The present invention relates to tube bundle devices such as heat exchangers, condensers, or other collection of tubes, for example, in devices such as nuclear reactor cores, electrical heaters, or any collection of parallel cylindrical shapes that has a fluid flow passing over them, and more particularly to support structures for heat exchanger tubes within heat exchanger devices.
Our co-pending U.S. patent application Ser. No. 10/209,126, filed 31 Jul. 2002, entitled Heat Exchanger Flow-Through Tube Supports (Publication No. 20030178187A1, corresponding to EP 1347258) describes a heat exchanger construction with coiled tube supports.
Heat exchangers were developed many decades ago and they continue to be extremely useful in many applications requiring heat transfer. While many improvements to the basic design have been made, there still exist tradeoffs and design problems associated with the inclusion of heat exchangers within commercial processes.
One of the problems associated with the use of heat exchangers is the tendency toward fouling. Fouling refers to the formation of various deposits and coatings on the surfaces of heat exchangers as a result of process fluid flow and heat transfer. There are various types of fouling including corrosion, mineral deposits, polymerization, crystallization, coking, sedimentation and biological. In the case of corrosion, the surfaces of the heat exchanger can become corroded as a result of the interaction between the process fluids and the materials used in the construction of the heat exchanger. The situation is made even worse due to the fact that various fouling types can interact with each other to cause even more fouling. Fouling can and does result in additional resistance with respect to the heat transfer and thus decreased
heat transfer performance. Fouling may also cause an increased pressure drop in connection with the fluid flowing on the inside of the exchanger.
One type of heat exchanger which is commonly used in commercial equipment is the shell-and-tube exchanger in which one fluid flows on the inside of the tubes, while the other fluid is forced through the shell and over the outside of the tubes. Typically, baffles are placed to support the tubes and to force the fluid across the tube bundle in a desirable manner.
Fouling can be decreased by the use of higher fluid velocities. In fact, one study has shown that a reduction in fouling in excess of 50% can result from a doubling of fluid velocity. While the use of higher fluid velocities can substantially decrease or even eliminate the fouling problem, higher fluid velocities are unfortunately, generally unattainable on the shell side of conventional shell-and-tube heat exchangers because of excessive pressure drops which are created within the system by baffles. Another problem that often arises in connection with the use of heat exchangers is tube vibration damage. Tube vibration is most intense and damage is most likely to occur in cross flow implementations where fluid flow is perpendicular to the tubes, although tube vibration damage can also occur in non-crossflow (i.e. axial) implementations with high fluid velocities.
Many heat exchangers in use today contain baffles. Baffles are interposed in the fluid path in order to provide support for the tubes and to ensure that the fluid on the outside the tubes flows in the desired direction with respect to the tubes. Unfortunately, however, baffles may increase fouling because of the dead zones they create on the shell side of the exchanger where flow is minimal or even non-existent. A further problem encountered in heat exchangers fitted with baffles is that cross flow may result in potential damage to the tubes as a result of flow-induced vibration. In the case of such damage, processes must often be interrupted or shut down in order to repair the device.
Different types of baffles are conventionally used. One type, segmental baffles, is unacceptable for the low-fouling heat exchangers described in our co-pending application because they produce many zones either with low velocity flow or even no flow at all increasing the probability of fouling. Other types (multiple styles including rods, strips, twisted-tubes) may create longitudinal flow in the central area of the exchanger but these technologies lack the inherent strength and flexibility of configuration of the coiled tube supports shown in application Ser. No. 10/209,126 to allow high velocities on the shellside of the exchanger. The present invention is a development of the coiled tube support system which is directly applicable to the triangular tube configuration and which, moreover, allows the design of more compact and less expensive exchangers.
The tube support system with coiled tube supports, described in application Ser. No. 10/209,126, is mostly suitable for the inline tube arrangement although, as described in the application, it may also be used with the triangular tube configuration. In application Ser. No. 10/209,126, the support structure uses spacer coils, which surround each tube in the bundle. For example, with the triangular tube configuration, the coils surround all the tubes in the bundle with coils on adjacent tubes being wrapped in opposite directions (clockwise and counterclockwise) so that they overlap in the inter-tube region and can be welded together to form an integrated, unitary structure.
