The present disclosure relates generally to gas turbine engines and, more particularly, to a support system for a gas turbine engine having shape memory alloys.
Gas turbine engines typically include a rotor assembly, a compressor, and a turbine. The rotor assembly of a gas turbine engine includes shafts, couplings, sealing packs, and other elements required for optimal operation under a given operating condition. The rotor assembly has a mass that generates a constant static force mainly due to gravity, and a dynamic force mainly due to imbalances in the rotor assembly during operation. For example, during operation of the engine, a fragment of a fan blade of the gas turbine engine may become separated from the remainder of the blade. Under such conditions, a substantial unbalanced static and rotary load may be created within the damaged fan. Fan blade out may also cause the engine to operate with a lesser capability, necessitating repair.
To minimize the effects of potentially damaging, abnormal unbalanced static and rotary loads, gas turbine engines often include support components for the fan rotor support system that are sized to provide additional strength. However, increasing the strength of the support components increases an overall weight of the engine and decreases an overall efficiency of the engine under its normal operation without substantial rotor imbalances. To address abnormal unbalanced load, the engines may also utilize a bearing support that includes a mechanically weakened section, or primary fuse, that permanently decouples the fan rotor from the fan support system. As a result, subsequent operation of the gas turbine engine may be significantly impacted.
Accordingly, an improved rotor support system that is configured to accommodate unbalanced or increased loading conditions without resulting in a permanent decoupling of the fan rotor from the rotor support system would be desirable.
In one aspect, the present disclosure is directed to a support system for a gas turbine engine. The support system includes a load-bearing unit that includes a first flange, a support element supporting the load-bearing unit and having a second flange, a fastener connecting the first flange and the second flange, a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The first and the second super-elastic shape memory alloy components are configured to deform when a load exerted by the fastener exceeds a threshold load value of the fastener.
In another aspect, the present disclosure is directed to a bearing support system for a gas turbine engine. The bearing support system includes a load-bearing unit that includes a first flange, a frame supporting the load-bearing unit and having a second flange, an axial bolt connecting the first flange and the second flange, a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The first super-elastic shape memory alloy component is in the form of a gusset, a flange, or a combination thereof, and the second super-elastic shape memory alloy component is in the form of a gasket seal. The first and the second super-elastic shape memory alloy components are configured to deform when a load exerted by the axial bolt exceeds a threshold load value of the axial bolt.
In yet another aspect, the present disclosure is directed to a bearing support system for a gas turbine engine. The bearing support system includes a load-bearing unit that includes a first flange, a frame supporting the load-bearing unit and having a second flange, an axial bolt connecting the first flange and the second flange, a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The axial bolt includes a super-elastic shape memory alloy. The first and the second super-elastic shape memory alloy components are individually in the form of a gusset, a flange, or a combination thereof. The first and the second super-elastic shape memory alloy components and the axial bolt are configured to deform when a load exerted by the axial bolt exceeds a threshold load value of the axial bolt.
These and other features, and aspects of embodiments of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings.
These and other features, aspects and advantages of the present disclosure will become better understood with reference to the following description and appended claims. The following detailed description illustrates embodiments of the disclosure by way of examples and not by way of limitation. It is contemplated that the disclosure has general application in providing enhanced sealing between rotating and stationary components in industrial, commercial, or residential applications.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
To more clearly and concisely describe and point out the disclosure, the following definitions are provided for specific terms, which are used throughout the following description and the appended claims, unless specifically denoted otherwise with respect to particular embodiments. As used herein, “supporting” implies “designed to take load.” Thus, a support element supporting a load-bearing unit would imply that the support element is a load bearing member for the load-bearing unit. A “super-elastic shape memory alloy component” is a component that includes a super-elastic shape memory alloy. A super-elastic shape-memory alloy is a material that is designed to change shape and/or stiffness in response to certain load or pressure experienced by them. After the load or pressure is relaxed, the shape memory alloy dissipates energy internally, in general, through a hysteresis effect. A “variable support stiffness of a super-elastic shape memory alloy component” indicates possible variation in stiffness of the super-elastic shape memory alloy component with respect to variation in load experienced by that component.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In general, the present disclosure is directed to a support system for supporting operation of a gas turbine engine. Specifically, in several embodiments, the support system includes a load-bearing unit and a support element. The load bearing unit may bear a static load or a rotating load. The load-bearing unit includes a first flange. The support element includes a second flange. The first flange of the load-bearing unit and the second flange of the support element are connected by a fastener. The fastener may be an axial fastener or a radial fastener. The support system further includes a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The first and the second super-elastic shape memory alloy components are configured to deform when a load exerted by the fastener exceeds a threshold load value of the fastener.
