Referring now to
The leg assembly 22 comprises a housing 28 and a leg 30 that extends downwardly from the housing 28 and the leg 30 actually makes the contact with the floor. As also can be seen in
Turning now to
The housing 28 is affixed to the support member 20 and the leg 30 extends downwardly therefrom. As will be seen, the leg 30 is comprised of a leg section 38 and there may be a plurality of such leg sections 38 in order to arrive at the correct length of a leg 30 since the vertical height from the floor of any support member 20 is determined by the particular bed frame construction and a particular support member 20 may vary considerably in its distance or height from the floor. The bottom leg section 40 also has a glide 42 that actually contacts the floor and that glide 42, in the embodiment shown, is oblong or oval shaped with its widest axis generally shown to be at a right angle with respect to the longitudinal axis of the support member 20 and, as will be seen, in this orientation of the glide 42, the leg 30 is in a locked position with respect to the housing 28 and is rigidly affixed within the housing 28 so as to be vertically movable with respect to that housing 28.
There are also sets of outstanding grooves 44, 46 formed on the exterior of the leg section 38 and the bottom leg section 40 and those grooves are centered about 180 degrees apart and each set of grooves spans a little less than 90 degrees about the circular periphery of the leg section 38 and the bottom leg section 40. In the embodiment shown, the center points of the sets of grooves 44, 46 are oriented such that a centerline between the centers of the sets of grooves 44, 46 is at a right angle to the longitudinal axis of the support member 20. In the embodiment shown, the outstanding grooves 44, 46 are basically rectangular or squared in cross sectional configuration.
The remaining peripheral area of the exterior of the leg section 38 and the bottom leg section 40 are smooth areas 48, 50, respectively, and there are also corresponding smooth areas on the leg section 38 and bottom leg section 40 facing away from the smooth area 48, 50 shown in
Turning now to
Both of the first and second housing sections 60, 62 have flared out sections 68, 70, respectively, and within the interior of the flared out sections 68, 70 are formed outstanding grooves 72. Again, only the grooves on the second housing section 62 are shown, however, there are corresponding outstanding grooves formed in the interior of the flared out section 68 of the first housing section 60. The outstanding grooves formed in the interior of the first and second housing sections 60, 62 are centered 180 degrees apart and traverse a little less than 90 degrees around the circular internal surface of the first and second housings 60, 62.
The leg assembly 22 shown in
Each of the lower flanges 76, 78 includes a vertical protuberance 80, 82 respectively, that interfits into a vertical slot 84, 86 provided on the interior surface of the leg section 38 and the bottom leg section 40, respectively, so that the intermitting of the upper leg section 74 into the leg section 38 and the interfitting of the leg section 38 into the bottom leg section 40 provide an alignment of the sections. That alignment is necessary in order to also align the flexible tabs 56, 58 with the openings 52, 54 as the upper leg section 40 and the leg section 38 are snapped into the intermitting relationship with respectively the leg section 38 in the bottom leg section 40.
Thus, in assembling the leg assembly 22, for example, the leg section 38 is snapped into the bottom leg section 40 so that the flexible tab 56 on the leg section 38 snaps through the opening 54 and in a similar manner, the upper leg section 74 is snapped on to the leg section 38. By the use of the separate assembly of the various leg sections, the height of the overall leg assembly 22 can be established by the user depending upon the height of the support member 20 above the floor. As can be understood, there may be a greater or lesser number of leg sections used depending on the height of the support member 20 with respect to the floor.
As can now be seen, in the position of the leg 30 as shown in
As such, the leg 30 can be moved from that locked position to an unlocked position by simply rotating the leg 30 about 90 degrees, or a quarter of a turn such that the outstanding groves 72 become aligned with the smooth area 90 of the upper leg section 74. At that position, the leg 30 can be moved vertically with respect to the housing 28 since the groves 88 and the grooves 72 are not meshed and the leg 30 can drop by gravity to contact the floor or can be pulled downwardly by the user.
Accordingly, by rotating the leg 30 a quarter of a turn, it can be moved between its locked and its unlocked position. There is a vertical wall 90 located at one end of the outstanding grooves 72 in both the first and second leg housings 60, 62 to prevent the over rotation of the leg 30 more than the quarter of a turn so that the leg 30 can only be turned in one direction to its locked position and in the reverse direction to its unlocked position. As a further feature of the aforesaid locking mechanism, there is an upper peripheral circular rim 92 at the top of the upper leg portion 74 to serve a purpose to be later described.
Turning to
Accordingly, as the outstanding grooves 88 of the leg 30 are rotated into the locked position of
Turning briefly to
Next, with reference to
Turning next to
In
Turning now to
Thus, at the distal end 110 of the bracket body 108 there are holes 112 to accommodate screws to affix the telescoping bracket 106 to the wooden side rails 16, 18. The sliding affixation is provided by a pair of tabs 114 that are formed in the bracket body 108 and which overlap both ends of the flat upper surface 34 of the support member 20 and a pair of standoff rivets 116 that pass through slots 118 formed in the bracket body 108. Accordingly, the telescoping bracket 106 is free to slide along the support member 20 in order to be affixed to the side rails 16, 18.
Turning finally to
While the present invention has been set forth in terms of a specific embodiment of embodiments, it will be understood that the present support member herein disclosed may be modified or altered by those skilled in the art to other configurations. Accordingly, the invention is to be broadly construed and limited only by the scope and spirit of the claims appended hereto.
The present application is based upon U.S. Provisional patent application No. 60/570,700, filed May 14, 2004 and entitled “SUPPORT MEMBER FOR A BEDFRAME”.
Number | Name | Date | Kind |
---|---|---|---|
3761971 | Behnke | Oct 1973 | A |
3828376 | Miller | Aug 1974 | A |
4195377 | Kitchen et al. | Apr 1980 | A |
4745644 | Pottschmidt | May 1988 | A |
5477571 | Roggenkamp et al. | Dec 1995 | A |
6125484 | Thomson | Oct 2000 | A |
6851140 | Polevoy et al. | Feb 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050278849 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60570700 | May 2004 | US |