Support and counterbalancing of heavy sash that are laterally removable from between opposed jambs of a window.
This invention improves upon a solution proposed in U.S. Pat. No. 5,231,795 for supporting and counterbalancing a heavy sash that is laterally removable from between opposed jambs of a window. The sash counterbalancing and removal problem is the same one addressed in the '795 patent, but the new solution of this invention offers improved performance.
Large and heavy window sash, such as used in schools, offices, and institutional buildings, move vertically between opposed pairs of jambs that are generally extruded of metal. A sash for such a window can weigh over 100 pounds so that a counterbalance system for shoes supporting such a sash must exert a corresponding upward lift. Locking the support shoes of the counterbalance system within the jambs must be secure and reliable, because of the large spring forces involved. Also, the sash support must make a heavy sash easy to raise and lower, and removal and replacement of a sash must be convenient and reliable. Since such windows are often used in schools, the counterbalance support system must also be tamper resistant to the manipulations of curious children. Besides these requirements, an effective window system must accomplish all the necessary functions in a reliable way with elements that are inexpensive to manufacture and maintain.
Our support system for a sash that is laterally removable from between opposed window jambs uses sash support arms that are movably arranged for transferring the weight of the sash to the shoes and for bridging distances between the sash stiles and the shoes. When not supporting the weight of the sash, the support arms move to positions that allow the sash to be lifted off of counterbalance support shoes and laterally removed from between the window jambs and conversely reinserted between window jambs and lowered onto the shoes. This is done while the shoes are locked in positions within the window jambs. When the support arms support the weight of the sash, they are in positions that rest the sash weight on the counterbalance shoes to support the weight of the sash.
The counterbalance shoes, which are biased upwardly by counterbalance springs, cooperate with the sash support arms. The shoes receive and support the sash weight transferred to the shoes by the sash support arms, and the shoes have hooks that can be deployed to lock the shoes reliably in the jambs by engaging projections formed in the jambs for this purpose. The hooks are latched in undeployed positions and can be unlatched to engage the jambs' projections and lock the shoes against upward movement.
Several components of the inventive sash support system are preferably formed of metal extrusions. These include the shoes, the sash support arms, and the locking hooks for the shoes. Extrusions for these elements are formed in predetermined cross-sectional configurations or profiles and are cut to suitable widths to perform the necessary cooperative functions.
Forming sash support elements of extruded metal lowers the cost of the system while also providing the strength necessary for supporting a heavy sash. Extruded metal elements also accommodate the configurations necessary for the interactions between the shoes and the sash support arms. Altogether, the improvements of this invention allow easier raising and lowering of the sash, more convenient sash removal and replacement, and a more convenient way of locking the shoes in place. They also allow all this to be accomplished with a system that is less costly to manufacture and maintain.
A sash supported according to this invention is laterally removable from between a pair of opposed window jambs in a way that is similar to the sash removal shown in U.S. Pat. No. 5,231,795. Otherwise, the improved sash support system, including sash support arms, sash shoes, and shoe-locking hooks, differs significantly from the '795 patent.
The basic operation of a preferred embodiment of the inventive system is shown schematically in
In the position shown in
Besides the preferred pivoting of sash support arms 20 on the stiles of sash 10, as illustrated in
More details of a preferred embodiment of a sash support system are illustrated in
A support arm 20 is preferably pivotally mounted on each opposite stile of sash 10. Mounts for support arms 20 are preferably near lower corners of sash stiles, but more elevated mounts are also possible. As best shown in
Each of these positions is limited and braced by mount block 22. In the outwardly extending position, an end 24 of arm 20 abuts against mount 22 to brace arm 20 against pivoting upward. In the downwardly dependent position, an abutment 25 on support arm 20 engages a lance 26 on mount block 22 to prevent pivoting of support arm 20 downward or inward beyond the position shown in
An outer end 27 of support arm 20 engages a sash shoe, as explained in more detail below. Support arms 20 having different lengths from pivot pin 23 to arm end 27 are desirable to accommodate different dimensions of window systems. Support arms 20 are also preferably formed of extruded metal, which helps make different lengths of support arms 20 inexpensive. To distinguish between support arms 20 of different lengths, the arms are preferably formed with extruded coding lines 28. For example, three coding lines 28 are illustrated in
Counterbalance shoes 30 are also preferably formed of metal extrusions. Shoes 30 can then be cut to the desired shoe width from a length of extruded material having the necessary cross-sectional configuration or profile to provide the required shoe functions.
