This invention relates in general to support systems for panels and panel-like structures, such as solar energy collection systems. More particularly, the present invention is directed to a support and wiring system for an array of photovoltaic panels, and a method of assembling the same for activation. The support system is a bi-directional matrix including a variety of profiled panel rails arranged for attachment to a variety of panel configurations. A variety of wiring devices and panel rail wiring configurations may also be used.
A standard photovoltaic (solar) panel array includes a plurality of solar panels optimally arranged for converting light incident upon the panels to electricity. Various support systems are used for attachment to roofs, free-field ground racks or tracking units. Typically, these support systems are costly, labor intensive to install, heavy, structurally inferior, and mechanically complicated. Placing the solar panels on the support structure can be very difficult, as can wiring of the solar panels for array activation. Further, some large solar panels tend to sag and flex thereby rendering the panel mounting unstable. Unstable panel arrangements also jeopardize the integrity of the wiring arrangement, which is necessary for the photovoltaic panels to be useful.
A conventional panel support system generally includes off-the-shelf metal framing channels having a C-shaped cross-section, such as those sold under the trademarks UNISTRUT™ or BLIME™, improvised for use as vertical and horizontal support members. The photovoltaic (solar) panels 12 or other panel-like structures are directly secured to the support members and held in place by panel clips or panel holders (100, 100′, 120, 145) in a wide range of sizes and shapes. The panel clips serve as hold-down devices to secure the panel against the corresponding top support member in spaced-relationship. The clips are positioned and attached about the panel edges once each panel is arranged in place.
For a conventional free-field ground rack system (for mounting solar panels) as shown in
Once the bi-directional support system 10 is assembled, each solar panel 12 is mounted on a portion of panel holding clips (100, 100′, 120, 145) which are secured to the support rails about the perimeter of each panel. The other portion of the panel clips is put in place, and tightened. This installation process is usually inaccurate, and time-consuming, even with expensive, skilled installers.
Another example of a support system is shown in U.S. Pat. No. 5,762,720, issued to Hanoka et al., which describes various mounting brackets used with a UNISTRUT™ channel. Notably, the Hanoka et al. patent uses a solar cell module having an integral mounting structure, i.e. a mounting bracket bonded directly to a surface of the backskin layer of a laminated solar cell module, which is then secured to the channel bracket by bolt or slideably engaging C-shaped members. Other examples are shown in U.S. Pat. No. 6,617,507, issued to Mapes et al., U.S. Pat. No. 6,370,828, issued to Genschorek, U.S. Pat. No. 4,966,631, issued to Matlin et al., and U.S. Pat. No. 7,012,188, issued to Erling. All of these examples of conventional systems are incorporated herein by reference as background.
Notably, existing support systems require meticulous on-site assembly of multiple parts, performed by expensive, dedicated, field labor. Assembly is often performed in unfavorable working conditions, i.e. in harsh weather and over-difficult terrain, without the benefit of quality control safeguards and precision tooling. Misalignment of the overall support assembly often occurs. This can jeopardize the supported solar panels 12, or other supported devices. Further, wiring of the solar panels, once secured, is also problematic in conventional systems.
Spacing of the photovoltaic (solar) panels 12 is important to accommodate expansion and contraction due to the change in weather. It is also important that the panels are properly spaced for maximum use of the bi-directional area of the span. Different spacing may be required on account of different temperature swings within various geographical areas. It is difficult, however, to precisely space the panels on-site using existing support structures without advanced (and expensive) technical assistance.
For example, with one of the existing designs described above (with reference to
Misalignment difficulties are exacerbated by the flexing of the panels 12, and the sagging permitted by the flexibility of the panels. The sagging of the panels can cause the panels to work out of their holders, whether they would be holding clips or part of the overall structure of the upper support rail. Improper installation, which occurs frequently in conventional systems, can lead to dislocation of the panels due to sagging or atmospheric conditions. A wide variety of different mounting positions and array arrangements also exacerbate the stability problems caused by panel sagging or deflection. Further, certain mounting positions will make the panels more vulnerable to atmospheric disruptions, such as those created by wind and precipitation. Freeze-thaw cycles can also be a major factor. All of these variables further complicate electrical connections in the panel array.
