Support structures for insulation and other materials

Abstract
A holder for supporting a material that includes a support member having a non-linear first wire element and self-anchoring second and third wire elements for anchoring the support member to two beams of a structure, with each of the second and third wire elements defining an end designed for coupling to a respective one of the beams. Methods and kits provide a compact and adjustable holder including a non-liner support member for confining materials between beams of a building or structure.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates generally to supporting materials inside of structures and more particularly to support structures or holders that are especially useful to support insulation.


2. Description of the Related Art


Insulation installed underneath a roof is typically placed between two studs or beams. Moreover, wall insulation (or specialized insulation such as sound proofing materials) is often laid between studs from long rolls or long strips. The insulation is prevented from sagging or falling by wire hangers which extend from one stud to the other and are anchored in the studs.


The ends of many related-art insulation hangers are pointed, and the hangers are anchored in the studs by hammering. Obviously, it takes a great deal of time to install insulation this way since the number of hangers that must be hammered in each stud is large.


In heating, cooling, ventilating and air-conditioning systems (HVAC systems) in residential homes, apartments, office buildings and other building structures, there are duct members usually made up of metallic pipes, hollow composite materials such as tubes, and the like supported from and between floor or ceiling joists. It is common practice for the HVAC system to include an elongated primary or main duct from which extends a series of smaller branch or fluid-distributing ducts which are mounted between adjoining floor or ceiling joists and are parallel thereto. These main and branch duct members are located between joists and are normally supported by metal wires or adjustable metal hangers which are placed between the joists in transverse supporting position.


Normally the adjustable metal hangers have a substantial depth of section which is difficult and time-consuming to cut to length to fit between non-uniform adjoining joists. Also, a lack of uniformity of the spacing between adjacent joists creates an installation problem. Accordingly, duct hangers having standard uniform lengths cannot practically be utilized.


In addition, the pointed ends or tapered prongs on the ends of certain types of adjustable hangers are not easily or satisfactorily driven into wooden joists at desired locations or at prescribed spacing due to imperfections in the wooden joists such as knots, holes, cracks and the like. And if the part of the hanger that is driven into the joist becomes dull or breaks off during installation or repeated attempts at installation (or if the joist is metal or another material not suited for attachment by hammering), these types of brackets become essentially useless for the intended purpose.


Furthermore, the pointed ends or prongs of some support members occasionally become unseated, thereby allowing the material that is being supported to sag and loose some of its function (e.g., reduction of the R-value of insulation through compaction), or worse, loosen or break (e.g., ducts or pipes).


Metallic hangers are well suited for insulation hanging in hot climates due to their heat transfer properties. In contrast, some plastics and other materials tend to melt, sag, become brittle, or become otherwise impaired due to repeated exposure to extreme temperatures. However, many hangers made of metal are difficult to use in hanging insulation because they are not adjustable or only adjustable in one dimension (i.e., vertically or horizontally). Thus, either differently spaced joists or different depths of insulation cannot be accommodated.


Thus, it continues to be desirable for there to be a support member or bracket that is easily adjusted to a variety of lengths and depths yet is compact and securely fastened to a variety of joist or other building structures to provide a more universal improved bracket for supporting materials such as insulation.


SUMMARY OF THE INVENTION

The invention relates in general to an article for holding a material in place that includes a support member having a non-linear first wire element for supporting the material and self-anchoring second and third wire elements for anchoring the support member to two beams of a structure.


Preferably, the non-linear first wire element comprises a generally W-shaped rod or wire member so that multiple holding articles may be compactly provided as a kit. Thus, a kit of the invention would include a plurality of holders and a “holster” for housing the plurality of holders together in a convenient location, such as around the waist of a construction worker.


In another aspect of the invention, the holders contain at least one indication of length upon the second and third wire elements such that the second an third wire elements can both be bent to a substantially uniform length, thereby adjusting the overall length of the holder.


In another aspect of the invention, the second wire element includes a first arm and the third wire element includes a second arm, with the first arm and the second arm cooperating to define a generally L-shaped part of the holder, and the second arm having an end which is spaced from the first arm by adjusting the length of the non-linear support member, thereby adjusting the overall width of the holder.


Due to the adjustable length and width of the holder, the second and third wire elements can be bent to define a plane that is not parallel to a second plane defined by the first wire element defining a support member, thereby allowing the support member to be in greater contact with the material being supported (e.g., insulation).


Another aspect of the invention involves a method for supporting a material in a building and includes the steps of: (1) placing a material between two beams of a structure; and (2) confining that material between the beams using a holder of the invention that includes a support member having a non-linear first wire element and self-anchoring second and third wire elements that each define openings for anchoring the support member to the two beams of the structure.