The shell-and-tube heat exchanger of the present invention employs helically coiled wires to form a spacing and support structure for the tubes arranged in the triangular configuration within the heat exchanger shell. The wire of the coil, which is wound around alternate tubes in the bundle, has a radial thickness (diameter for a circular wire) substantially equal to the space between the heat exchanger tubes. The exchanger, in addition to the coil-encased tubes preferably uses sealing devices of particular configurations to achieve the desired flow patterns. With exchangers of this construction, the potential for dead zones is reduced and the high velocity axial flow that results substantially eliminates fouling problems, and significantly reduces flow-induced tube vibration that can lead to tube damage.
This invention provides easier fabrication as well as a robust design that is needed to operate the shellside at high velocities. This design must use the triangular tube layout. This tube layout is most suitable as it provides the maximum tubecount within a given shell diameter. This exchanger can be provided with a larger number of tie rods than necessary to achieve mechanical integrity of the bundle, which also provides flexibility in achieving the desired shellside velocity by minimizing flow bypassing.
In
The heat exchanger 10 of
With the tubes arranged in a triangular manner, the centermost tube 16 is provided with a coil surrounding it for all or a part of its length. The radial thickness of the coil material closely approximates the space between two adjacent tubes. The radial thickness is determined radially with respect to the tube around which it is wound; this will of course, be the diameter of the usual circular wire. The wire of the coils need not, however, be of circular cross-section; it may have various alternative cross-sections such as square, elliptical, rectangular, polygonal or other suitable geometric shapes and so may also be considered to be a wire even though in rod, strip, tube or bar form. In such cases, the radial thickness is to be taken as the transverse dimension of the coil, perpendicular to its length. The coils may be hollow if desired. The wire material for the coils is preferably comprised of erosion/corrosion-resistant material such as stainless steel, titanium or other materials with similar metallurgical characteristics.
Each coil should have two or more complete turns around the tube and be secured to the tube (e.g., or welding or an equivalent process, which preferably does not create or leave any sharp edges, which would tend to create). Similar coils are attached to the other tubes in the formation in a similar manner. The coils are placed on alternate tubes in the bundle; as shown in
Coils may be disposed continuously along the tubes but normally it is preferred to locate the coil supports at spaced intervals along the axial length of the tubes in the same manner as shown in FIG. 1 of application Ser. No. 10/209,126 (Publication No. 20030178187A1, corresponding to EP 1347258). Typically, the support coils would be from about 50–80 cm long at each location with the locations spaced at intervals of approximately 100–150 cm. If this arrangement is used, as is preferred, the coils at the second axial location may be provided on the tubes that did not receive coils in the first location, with this sequence alternated throughout the length of the tubes. Even though this alternating arrangement is not essential, it provides some symmetry to the shellside flow although at the disadvantage that none of the tubes can be replaced in the future. If the coils are provided only on selected tubes as shown in
Additional mixing to the shellside fluid may be provided by alternating left-handed and right-handed coils at the same axial location as well as at different axial locations.
Some of the tubes towards the outer periphery of the bundle may be replaced with tie rods such as tie rod 20 in
As shown in
The depth of the stiffeners (parallel to the axis of the tubes) may typically vary between 2 to 4 cm. and, as noted above, they are typically provided at intervals of 100–150 cm along the length of the bundle. The stiffeners are welded to the tie rods or to the wires wrapped around the tubes or the tie rods.
The coils surrounding the tubes within their internal periphery serve to provide spacing and support to the tubes in the bundle. The spacing and support coils may extend all the way along the tubes from tubesheet to tubesheet with a corresponding gain in structural rigidity but in most cases, it is sufficient to have shorter coils which extend only a short distance along the tubes disposed at two or more locations along the length of the tubes, for example, coils about 20–50 cm long at intervals of about 50–150 cm, preferably 60–100 cm. For example, a coil structure may begin about 30 cm from one tubesheet and then extend approximately 20 cm. This could be followed by a gap of approximately 60-cm followed by another length of coil structure and so on. Whether coiled all the way along the tube or located intermittently, the coil should preferably make at least two complete turns around the length of the tube for adequate support and proper tube spacing.