The vertical support beam and tilt-mounting bracket (14, 16, as depicted in
This is particularly crucial since in many locations a roof or roof-like structure is the only support substrate that would be available for solar panels. While the vertical support and tilt mounting bracket arrangement 14, 16 include well-known load parameters, the same is not true of roofs or roof-like structures. These can exhibit a wide variety of different support parameters, as well as other characteristics. Many roof-like substrates that are used to support solar cell arrays tend to be flat (providing a level of predictability not found in the use of sloped, i.e. pitched roofs as panel array substrates). Flat roofs are preferred since they avoid the substantial problems of sloped roof mountings.
Even a stable flat roof presents problems for the mounting of an array of solar panels. In particular, the panels cannot be mounted in the same manner that is provided in
Flat roofs, while serving as preferred surfaces for solar panels, are also particularly susceptible to damage since even slight indentations caused by the stresses inherent to installing a heavy panel array 10, may cause water to pool on parts of the roof, thereby compromising the integrity of the roof. To limit stresses applied to the roof by the panel array installation process, it is necessary that installing the array be as simple as possible. Likewise, wiring of the array must be as simple as possible. Otherwise, the increased activity of installation becomes detrimental to the flat roof structure. Unfortunately, wiring arrangements tend to change with the types of panels and panel configurations being deployed. This causes a lack of predictability, which keeps installers on the roof structures for extended periods of time, thereby applying increased stress to flat roofs.
Therefore, a need exists for a low-cost, uncomplicated, structurally strong support system and assembly method, so as to optimally position and easily attach a plurality of photovoltaic panels, while meeting architectural and engineering requirements. Likewise, there is an urgent need for a system that will maintain the security of the mechanical connections of the solar panels to panel rails despite the flexing of the panels (and support structure) caused by gravity, vibration, or environmental factors.
At present, none of the conventional art offers these capabilities. An improved support system would achieve a precise configuration in the field without extensive work at the installation site. The use of such an improved system would facilitate easy placement of solar panels onto the support structure. Further, a variety of different panel clips or holders could be used within the overall concept of the system. The shipping configuration of the improved support system would be such so as to be easily handled in transit while still facilitating rapid deployment. Rapid deployment must be facilitated on a roof or roof-like structure, providing stable support for the panels without damaging or otherwise compromising the roof, or any similar substrate. Rapid deployment would also include rapid mechanical connection of the panels to panel support rails in a manner that would keep the panels secure despite panel flexing due to any number of factors. Facilitation of rapid and secure wiring would also be a key part to such a system.
It is a primary object of the present invention to improve upon conventional photovoltaic solar panel systems, especially with regard to assembly, wiring, and overall installation.
It is another object of the present invention to provide a support and installation system for solar panels in which the panels and installation site are less likely to be damaged during installation.
It is a further object of the present invention to provide a support system for solar panels that is easily installed on-site while still resulting in a precise configuration for purposes of mounting the solar panels.
It is an additional object of the present invention to provide a solar panel support system that can be assembled very quickly on-site.
It is still another object of the present invention to provide a solar panel support system that can achieve close tolerances during field installation without the necessity of skilled labor at the installation site.
It is again a further object of the present invention to provide a solar panel support system in which specialized mounting brackets bonded to the solar panels are not necessary for the mounting of the solar panels to the support system.
It is still an additional object of the present invention to provide a solar panel support system which can be easily adapted to a wide variety of solar panel array sizes and shapes.
It is yet another object of the present invention to provide a solar panel support system which minimizes the necessity for precise measurements at the installation site during installation.
It is again a further object of the present invention to provide a solar panel support system that can be arranged at a variety of different positions and configurations.
It is still an additional object of the present invention to provide a solar panel support system that can be precisely configured to a specific environment, such as a building roof.
It is another object of the present invention to provide a support system for solar panels and other panel-like structures in which degradation caused by metal-to-metal contact is substantially reduced.
It is again another object of the present invention to provide a support system for panel-like structures in which accommodation is made for movement caused by changes in temperatures, humidity or other environmental considerations.
It is still a further object of the present invention to provide a framework for a solar panel array, for use with a wide variety of roof configurations.
It is again another object of the present invention to provide a flexible arrangement for interfacing a solar panel support system to a roof or other similar substrate in order to accommodate a wide variety of different panel configurations.
It is still an additional object of the present invention to provide a solar panel mounting system that can accommodate easy installation and removal of panels on adjacent frameworks.