Preferably, the confining step further includes expanding or compressing the non-linear support member to a desired width prior to insertion of one of the beams and/or bending the second and said third elements to a desired length prior to insertion of one of the beams.


The self-anchoring element of the holding article according to the invention permits the article to be anchored to a structure without hammering. This makes it possible to reduce the time for fixing insulation in place.


Various other purposes and advantages of the invention will become clear from its description in the specification that follows. Therefore, to the accomplishment of the objectives described above, this invention includes the features hereinafter fully described in the detailed description of the preferred embodiments, and particularly pointed out in the claims. However, such description discloses only some of the various ways in which the invention may be practiced.




BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are elevational views of an article in accordance with the invention that has been compressed (1A) or expanded (1B) in width.



FIG. 2A illustrates in front elevational view another embodiment of the holder article according to the invention.



FIG. 2B is a side view of FIG. 2A.



FIG. 3 is a front elevational view of a third embodiment of the invention.



FIG. 4 is a schematic view of a kit embodiment according to the invention.



FIG. 5 is a schematic sectional view of the roof of a structure with insulation and a pipe held in place by holding articles designed as in FIG. 2A.



FIG. 6 is a flow diagram illustrating method steps according to the invention.



FIG. 7 is top plan view of another embodiment of the invention.



FIG. 8A is a partial side view of the embodiment of FIG. 7.



FIG. 8B illustrates the embodiment of FIG. 7 after being configured and installed for a particular application.



FIG. 9 is a front elevational view of an embodiment of the invention show supporting insulation.



FIG. 10 illustrates schematically the installation of a holder of the invention on an I-beam type joist.



FIG. 11 is a front perspective view of a second embodiment of a kit of the invention.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, the numeral 10 identifies an article in accordance with the invention for holding or confining a material such as insulation (e.g., see FIG. 5). The holding article 10 includes a non-linear (i.e., not defining a straight line ) supporting element 12 which functions to support the material. The supporting element 12 is elongated and has spaced longitudinal ends, and an anchoring element 14 is secured to one of the ends while another anchoring element 16 is secured to the other of the ends. The anchoring elements 14 and 16 serve to anchor or fix the article 10 to the beams of a structure (not shown in this view).


The supporting element 12 comprises a first wire element 18 having an end which coincides with the end of the anchoring elements 14 and 16 and one-piece second and third wire elements 20 and 22 for anchoring the support member 12 to two beams (e.g., studs) of a structure.


The anchoring element 14 comprises an arm 26 formed as a C-shaped member 28. The second wire element 22 is normal to the first wire element 18, and the wire elements 18 and 22 together define an L-shaped part of the holding article 10. In the illustrated embodiment, the “supporting” wire 12 and the “anchoring” wire 22 are integral, and the L-shaped part of the holding article is formed by bending the holding article.


Third wire element 20 carries a generally U-shaped anchoring member 30 which, in the present case, is integral with the third wire element 20 and also is formed by bending. The U-shaped shaped member 30, which is here suspended from the end of the third wire element 20 remote from the first wire element 18, is located on the opposite side of article 10 as the C-shaped anchoring member 28. The end of wire member 20 is preferably formed as a hook 32, although a variety of configurations may be used depending upon the application. In the illustrated embodiment, the “supporting” wire 12 and the “anchoring” wire 20 are integral, and a second L-shaped part of the holding article is formed by bending the holding article to the conformation shown.


The non-linear first wire element 18 preferably is formed as a W-shaped wire member so that the overall conformation of the article 10 is relatively compact yet enables one to adjust the width of the supporting element 12 to accommodate a variety of materials. By varying the length of the supporting element 12 (and thereby the width of article 10), it also becomes possible to adjust the holding article 10 to different structural conditions, e.g., to different distances between the studs or beams of a structure. Thus, the holder article 10 is adjusted in width by expanding or contracting wire member 18 by applying pulling (e.g., arrows F of FIG. 1B) or pushing force to wire elements 20 and 22.


Turning to FIG. 2A, a second embodiment of the invention is show. The holder 40 includes a non-liner first wire element 42 that supports a material being held and is integral with second wire element 44 and third wire element 46. Both second and third wire elements 44 and 46 include an self-anchoring region 48A and 48B. Each of self-anchoring regions 48A and 48B define a U-shaped member 50 comprised of two legs, 52A, 52B and 54A, 54B. Looking at just one anchoring region (48B), the end of the leg 54B remote from the second wire element 44 is inclined into a hook 56 while the end of leg 54A is similarly inclined to form a claw-like gripping portion 58 of the anchoring region 48B.