The first super-elastic shape memory alloy component and the second super-elastic shape memory alloy component provide damping for the first and second flanges respectively under various loading conditions. For example, the super-elastic shape memory alloy components may be configured to deform from a normal state to a deformed state when experiencing a higher than normal pressure due to application of a high load, such as in the event of a fan blade out (FBO) event.
Referring now to the drawings,
In general, the engine 10 may include a core gas turbine engine 14 and a fan section 16 positioned upstream thereof. The core engine 14 may generally include a substantially tubular outer casing 18 that defines an annular inlet 20. In addition, the outer casing 18 may further enclose and support a booster compressor 22 for increasing the pressure of air that enters the core engine 14 to a first pressure level. A high pressure withstanding, multi-stage, axial-flow compressor 24 may then receive the pressurized air from the booster compressor 22 and further increase the pressure of such air. The pressurized air exiting the high-pressure compressor 24 may then flow to a combustor 26 within which fuel is injected into the flow of pressurized air. The resulting air-fuel mixture is combusted within the combustor 26. The high energy combustion products are directed from the combustor 26 along the hot gas path of the engine 10 to a first turbine 28, which is a high-pressure turbine, for driving the high-pressure compressor 24 via a first drive shaft 30, which is a high-pressure drive shaft. The high energy combustion products are then directed to a second, low pressure, turbine 32 for driving the booster compressor 22 and fan section 16 via a second, low pressure, drive shaft 34 that is generally coaxial with first drive shaft 30. After driving each of turbines 28 and 32, the combustion products are expelled from the core engine 14 via an exhaust nozzle 36 to provide propulsive jet thrust.
Additionally, as shown in
In several embodiments, the second low pressure drive shaft 34 may be directly coupled to the fan rotor assembly 38 to provide a direct-drive configuration. Alternatively, the second drive shaft 34 may be coupled to the fan rotor assembly 38 via a speed reduction device 37 (e.g., a reduction gear or gearbox) to provide an indirect-drive or geared drive configuration. Such a speed reduction device may also be provided between any other suitable shafts and/or spools within the engine as desired or required.
During operation of the engine 10, an initial air flow (indicated by arrow 50) may enter the engine 10 through an associated inlet 52 of the fan casing 40. The air flow 50 then passes through the fan blades 44 and splits into a first compressed air flow (indicated by arrow 54) that moves through conduit 48 and a second compressed air flow (indicated by arrow 56), which enters the booster compressor 22. The pressure of the second compressed air flow 56 is then increased and enters the high-pressure compressor 24 (as indicated by arrow 58). After mixing with fuel and being combusted within the combustor 26, the combustion products 60 exit the combustor 26 and flow through the first turbine 28. Thereafter, the combustion products 60 flow through the second turbine 32 and exit the exhaust nozzle 36 to provide thrust for the engine 10. In order to mitigate damage to the engine during events such as a FBO, in some embodiments, the fan casing 40 includes a trench extending circumferentially along an inner surface, the trench approximately axially aligned with the fan assembly (not shown in
The support system of the gas turbine engine may be a support system for a stator or a rotor. Referring now to
In several embodiments, the first bearing assembly 104 may generally include a bearing 114 and a bearing housing flange 116 extending radially outwardly from the bearing 114. In some embodiments, the bearing 114 is a roller bearing and may include an inner race 118, an outer race 120 positioned radially outwardly from the inner race 118 and a plurality of rolling elements 122 (only one of which is shown) disposed between the inner and outer races 118, 120. The rolling elements 122 may generally correspond to any suitable bearing elements, such as balls or rollers. In the illustrated embodiment, the outer race 120 of the bearing 114 is formed integrally with the bearing housing flange 116. However, in other embodiments, the outer race 120 may correspond to a separate component from the outer bearing housing flange. In certain other embodiments, the bearing 114 is a thrust bearing.