It is still a further object of the present invention to provide a folding solar panel support system in which rotation of structural members with respect to each other can be advantageously controlled.
It is yet an additional object of the present invention to provide a folding solar panel support system adapted specifically for roofs and roof-like substrates.
It is yet another object of the present invention to provide panel clips for a solar panel support structure which allow easy installation of adjacent panel support systems, without interfering with previously installed panels.
It is still an additional object of the present invention to provide a collapsible panel support system wherein deployment of the support system using rotating connection members can be precisely adjusted.
It is yet a further object of the present invention to provide a panel support structure which integrates easily in a wide range of mounting sites and has a minimum mounting or deployment time.
It is still another object of the present invention to provide panel clips or holders for a panel support system wherein a wide variety of different sizes and shapes of panel configurations can be accommodated, and easily installed, as well as removed.
It is again a further object of the present invention to provide a panel support system which can easily be attached to substrate support brackets without incurring damage to any of the members of the support system.
It is still another object of the present invention to provide a support system for panels or panel-like structures for a wide range of uses, positions, structures, and configurations.
It is again an additional object of the present invention to provide a panel support system in which the relative rotation of the structural members to each other when deploying the support system is carefully calibrated and controlled without adjusting or tightening at the installation site.
It is still another object of the present invention to provide a panel support system which can be easily fixed to a “hard” mounting system using bolts, without causing damage to the panel support system.
It is yet another object of the present invention to provide a panel support system that can be easily deployed or removed by rotating intersecting structural members, without fouling or jamming the rotation devices at the intersections of the structural members.
It is still a further object of the present invention to provide a panel mounting system which is entirely self-contained.
It is again an additional object of the present invention to provide a panel mounting system which facilitates quick, secure mounting of the panels once the support system is deployed.
It is yet another object of the present invention to provide a panel support system that can accommodate flexing, sagging and other deformation of the panels while maintaining a secure connection thereto.
It is yet a further object of the present invention to provide a panel mounting system which facilitates easy electrical connections to the panels.
It is again an additional object of the present invention to provide a panel mounting system that facilitates protection of the electrical wires running from the panels mounted thereon.
It is yet another object of the present invention to provide a panel clip or connector that can accommodate for flexing of both the panel and the support system.
It is still a further object of the present invention to provide a panel connection system that can facilitate rapid installation while maintaining a secure hold on the panels or panel like structures.
It is yet an additional object of the present invention to provide panel rails configured to ensure secure panel connections.
It is still a further object of the present invention to provide a gasket or liner configuration of sufficient flexibility to accommodate a wide range of different panel clips or holders.
It is yet an additional object of the present invention to provide a panel rail that facilitates protection of long cable runs.
It is still a further object of the present invention to provide wire holders that can be placed in a wide range of locations on a panel support rail so as to facilitate both temporary and permanent placement of the wires on a panel array supported by the panel rail.
It is again another object of the present invention to provide a solar panel array with a predictable, common wiring system applicable to a wide array of different panel types and configurations.
It is still an additional object of the present invention to provide a panel support system in which panels can be easily mounted from above the panel array, without diminishing the structural integrity of the panel mounting.
It is the overall goal of the present invention to provide a comprehensive panel mounting system that facilitates rapid, secure installation, including deployment of the panel support structure, placement of the panels on that support structure, and wiring of the panels for activation.
These and other goals and objects of the present invention are provided by a wiring and panel support system in a bi-directional solar panel support matrix having lower support joists and upper panel rails. Each of the upper panel rails includes an upper panel support portion and a lower wiring portion. The wiring portion is so configured to remain the same even though the upper panel clip portion varies for a plurality of different panels and panel clip arrangements.
Another embodiment of the present invention includes a wiring system in a bi-directional solar panel support matrix, having lower support joists and upper panel rails. The upper panel rails include an upper panel support portion and a lower wiring portion. Each of the lower wiring portions includes a lower support structure interfacing with an upper surface of a corresponding lower support joist. The lower wiring portion also includes a central connecting wall bridging the lower support structure and the upper panel support portion. Further included is a sidewall extending from the lower support structure to the upper panel support portion to define a cable channel with the central connecting wall.