An upper region 31 of shoe 30 preferably has a hook shape in which slots 32 are cut, as shown in
Shoes 30 can accommodate different numbers of counterbalance elements received in correspondingly different numbers of slots 32, especially when shoes are cut to different widths. This readily adapts a single extrusion for shoes 30 to accommodate different window dimensions and sash weights.
Preferably a mid-region 34 of shoe 30 has a groove 33 that receives and holds a guide block 35. Groove 33 and guide block 35 are shaped so that block 35 can be slid endwise into groove 33 where it is frictionally held in place. Block 35 is preferably molded of resin material and configured to bear against a rear wall 12 of jamb 11 and against fins 13 that extend inward in jamb 11. Guide block 35 gives shoe 30 a smooth running fit within a channel 14 formed behind fins 13 in a rear region of jamb 11 spaced outward from sash 10. Channel 14 then serves as a vertical run for block 35 which in turn guides shoe 30 vertically within jamb 11, while holding shoe 30 away from any metal-to-metal contact with jamb 11. Guide block 35 can have many configurations that perform the necessary guiding function, which includes both vertical guidance and resistance to torsion applied to shoe 30 by counterbalance elements to which it is connected.
A lower region 36 of shoe 30 has a sash support platform 37 that is engaged by the ends 27 of sash support arms 20 to uphold the weight of sash 10. Platforms 37 extend toward sash 10 far enough to engage sash support arms 20 in their inward positions illustrated in
As a sash 10 is lowered into a supported position on shoes 30, the ends 27 of support arms 20 first engage inner end regions 38 of support platforms 37; and then as sash 10 is further lowered, arm ends 27 slide outward along platforms 37 to the support position illustrated in
The small step 39 in platform 37 is preferred for resisting lateral movement of sash 10 while resting on shoes 30 and as a positive indication that arm ends 27 of a sash being lowered have reached appropriately supported positions on platforms 37. The regions where arm ends 27 support sash 10 on platforms 37 are preferably directly below slots 32 where counterbalance elements exert an upward force on upper regions 31 of shoes 30. This minimizes any moment arms tending to turn shoes 30 around horizontal axes.
Below platform 37 is preferably arranged a groove 44 that receives a pivot pin 43 for a shoe-locking hook 45. Pin 43 can be pressed axially into groove 44 and through hook 45 to leave hook 45 pivotally hanging below platform 37, as illustrated in
The underside of the inward region 38 of support platform 37 preferably has a groove 41 that receives and retains a resilient latch spring 40. An anchored end 51 of spring 40 can be pressed into slot 41 to retain spring 40 frictionally in place. A downwardly extending projection 52 engages spring 40 to prevent movement beyond a resilient latching position, as illustrated.
Hook 45 has a latching nose 48 that latches into an opening 42 in spring 40, as illustrated in
Shoe lock 45 is also preferably cut from an indefinite length of a metal extrusion. This can give hook 45 the necessary strength to resist the counterbalance bias, while also keeping hook 45 inexpensive. Although lances 47 are preferred for their simplicity and effectiveness in interacting with locks 45, other projections or interlock discontinuities in jamb 11 are also possible.
When the elements of the inventive sash support system are assembled and operated, as shown schematically in
Number | Name | Date | Kind |
---|---|---|---|
569146 | Barney | Oct 1896 | A |
660438 | Holly | Oct 1900 | A |
1932906 | Muir et al. | Oct 1933 | A |
2217543 | Gaines et al. | Oct 1940 | A |
2791795 | Haas | May 1957 | A |
2796630 | Haas | Jun 1957 | A |
2987758 | Osten, Sr. | Jun 1961 | A |
3183559 | Love | May 1965 | A |
3197819 | Trout | Aug 1965 | A |
3206795 | Weidner | Sep 1965 | A |
3271812 | Skolnik | Sep 1966 | A |
3280511 | Johnson | Oct 1966 | A |
3407434 | Scott | Oct 1968 | A |
3434236 | Weidner et al. | Mar 1969 | A |
3441978 | Perry | May 1969 | A |
4245436 | Riegelman et al. | Jan 1981 | A |
4800680 | Westfall et al. | Jan 1989 | A |
4885871 | Westfall et al. | Dec 1989 | A |
5189838 | Westfall | Mar 1993 | A |
5231795 | Westfall | Aug 1993 | A |
5542212 | Erickson et al. | Aug 1996 | A |
5572828 | Westfall | Nov 1996 | A |
Number | Date | Country |
---|---|---|
2046109 | Jan 1973 | DE |
0509943 | Oct 1992 | EP |
2718486 | Oct 1995 | FR |
0729287 | May 1955 | GB |
1002338 | Aug 1965 | GB |