The present disclosure relates to display systems and structures for supporting the same. More specifically, the present disclosure relates to modular structures for supporting lighting display components and video display systems formed of individual components secured by pinned connections and a method for making the same.
In the performance industry, welded structures are typically used to support multi-media systems utilized in productions, such as theatrical events or concerts. Welded components are heavy and require very skilled fabricators to maintain joint quality and tolerances. In addition, portions of welded structures cannot be easily removed for repair or replacement. The assembly of video support structures may require complex manufacturing methods, requiring complicated or expensive tools (including, but not limited, to welding tools).
When being used as part of a touring production, structures for supporting components can be subjected to physical strain. Structures for supporting components may frequently be assembled and handled by individuals of varying level of skill and assembled and disassembled into larger video displays. In addition, temperature changes and/or other environmental stressors (for example, changes in humidity) may occur due to changes in facilities, changes in transportation systems, traveling from one environment to another, and/or other ways. Such exposure causes cyclical expansion and contraction of video support structures, making components susceptible to damage, particularly at joints. In order to provide joints that withstand these stressors, manufacturers have relied upon welded joints, which result in heavy equipment and require skilled fabricators.
Therefore, there is an unmet need to provide lighter weight structures supporting lighting display components, such as video components, that are easily fabricated, have components that are reparable or replaceable, and have joints that are resistant to stressors encountered by portable multi-media display support components.
One aspect of the disclosure refers to a video support structure for supporting video including a first support member, a second support member, a portion of the second support member being receivable by a surface or space formed by the first support member, a pinnable joint having an opening in each of the first support member and the second support member, the openings being alignable to receive one or more pins, and the one or more pins, the one or more pins being configured to secure the first support member to the second support member to form at least a portion of the video support structure.
Another aspect of the disclosure refers to a video display system including a video support structure for supporting video and a light emitting unit secured to the video support structure. In the embodiment, the video support structure includes a first support member, a second support member, a portion of the second support member being receivable by a surface or space formed by the first support member, a pinnable joint having an opening in each of the first support member and the second support member, the openings being alignable to receive one or more pins, and the one or more pins, the one or more pins being configured to secure the first support member to the second support member to form at least a portion of the video support structure.
Another aspect of the disclosure refers to a method of securing a method of securing a video support structure for supporting video including providing first support member and a second support member, securing the first support member to the second support member by the one or more pins, and a portion of the at least one first support member being receivable by a surface or space formed by the second support member. In the embodiment, the first support member and the second support member have a pinnable joint securable by one or more pins, the pinnable joint has an opening in each of the first support member and the second support member, the opening being alignable to receive the one or more pins.
An advantage of the present disclosure is that the assembly and structure for supporting video components can be easily assembled with little or no specialized tools or skill.
Another advantage of the present disclosure is that the assembly and video support structure provide resistance to environmental and other stressors. In particular, the assembly and video support structure can be resistant to the stressors and abuse encountered by portable components that are frequently shipped, stored, assembled, and disassembled in a variety of environmental conditions.
Yet another advantage of the present disclosure is that the video support structures can be easily fabricated with little or no welding.
Still yet another advantage of the present disclosure is that the system and video support structures provide increased flexibility with respect to maintenance, repair and replacement.
Further aspects of the method and system are disclosed herein. The features as discussed above, as well as other features and advantages of the present disclosure will be appreciated and understood by those skilled in the art from the following detailed description and drawings.
Support members 108 bound two outer portions of video support structure 104. In other embodiments, more or fewer than two supports members 108 may be included. Each support member 108 can be arranged and disposed to attach to four cross members 110 and three braces 112. Each of the connections between support member 108 and either cross member 110 or brace 112 include a pinnable joint 215. The term “pinnable joint” as used herein, is meant to include a joint or pinned connection securable by a pin or similar device passed through an opening 501 in each of the joining components. In other embodiments, support member 108 may be arranged and disposed to attach to fewer or more cross members 110 and/or braces 112.
In yet another embodiment, as further shown in
Referring again to
In one embodiment, cross member 110 can be arranged and disposed to receive two support members 108 and four braces 112. In other embodiments, the member may be arranged and disposed to receive more or fewer of the supports and/or the braces. Brace 112 can be arranged and disposed to receive one support member 108 and two cross members 110. Generally, brace 112 should decrease shifting between support member 108 and cross member 110. The use of brace 112 provides resistance to shifting or flexing of the structure that may cause video support structure 104 to lose its rectangular shape, for example altering the desired geometry from the rectangular shape to a rhombus shape. Shifting in such a manner could result in forces detaching light emitting units 102 (and/or other light sources) from support member 108 and cross member 110. Cross member 110 and brace 112 may be fabricated from any suitable metal including, but not limited to, the same materials from which support member 108 is fabricated. Suitable materials include, but are not limited to, aluminum, steel, composite or other machinable material.
The arrangement of support members 108, cross members 110, and braces 112 can include pinnable joints 215 that engage and attach the individual support members 108, cross members 110, and/or braces 112 into a locked position. The pinnable joints 215 can include pins 502 or other suitable pin-like devices that can be compression fit or otherwise driven and retained in openings 501 in the support members 108, cross members 110, braces 112 and/or other components of the video display system 100. In one exemplary embodiment, the pinnable joints 215 may lock and engage the joints between the support members 108, cross members 110, and/or braces 112. In another exemplary embodiment, the pinnable joints 215 may form tight tolerances for the assembled video display system 100. In the embodiment shown in
Pin 502 can be inserted through support member 108 and cross member 110 proximal to where the light emitting units 102 are affixed to support member 108 and cross member 110. In one embodiment, insertion of pin 502 may be proximal to light emitting units 102 (and/or other light sources) to prevent pin 502 from protruding from support member 108. Such protrusion may result in an uneven surface to receive the light emitting units (and/or other light sources). Pin 502 can be of a diameter slightly larger than the diameter in the corresponding openings 501. This slightly larger diameter can permit pins 502 to compress upon being inserted through support member 108 and cross member 110 or support member 108, cross member 110, and brace 112. Upon being compressed, pin 502 can be secured. In one embodiment, insertion of the pins may be achieved by striking the pins with a rubber mallet (not shown) or other similar tool. In other embodiments, pins 502 may be of a diameter smaller than openings 501.
Upon pin 502 being inserted through support member 108 and cross member 110 or support member 108, cross member 110, and brace 112, pin 502 can be secured by flaring the end of pin 502. In one embodiment, pin 502 may be secured by using a cotter pin or similar device. In another embodiment, pin 502 may include angled portions allowing it to be rotated and secured. In another embodiment, pin 502 may be secured by adhesive. In another embodiment, the retention of pins 502 in the pinned connection may be such that repair or replacement may require pins 502 to be removed or otherwise displaced. Upon removal of pins 502, components such as support members 108, cross members 110, and braces 112, can be repaired or replaced and a new pinnable joints 215 can be formed.
Referring to
The geometry of support member 108, cross member 110, and brace 112 on internal portions of video support structure 104 can be similarly configured to provide corresponding substantially coplanar surfaces. Referring to
While the disclosure has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.