An additional embodiment of the present invention is manifested by a method of wiring a solar panel array supported by a bi-directional support matrix having lower support joists and upper panel rails arranged to hold the solar panels. The upper panel rails have a set of first sidewalls that form a first interior space, the upper panel rails also have a connecting wall and a second sidewall to form a second interior space. The wiring method includes the steps of placing at least one electrical lead from a solar panel into at least the second interior space. Next, an electrical cable is extended along a length of the upper panel in the second interior space. Finally, the electrical lead is connected to the cable.
A further embodiment of the present invention is found in a bi-directional solar panel support matrix, having lower support joists and upper panel rails. The upper panel rails include a lower wiring section having at least one tubular structure, and an upper panel support portion having a second tubular structure having at least one surface arranged to support a solar panel.
Yet another embodiment of the present invention is found in a panel clip configured to hold a panel to an upper panel rail in a bi-directional panel support array. The panel clip is constituted by a hollow tubular support structure arranged to be attached to the panel rail. At least one upper holding structure of the panel clip is spaced from an upper surface of the panel rail on which the panel clip is mounted so that a panel can fit between the upper holding structure and the upper surface of the panel rail.
Another embodiment of the present invention is found in a wiring and panel support system in a bi-directional solar panel support matrix, having lower support joists and upper panel rails, as well as a wiring holding system. The wiring holding system includes a T-shaped connection channel formed into a bottom surface of the panel rail. Also included in the system is a wiring clip having a connection portion configured to fit into the T-shaped channel.
Having generally described the nature of the invention, reference will now be made to the accompanying drawings used to illustrate and describe the preferred embodiments thereof. Further, the aforementioned advantages and others will become apparent to those skilled in this art from the following detailed description of the preferred embodiments when considered in light of these drawings, in which:
The present invention is used in the conventional environment depicted in
Before proceeding with further description herein, for purposes of fully appreciating the present disclosure of the instant invention, the terminology “horizontally-aligned” refers to structural members that appear to be parallel to the horizon. “Vertically-aligned” structural members are perpendicular to the “horizontally-aligned” structural members. However, because the present invention can be mounted on almost any structural support, in a variety of configurations and orientations, the terms “horizontally-aligned” and “vertically-aligned” may not best describe certain situations. Accordingly, alternative terminology such as, “longitudinally extending” or “laterally extending” may be used. For example, in FIG. 3, the “horizontally-aligned” structural members are also extended longitudinally while the “vertically-aligned” members extend in a lateral direction. These various terminologies may be used interchangeably as a matter of convenience, and to facilitate easy understanding.
A summary of certain aspects of the previous inventions incorporated herein by reference is provided below. In accordance with one previously described inventive embodiment constituting the background of which the present invention is an improvement,
For purposes of convenience when describing the new embodiments of the present invention, the orientation description of upper and lower will be used. While an array of support system 10 can be placed in any orientation with respect to longitudinal or latitudinal descriptors, the present invention always has lower support joists 20, and upper panel rails 30. The designation of upper and lower appears to be the most straight-forward for dealing with the aspects of the new invention considered herein. The terminology “support joist” has been used previously with regard to structural members 11, 13. The same type of structural member is used as lower support joist 20 in the descriptions of the present inventive embodiments. The upper structural member, previously denoted as an upper support rail 15, is more accurately described by the designation “upper panel rail”, and designated 30 in the present embodiments. This is appropriate since the structural element 30, denoted as an upper panel rail 30 is always located above lower support joist 20, and constitutes the elements to which the external solar panels are held to the support system 10.
As an alternative to the first basic support system 10, described above, the bi-directional support system 10 can have the lower support joists 20 aligned along the length of tilting support brackets 16. As a result, upper panel rails 30 extend longitudinally, as described and depicted in the subject previous applications. It should be understood that within the context of the present invention, either orientation in any configuration of the substantially perpendicular structural elements (lower support joists 20 and upper support rails 30) can be used. Further, a wide variety of different shapes, sizes and configurations are encompassed by the concept of the present invention and is not to be limited by the examples provided herein. The present array of support members (20, 30) can be adjusted to conform to any support structure or any “footprint” available for the deployment of solar panels 12, or any other panel-like structure to be supported by the present invention. Further, as described infra, the upper panel rails 30 can be modified.