The U-shaped member 50 is designed to receive and grip a stud or beam of a building structure. The construction of the U-shaped member 50 is such that the U-shaped member 50 can be readily slipped onto a stud or beam. Thus, the gripping portion 58 and the hook 56 are shaped to slide easily when the U-shaped member 50 is pushed over a stud or beam. However, when the U-shaped member 50 is subjected to a force which acts to slide the U-shaped member 50 off the stud or beam, the hook 56 attempts to dig into the stud or beam. The hook 56 then functions as an anchor to hold the U-shaped member 50 on the stud or beam.


The U-shaped member 50 is preferably designed so that the legs 52A, 52B, 54A, and 54B are spread apart elastically when the U-shaped member 50 is pushed onto a stud or beam. Under such circumstances, the legs are urged towards each other after the U-shaped member 50 has been slipped onto the stud or beam thereby increasing the grip of the legs on the stud or beam.


In the embodiment shown in FIG. 2A, the holder 40 is configured such that the second and third wire elements 44 and 46 are bent to define a plane (P1) that is not parallel to a second plane (P2) defined by the first wire element 42, thereby providing “shelf-like” support for the material upon the surface of the non-liner element 42. FIG. 2B illustrates in side view how the second and third wire elements 44 and 46 are bent about 90 degrees relative to the supporting first wire element 42.



FIG. 3 illustrates a third embodiment of the invention in which a holder 60 includes a non-linear first wire element 62 that is integral with a second wire element 64 and a third wire element 66 such that the second and third wire elements are generally perpendicular to wire element 62. Disposed at the end of second element 64 is self-anchoring region 68 and at the end of third wire element 66 is self-anchoring region 70, each of which defines a generally C-shaped opening the is adapted to receive a stud or beam therein. Also, the holder 60 contain at least one indication of length 72A, B, or C which may optionally further include a numeric value 74. The indications 72A-72C are disposed upon the second and third elements such that the second an third elements can both be bent to a substantially uniform length.


Turning to FIG. 4, a kit 80 of the invention is shown. The kit 80 includes a holster 82 (which may include a belt 84) within which a plurality of holders 86 are housed. The holster 80 preferably contains a rigid edge 88 that is adapted for bending one or more of the plurality of holders 86 at a top portion of the holster 82. In this manner, a user may carry the holster 82 around, select at least one of the holders 86, bend the holder at a desired point upon edge 88, install the holder on a pair of beams, and be ready to immediately repeat this process by accessing another holder from the holster 82.


Turning to FIGS. 5 and 6, it can be readily seen that the invention also provides a method for supporting a material in a building that preferably includes the steps of placing material such as insulation 90 (or a pipe 91) between two beams 92 and 94 of a structure 96 and confining the insulation 90 between the beams using a holder 98. The holder 98 comprising a support member having a non-linear first wire element 100 for supporting the insulation 90 and pipe 91 and self-anchoring, one-piece second and third wire elements 102 and 104 that each define openings 106 and 108 for anchoring the support member to the two beams of the structure.


Preferably, the method further includes expanding or compressing the non-linear support member to a desired width prior to insertion of one of the beams 92 and 94, as well as bending the second and third elements 102 and 104 to a desired length prior to insertion on the beams.


Turning to FIGS. 7, 8A, and 8B, an embodiment of the invention featuring simple hook-type anchoring ends is shown. The holder 112 includes a support member having a non-linear first wire element 116, which is flanked by two linear support member portions 117, and self-anchoring, one-piece second and third wire elements 114 and 115. As seen in FIG. 8A, the second and third wire elements 114 and 115 are adapted for anchoring to a rod or other protruding fastener, such as nail 118. Alternatively, as shown in FIG. 8B, the embodiment of FIG. 7 can be configured and installed such that it rests upon the respective ledges between beams 119. While the installation of the holder in FIG. 8B is depicted schematically for clarity, it is preferable to expand non-linear element 116, and to bend portions 117, such that the holder is frictionally engaged between beams 119.


As shown in FIG. 9, insulation 120 is generally supported between beams 122 by holder 124. More particularly, holder 124 includes a non-liner support member 126, a linear support member 128 that is continuous with non-linear support member 126, and self-anchoring ends 130. The ends 130 of this embodiment contains sharp points 131 (shown in phantom line), allowing the holder 124 to be secured to a suitable material (e.g., soft wood or Styrofoam) without the use of additional tools (i.e., self-anchoring). Although not illustrated, the holder 124 can be secured in a variety of positions relative to the beams 122 and insulation 120 (e.g., upside down relative to the illustration in FIG. 9 such that the ends 130 provide a “hang down shelf” for the placement of additional rolls of insulation or other material. In this aspect, the invention can be used to increase the amount of a material, such as insulation, easily and without the need for construction.


Turning to FIG. 10, one end of holder 134 is shown in a pre-anchored arrangement with I-beam 136. Anchoring brackets 138 are disposed over the edges of I-beam 136 as indicated by arrows 140. Because the holder of the invention comprises wire members, the brackets 138 can be deformed or otherwise adjusted to fit a variety of I-beam sizes and shapes.