Additionally, as shown in
Referring now to
As disclosed earlier, the support system 100 further includes a first super-elastic shape memory alloy component (first SMA component, for brevity) 212 in contact with the first flange 210 and a second super-elastic shape memory alloy component (second SMA component, for brevity) 222 in contact with the second flange 220. The first SMA component 212, the second SMA component 222, or both the first SMA component 212 and the second SMA component 222 used herein may be structural parts that are entirely made of an alloy that is having super-elastic nature or may be a structural part that may also include a material that is non-super-elastic in nature, but as a whole exhibits at least some of the super-elastic properties, such as variable stiffness, high damping, or both variable stiffness and high damping. In some embodiments, the super-elastic shape memory alloy present in the first SMA component 212 is same as the super-elastic shape memory alloy present in the second SMA component 222. In some other embodiments, the super-elastic shape memory alloy present in the first SMA component 212 is different from the super-elastic shape memory alloy present in the second SMA component 222. The super-elastic shape memory alloy components 212, 222 may be in any forms that support the fastener 128 when the fastener 128 experiences very high load, which may force the fastener 128 to break or yield in the absence of the first and second super-elastic shape memory alloy components.
In some embodiments, the first SMA component 212 is in the form of a gusset, a flange, a bolt, a bolt sleeve, a gasket seal, a washer, or combinations thereof. In some embodiments, the second SMA component 222 is in the form of a gusset, a bolt, a bolt sleeve, a gasket seal, a washer, or combinations thereof. In some embodiments, as illustrated in
Different methods may be used to affix the first SMA component 212 to the first flange 210 and the second SMA component 222 to the second flange 220, the methods including, but not limited to, mechanical joining and chemical joining. Further, the methods of joining the first SMA component 212 to the first flange 210 need not be the same as the method of joining the second SMA component 222 to the second flange 220. In some embodiments, the flanges and the super-elastic shape memory alloy components are mechanically joined, including, without limitation, via embedding, adhesive joining, capping, or attaching by using nut and bolts or rivets. In some embodiments, the first SMA component 212 is at least partially embedded in the first flange 210, without damaging and/or modifying the first flange 210. In some embodiments, the second SMA component 222 is at least partially embedded in the second flange 220, without damaging and/or modifying the second flange 220. Further, the first SMA component 212 and the second SMA component 222 may be removed or replaced with other components without damaging the flanges 210, 220.
Although reference has been made to affixing the first SMA component 212 to the first flange 210 and the second SMA component 222 to the second flange 220, the first SMA component 212 and the second SMA component 222 of the present disclosure may also be manufactured integrally along with the first flange 210 and the second flange 220 respectively, and the desired low pressure and high pressure stiffness may be imparted to the first SMA component 212 and the second SMA component 222 as desired.
In the event of the support system 100 working in normal operation conditions, the first SMA component 212 and the second SMA component 222 may not experience much pressure as fastener 128 shields the SMA components 212 and 222 from the load experienced during normal operation. In the event of high loads experienced by the support system, such as in the case of a fan blade out (FBO) event, the first flange 210 and the second flange 220 tend to deflect from each other, creating a gap 215 between the first flange 210 and the second flange 220, as shown, for example, in
The load exerted by the super-elastic shape memory alloy components acts as a trigger for the super-elastic shape memory alloy components 212 and 222 to stretch. Depending on the position, size, shape, pre-working, or combinations thereof of the super-elastic shape memory alloy components 212 and 222, the super-elastic shape memory alloy components may be configured to be stretched to various degree and in required direction. In some embodiments, the first SMA component 212 and the second SMA component 222 are configured to stretch and to provide damping to the first flange 210 and the second flange 220 respectively.