Each upper panel rail 30 in this previous design includes a hollow aluminum extrusion, as depicted in
Pockets 114 (as depicted in
The spacing between each upper panel rail 30 is governed by the width of the individual solar panels 12, and the number of solar panels per row. Each upper panel rail 30-1 through 30-n, as the case may be, is attached to the lower support joists 20 by bolts 40, wherein the head 42 of each bolt is slideably accommodated in the corresponding T-slot channel 33 of the respective upper support rail. The shank 43 of the bolt 40 passes through and is secured to the respective support joist 20 using a nut 45 or other type fastener to form the bi-directional span.
Notably, with the nuts 45 and bolts 40 tightened below a predetermined torque value, the bi-directional support system 10 can be easily folded to reduce space for shipping, as shown in
Besides limiting galvanic interaction between unlike metals, nylon pieces are important for maintaining the precision of overall array alignment for support system 10. Precise positioning attained at the factory pre-assembly stage is more easily maintained through the use of the resilient nylon washers and other pieces. The nylon pieces serve to control the flexing of the support system 10 when it is put in the collapsed position and then later deployed into the full, open position. The use of the nylon pieces such as washer 24 is especially important in that additional adjustments do not have to be made in the field when the support system 10 is installed. This facilitates the quick installation that is so important to the present invention.
Previously-disclosed
Specifically, once the upper panel rails 30 and the lower support joists 20 are deployed, the solar panels 12 (or other panel-like structures), either framed or unframed, can be fastened to the rails using friction clips 100, 100′ and 120. Various upper rail panel 30 configurations, such as those depicted in
Regarding panel clips 100, as shown in
Preferably, the inserts or gaskets 130 (and all other gaskets described infra.) are made of a material that is physically and chemically stable, and electrically nonconductive. Furthermore, the gaskets 130 should be of an electrically resistant material and have good elasticity upon compression. Suitable materials, which can be employed include, but are not limited to, neoprene, butyl rubber, ethylene-propylene diene monomer (EPDM), chlorinated polyethylene (CPE) and a polytetrafluoroethylene (PTFE) material such as GORTEX® (a trademark of W.L. Gore & Associates, Inc.) or TEFLON® (a trademark of E.I. DuPont de Nemours & Company).
Most notably, the support system 10 of this invention allows for off-site assembly (at a convenient staging site) to precise engineering specifications, in that, once the support members are assembled, the bi-directional span can be folded or collapsed on itself; as shown with reference to
While the present inventive support system 10 has been previously described as being deployed on the tilt brackets (of
The first step to rapid, inexpensive installation of solar panels 12 is the deployment of the support system 10 as summarized above, and elaborated upon in the three previously disclosed patent applications incorporated herein. However, deployment of the support system 10 is only part of the overall system installation. Placement of the solar panels on the support structure, and securing them thereto is also crucial. Likewise, the wiring of the solar panels is a necessary aspect that often requires the use of highly skilled labor and commensurate expenditure of funds. Accordingly, these aspects of solar panel installation must also be addressed.
Lower wiring portions 330, 430, 530 are important since they are uniform for a wide range of upper rail panel sizes, shapes and panel clip configurations. This means that in a wide variety of different arrays or different panel types, and different panel clip arrangements, the wiring scheme remains the same. The uniform wiring scheme is designed to protect the long cable runs for the entirety of the array, as well as facilitating a rapid connection from each of the panels to the main cable. Exposure of any of the wiring to the elements is substantially limited by the overall structural arrangement of the lower wiring portions 330, 430, 530.
Protection of the main cable 1000, which normally receives the most abuse during installation, is a key feature of the present inventive wiring scheme. The main cable, which is particularly vulnerable because of its length and weight is held within an enclosed space, which is accessible on one side by a sliding panel, and on the other side only by apertures in the supporting wall, which are used to hold dedicated wiring fixtures. The result is that exposure of the entire wiring system to environmental hazards is minimized.
The upper tubular panel support portions 310, 410, 510 of all three upper support rail designs in
However, there is a major structural distinction in the new designs of
Very often the most difficult aspect of installing solar panels is the wiring. Conventionally, it was necessary to employ the services of an electrician, at extremely high hourly rates. Even with professional handling of the wiring of individual panels and the overall connection of the array, protection of the wiring could be problematical. The present invention accommodates both easy electrical installation (with unskilled labor) and substantial protection of the necessary wire runs. Decreased installation time is also crucial to avoid damage to such substrates as roofs.