FIG. 11 illustrates another kit of the invention. The kit 144 includes a holster 146 (which may include a belt 148). The holster 146 preferably contains a rigid slot or sleeve 150 that is adapted for bending one or more of the plurality of holders 154 on the exterior of the holster 146. Thus, a user may carry the holster 146 around, select at least one of the holders 154, bend the holder at a desired point through insertion into slot 150, and install the holder on a pair of beams. To further aid the user in bending the holder 154 at a desired point, an indication of measurement 156 preferably is disposed upon an exterior side of holster 146. Also preferably, the holster contains a pressure backing 158 that keeps the holders 154 substantially engaged within the holster 146 through a pressure mechanism, such as spring 160.


Various changes in the details and components that have been described may be made by those skilled in the art within the principles and scope of the invention herein described in the specification and defined in the appended claims. For example, the holders of the invention may be used to “double stack” insulation (i.e., hang a second layer of insulation) where previously installed insulation is inadequate or has become compressed and lost some of its “R-value.” Thus, the adjustable width and length of the holder of the invention is useful for retrofitting existing structures. Moreover, the term “beams” is meant to encompass a wide variety of structures (i.e., not just rectangular or I-shaped structures) between which insulation or other building materials would commonly be disposed. Therefore, while the present invention has been shown and described herein in what is believed to be the most practical and preferred embodiments, it is recognized that departures can be made therefrom within the scope of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent processes and products.

Claims
  • 1. An article for holding a material in place, comprising: a support member having a non-linear first wire element for supporting said material and second and third wire elements for self-anchoring said support member to two beams of a structure, each of said second and third elements being contiguous with said first wire element and defining an end adapted to be secured to each one of the two beams.
  • 2. The article of claim 1, wherein said non-linear first wire element comprises a W-shaped wire member.
  • 3. The article of claim 1, wherein said second wire element comprises a first arm and said third wire element comprises a second arm, said first arm and said second arm cooperating to define a generally L-shaped part of said article, and said second arm having an end which is spaced from said first arm by adjusting the length of the first wire element.
  • 4. The article of claim 1, wherein said second and third wire elements are configured to define a plane that is not parallel to a second plane defined by said first wire element.
  • 5. The article of claim 1, wherein said support member further comprises a linear portion flanking said non-linear first wire element.
  • 6. The article of claim 1, wherein at least one of said second and third wire elements includes a generally U-shaped member which defines an opening and has a pair of spaced legs, at least one of said legs having a sharpened end portion which anchors said article on respective one of said beams.
  • 7. The article of claim 1, wherein at least one of said second and third wire elements includes a pair of bracket-like members which defines an opening that anchors said article to an I-beam.
  • 8. The article of claim 1, wherein said article contains at least one indication of length upon said second and third elements such that the second an third elements can both be bent to a substantially uniform length.
  • 9. A kit, comprising: a plurality of holders, said holders each including a support member having a non-linear first wire element for supporting said material and second and third wire elements for anchoring said support member to two beams of a structure, each of said second and third elements being contiguous with said first wire element and defining an end adapted to be secured to each one of the two beams; and a holster for housing said plurality of holders together.
  • 10. The kit of claim 9, wherein said holders contain at least one indication of length upon said second and third elements such that the second an third elements can both be bent to a substantially uniform length.
  • 11. The kit of claim 9, wherein said holster contains a slot disposed on an exterior surface of said holster, said slot being adapted for bending one or more of said plurality of holders.
  • 12. The kit of claim 9, wherein said holster contains an indication of measurement disposed upon an exterior surface thereof.
  • 13. The kit of claim 9, wherein said holster further comprises a pressure-backing adapted to keep said holders substantially engaged within said holster.
  • 14. The kit of claim 13, wherein said pressure member includes a spring.
  • 15. A method for supporting a material in a building, comprising the step of: confining said material between two beams using a holder, said holder comprising a support member having a non-linear first wire element for supporting said material and second and third wire elements for self-anchoring said support member to said two beams, each of said second and third elements being contiguous with said first wire element and defining an end adapted to be secured to each one of the two beams.
  • 16. The method of claim 15, wherein the step of confining further includes expanding or compressing said non-linear support member to a desired width prior to securing said holder to one of said beams.
  • 17. The method of claim 15, wherein the confining step further includes bending said second and said third elements to a desired length prior to securing said holder to one of said beams.
  • 18. The method of claim 17, wherein said bending of said second and third elements is at an indication of length disposed thereon.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Ser. No. 11/230,239, filed on Sep. 19, 2005, by the same inventor.

Continuation in Parts (1)
Number Date Country
Parent 11230239 Sep 2005 US
Child 11301197 Dec 2005 US