The deformation of the SMA components 212, 222 provides very high damping of an excess load that is exerted by the first flange 210 and the second flange 220 in the event of high loads experienced by the rotor support system, such as in the case of a FBO event. The damping obtained by the presence of super-elastic shape memory alloy component is in general much higher when compared to any traditional dampers, as the damping obtained by the super-elastic shape memory alloy component that includes the super-elastic shape memory alloy is a result of deformation of the super-elastic shape memory alloy through a phase transformation. This deformation of SMA components 212, 222 provide high damping forces by absorbing the excess load transferred to them. In addition, the SMA components 212, 222 provide a high support stiffness under low or reduced loading conditions and low support stiffness under high or increased loading conditions. Such suitable properties of the super-elastic shape memory alloys allow the recoverable relative motion of the first flange 210 and the second flange 220 with high damping. This helps in maintaining the load exerted on the fastener 128 to a level below its breaking point, thereby maintaining mechanical connection between the first flange 210 and the second flange 220. After FBO, during a windmill, the properties of the super-elastic shape memory alloys allow the first flange 210 and the second flange 220 to regain their original positions and provide a desired amount of support stiffness to the first flange 210 and the second flange 220.
In some embodiments, the trigger points for the expansion of the first and second SMA components 212, 222 are configured such that the SMA components 212, 222 get triggered and deformed when the load exerted by the fastener 128 exceeds a threshold value of the fastener 128. The threshold value of the fastener used herein may be a value of the load that is within the safe operation load capacity of the fastener 128, thus triggering the SMA components 212, 222 even before the fastener 128 experiences any load that is high enough to render the fastener 128 to fail. After the load recedes, during a post FBO windmill mode, due to the low load exerted, the SMA components 212 and 222 may assume original or near original shape. In the absence of SMA components 212, 222, the engine windmill response is often severe due to a fan system mode and may render the fastener 128 to fail during operation of the gas turbine. In some embodiments, during flange deflection, the pressure exerted on the first flange 210 is different from the pressure exerted on the second flange 220. In some embodiments, the pressure needed for austenite to martensite transformation of the first SMA component 212 is configured to be different from the pressure needed for the same transformation in the SMA component 222. These different trigger points of transformation of SMA component 212, 222 aids in controlling the damping based on the different pressures exerted on the first flange 210 and the second flange 220 during flange deflection.
The first SMA component 212 and the second SMA component 222 materials may, in certain embodiments, be alloys of nickel and/or titanium. For example, the super-elastic shape memory alloy material may be alloys of Ni—Ti, or Ni—Ti—Hf, or Ni—Ti—Pd or Ti—Au—Cu. These shape memory alloys present non-linear behavior under mechanical stress due to a reversible austenite/martensite phase change taking place within a crystal lattice of the shape memory alloy material.
In certain embodiments, the first SMA component 212, the second SMA component 222, or both may be disposed in their prestressed mode. Installing the super-elastic shape memory alloy components 212, 222 in the pre-stressed condition shifts the hysteresis cycle of a shape memory alloy super elastic member to a range of stresses that is different from that of a non-prestressed member. The pre-stress serves to maximize the damping function of the SMA components 212, 222 so that the material is active at the maximum stresses generated. More particularly, placing the SMA components 212, 222 in a pre-stressed mode may allow the SMA components 212, 222 to enter a hysteretic bending regime, without requiring a relatively large amount of displacement.
In some embodiments, the first SMA component 212 is in the form of a gusset, a flange, a washer, or combinations thereof, and the second SMA component 222 is in the form of a gasket seal.