The accommodations to facilitate easily installed, yet secure, electrical connections are best explained with respect to
In
Like the previously disclosed upper panel rails 30 in the prior applications incorporated herein by reference, upper panel rails 300, 400, 500 include bottom surfaces 320, 420, 520, that rest upon a lower support joist 20 (as depicted in
Central support wall 360 connects the upper tubular panel support portion 310 to the bottom surface 320 which includes T-slot channel 321. As depicted in the drawings, central support wall 360 contains at least one aperture fixture or grommet 361. The fixture 361 accommodates passage of a quick connect plug 331 to obtain access to cable holder 332. The quick connect plug 331 is a standard electrical device used for making quick connections into a cable run. Once cable 1000 is in cable holder 332, the cable is pierced by, or otherwise made accessible to quick connect plug 331. Cable 1000 connects to quick connect plug 331 from the appropriate solar panel 12.
Access is provided to both cable 1000 and cable holder 332 by way of sliding access panel 333. Access panel 333 runs the entire length of upper panel rail 300, and is connected to the rest of the lower wiring portion 330 using upper connection slot 335 and lower connection slot 334. A retaining screw 362 is used at either end of the upper panel rail 300 to hold access panel 333 in place.
An aperture in central support wall 360 can be fabricated wherever appropriate for placement of aperture grommet 361 and quick connect plug 331. Performing of apertures can be done at the factory. Accordingly, a wide range of panel sizes and connection configurations can easily be accommodated with the present invention. The different electrical configurations must be accommodated in order to contain the different panel configurations that can be used with the upper panel rails 300, 400, and 500.
The lower wiring portions 430, 530, depicted in
Wiring of the overall panel array is facilitated by other aspects of the support system 10. In particular,
As depicted in
Control and placement of the electrical wiring is necessary to the overall protection of the panel array. It is also an important factor during installation to prevent accidents that may damage any of the wiring, a roof substrate, or the installer. To help prevent this, a wire holder 50, as depicted in
The easiest way to use the wire holder 50 is to simply slip it into the T-slot channel 321 at the bottom of an upper support rail 300. The wire holder 50 can be slid along this slot and will hold thereto by the virtue of four mounting prongs 52 located below the base 51 of the wire holder. Opposite the mounting prongs 52 on base 51 are a first annular arm 53 and a second annular arm 54. Both of these arms are reinforced by ribs 531 and 541, respectively. The first annular arm 53 has an outward extension 532, which extends roughly perpendicular to the direction of the arc formed by the first annular arm 53. The second annular arm 54 has a bi-directional extension 542, consisting of an inward portion 543, and an outward portion 544. The result is the open cup-like structure formed by extensions 532 and 542. This structure is convenient for holding wire while it is being pressed into the cavity between the annular portions of arms 52 and 53. The inward portion 543 of the bi-directional extension 542 on second annular arm 54 keeps the wire within the two arms 53, 54 once it has been forced inward. This also provides convenient operation during the installation process.
While the inward portion 543 holds the wire in wire holder 50, removal of the wire, if desired, is relatively easy. The flexible nature of first and second annular arms 53, 54 allows a user to simply pull them apart using outward extension 532 and outward portion 544 of the respective annular arms 53, 54. By pulling the two annular arms apart, the wire can easily be removed through the expanded opening.
It should be understood that wire holder 50 can also be used in other embodiments of upper panel rail 300. For example, the previously discussed upper panel rail 30 in
Quick, easy installation (by unskilled labor) is one of the benefits of the inventive embodiments disclosed. However, there is a drawback to most systems that permit easy installation of solar panels. In particular, conventional panel holders or clips very often do not hold the panels securely if the clips are configured for easy installation. As a result, sagging or other deformation by the panels, (whether due to gravity, environmental considerations, or accident) often cause panels to loosen in the clips and even cause disconnection and loss of the panels. The use of spacers between the panels can sometimes alleviate misalignment between adjacent panels but are often incapable of holding deformed panels in place, especially if those panels are at the edge of an array. Accordingly, the present application provides clips that can address possible deformation of the panels, and loosening from the clips, as well as maintaining ease of installation.