In making up the tube bundle, the coils may be pre-fabricated according to specified diameter, tube pitch and coil pitch requirements. Such prefabricated coils are generally available from coil manufacturers. Individual coils are then placed around the tubes and rods and attached to them. (e.g., electrical arc welding may be used).
Rectangular sealing strips 22 are placed adjacent to the coil-encased tie rods (the tie rods of the type indicated by 20) and transversely with respect to the tubes (and the axial flow direction) in order to direct the fluid flow into the region around the tubes for effective heat transfer to take place. Larger transverse sealing strips 23 may also be placed in other regions at the periphery of the tube bundle in order to direct and maintain fluid flow in the correct, desired manner. The sealing strips may be secured in the conventional manner to the tie rods or to any other appropriate part of the tube bundle. All the sealing strips must leave adequate clearance between the end of the strip and the tubesheet(s) so as not to disrupt the flow to and from the fluid inlet and outlet which, conventionally, will be located on the side of the exchanger shell.
Longitudinal sealing strips may also be used to maintain axial fluid flow in the region directly around the tubes, that is, to prevent the fluid moving out into the regions outside the periphery of the tube bundle where heat exchange is less effective. Because the tube bundle is polygonal in outline, either hexagonal or 12-sided with larger bundles, these regions can generally be categorized as the segmental regions, six or twelve in number, between the inside of the exchanger shell and the straight peripheral limits of the tube bundle. Sealing strips of inwardly convex curved shape may be used here, as indicated by 25 in the figure. These sealing strips extend along the length of the tube bundle except at the ends of the bundle so as to permit free fluid flow in these end areas to the fluid inlet and outlet. Curved strips 25 may be secured to the bundle via tie rods and by means of the stiffeners provided around the bundle, as shown in
A strainer of some form should normally be used at some point in the process line prior to reaching the heat exchanger. This is important in order to avoid any debris becoming trapped within the heat exchanger of the present invention either in a tube or on the shell side of the heat exchanger. If debris of a large enough size or of a large enough amount were to enter the heat exchanger of the present invention (or, in fact, any currently existing heat exchanger) fluid velocities can be reduced to the point of rendering the heat exchanger ineffective. A preferred form of strainer is described in U.S. patent application Ser. No. 10/643,377.
The tube bundles of the present type are preferably used in heat exchangers and other tube bundle devices such as condensers, nuclear reactor cores, electrical heaters or other collections of parallel cylindrical shapes with fluid flow passing over them. Preferred types of heat exchanger in which the present tube bundles may be used are those described in U.S. patent applications Ser. No. 10/209,082, corresponding to EP 1347261 (Improved Heat Exchanger with Reduced Fouling; Ser. No. 10/209,126, corresponding to EP 1347258 (Heat Exchanger Flow Through Tube Supports); Ser. No. 10/414,731, corresponding to EP 1357344 (Improved Heat Exchanger with Floating Head).
In use, an axial flow configuration is preferably used for the shell side fluid in the exchanger. In addition it is also preferable that a countercurrent flow arrangement be employed as between the two different fluids although a non-countercurrent (i.e. cocurrent) flow or a combination of cocurrent and countercurrent flow may also be implemented.
Number | Name | Date | Kind |
---|---|---|---|
1777356 | Fisher | Oct 1930 | A |
1929376 | Trainer et al. | Oct 1933 | A |
2749600 | Persson | Jun 1956 | A |
3181606 | Belanger | May 1965 | A |
3249154 | Legrand | May 1966 | A |
3326282 | Jenssen | Jun 1967 | A |
3603383 | Michael et al. | Sep 1971 | A |
4386456 | Volz | Jun 1983 | A |
4398567 | Moll | Aug 1983 | A |
4450904 | Volz | May 1984 | A |
5251693 | Zifferer | Oct 1993 | A |
20030178187 | Wanni et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
948 691 | Sep 1958 | DE |
26 17 242 | Nov 1977 | DE |
1347258 | Sep 2003 | EP |
1347261 | Sep 2003 | EP |
1357344 | Oct 2003 | EP |
607 717 | Sep 1948 | GB |
Number | Date | Country | |
---|---|---|---|
20060162913 A1 | Jul 2006 | US |