Quick, efficient and reliable installation of the panel array also includes ease of mounting and securing the panels 12 on the support system 10, once it has been deployed. Not only do the panels 12 have to be easily positioned on the support system 10, but the panels 12 must be easy to secure reliably. The requirements for the clips for holding devices to secure the panels vary with the overall size, thickness and materials constituting the panels.
A number of panel clips or holding devices (120, 145, 100′, 100) have already been disclosed in the prior applications. Despite the efficacy of these devices, certain types of panels have a tendency to sag, flex, or otherwise deform, due to gravity or environmental conditions. The stresses caused by this deformation are transmitted through the panel clips or holding devices (100, 120, 145), causing the clips to shift and otherwise deform themselves. The result is very often slippage or even loss of the panel from the panel clip. Conventional means for countering this tendency have proven unsatisfactory. Either the panel clips continue to fail under certain circumstances, or the installation process becomes unduly long and tedious, thereby increasing the expense of the solar panel array.
Both panel clips 70, 80 have a back wall 76, 86 for abutting the edge of the panel 12, and at least one holding structure 72, 82 extending over the face of the panel 12. Both types of panel clip 70, 80 contain apertures 73, 83 so that bolts or other fasteners can hold the panel clips to the top of an upper panel rail (30, 300, 400, 500).
It should be clear that the new panel clips 70, 80 are meant for the thin film rail 300, as depicted in
In order to properly secure the panels 12, insert gaskets or liners are necessary on the panel clips 70, 80. This is true whether using the new panel clips 70, 80, or using the previously-disclosed panel-holding devices. The gaskets can be held to the panel clips 70, 80 using adhesive.
The U-shaped gasket 130 has two types of teeth. The first type 131 is used to hold the solar panels 12, and is relatively fine. Larger teeth 132 are used to help grip the underlying upper support rail. The gasket 130 can be held to panel clips 70, 80 by means of an adhesive. However, the protrusion 133 can be inserted into cavities 74, 84 to mechanically hold gasket 130 to the respective vertical back walls 76, 86 of clips 70, 80, respectively.
In the alternative, the gaskets 130 can be held by way of friction fit, in a U-shaped clip. One such example would be the upper panel rail 500 (Slide In Rail), as depicted in
Another example of a gasket configuration for use with another variation of upper support rail 30, such as upper panel rail 400 (Gravity Rest Rail) of
The security of solar panel 12 depends, to some extent, on gravity, the tooth configuration of L-shaped gasket 140, and the tight connection from cap 90, as depicted in
The L-shaped gasket 140 further facilitates a secure connection with solar panel 12 by virtue of the tooth structure of gasket 140. In particular, the teeth 141 that interface with the edge of the panel 12 have a 45° angle between the edges of the teeth. Further, these teeth are somewhat longer than the teeth 142 on the other side of the gasket. Teeth 142 are arranged so that the angle between adjacent tooth edges is 90°. This better facilitates a gentle hold on the surface of the panel 12. The tooth structure 151 of straight gasket 150 is configured so that the angle between adjacent tooth edges is 90°. This facilitates a strong grip based upon the pressure applied by the tightening of fastener 95 through cap 90.
It should be understood that the slide-in rail structure 500, as depicted in
While a number of embodiments have been described as examples of the present invention, the present invention is not limited thereto. Rather, the present invention should be construed to include every and all modifications, permutations, variations, adaptations, derivations, evolutions and embodiments that would occur to one having skill in this technology and being in possession of the teachings of the present application. Accordingly, the present invention should be construed as being limited only by the following claims.
The present application claims priority as a continuation-in-part application from U.S. patent application Ser. No. 12/686,598, filed Jan. 13, 2010, which is a continuation-in-part application from U.S. patent application Ser. No. 12/567,908 filed on Sep. 28, 2009, which is a continuation-in-part application from parent U.S. patent application Ser. No. 12/383,240 filed on Mar. 20, 2009, U.S. Provisional Application 61/397,113 filed on Jun. 7, 2010, and U.S. Provisional Application 61/414,963 filed on Nov. 18, 2010. Reference is made to all listed applications, and their contents are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61414963 | Nov 2010 | US | |
61397113 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13115506 | May 2011 | US |
Child | 14173005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12686598 | Jan 2010 | US |
Child | 13115506 | US | |
Parent | 12567908 | Sep 2009 | US |
Child | 12686598 | US | |
Parent | 12383240 | Mar 2009 | US |
Child | 12567908 | US |