In some embodiments, the fastener 128 is an axial bolt. In some embodiments, the axial bolt includes a super-elastic shape memory alloy.
In some embodiments, the support system 100 includes a super-elastic shape memory alloy sleeve to the fastener 128. For example,
In some specific embodiments, a bearing support system for a gas turbine engine is disclosed. The bearing support system includes a load-bearing unit and a frame supporting the load-bearing unit. The load bearing unit includes a first flange and the frame includes a second flange. The bearing support system includes an axial bolt connecting the first flange and the second flange, a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The first super-elastic shape memory alloy component may be in the form of a gusset, a flange, or a combination thereof. The second super-elastic shape memory alloy component is in the form of a gasket seal. The first and the second super-elastic shape memory alloy components are configured to deform when a load exerted by the axial bolt exceeds a threshold load value of the axial bolt. In some embodiments, the bearing support system further includes a super-elastic shape memory alloy washer for the axial bolt. In some embodiments, the axial bolt itself includes a shape memory alloy.
In some specific embodiments, a bearing support system for a gas turbine engine is disclosed. The bearing support system includes a load-bearing unit and a frame supporting the load-bearing unit. The load bearing unit includes a first flange and the frame includes a second flange. The bearing support system includes an axial bolt connecting the first flange and the second flange, a first super-elastic shape memory alloy component in contact with the first flange, and a second super-elastic shape memory alloy component in contact with the second flange. The axial bolt includes a super-elastic shape memory alloy. The first super-elastic shape memory alloy component is in the form of a gusset, a flange, or a combination thereof and the second super-elastic shape memory alloy component is in the form of a gusset, a flange, or a combination thereof. The first and the second super-elastic shape memory alloy components and the axial bolt are configured to deform when a load exerted by the axial bolt exceeds a threshold load value of the axial bolt. In some embodiments, the axial bolt includes a shape memory alloy. In some embodiments, the bearing support system further includes a super-elastic shape memory alloy sleeve for the axial bolt.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1944135 | Dennis | Jan 1934 | A |
5160233 | McKinnis | Nov 1992 | A |
5366254 | Tucchio et al. | Nov 1994 | A |
6796408 | Sherwin et al. | Sep 2004 | B2 |
7097413 | VanDuyn | Aug 2006 | B2 |
7216831 | Wood | May 2007 | B2 |
8079773 | Blanton | Dec 2011 | B2 |
8136999 | Mons et al. | Mar 2012 | B2 |
8403634 | Arness et al. | Mar 2013 | B2 |
8430622 | Webster | Apr 2013 | B2 |
8662756 | Care et al. | Mar 2014 | B2 |
8814097 | Schnitzer | Aug 2014 | B2 |
9140137 | Mayer et al. | Sep 2015 | B2 |
9169728 | Wallace et al. | Oct 2015 | B2 |
9180982 | Baghdasarian | Nov 2015 | B2 |
9739175 | Harada | Aug 2017 | B2 |
20060269357 | Webb | Nov 2006 | A1 |
20080213062 | Johnson | Sep 2008 | A1 |
20100011493 | Wiig et al. | Jan 2010 | A1 |
20110150378 | Care et al. | Jun 2011 | A1 |
20130324343 | Gallet | Dec 2013 | A1 |
20170234157 | Khan et al. | Aug 2017 | A1 |
Entry |
---|
Joshi et al.,“Turbine Bearing Support”,,Pending IN Patent Application Sr. No. 201641017921; Filing Date:May 25, 2016; 27 Pages. |
Ganiger et al.,“Method and System for Elastic Bearing Support”,,Pending U.S. Appl. No. 15/331,121, filed Oct. 21, 2016; 27 Pages. |
Ghosh et al.,“Load Reduction Assemblies for a Gas Turbine Engine”,,Pending U.S. Appl. No. 15/331,158, filed Oct. 21, 2016; 31 Pages. |
Ac et al.,“Support Assembly Having Variable Stiffness Member”,,Pending IN Patent Application Sr. No. 201741013386; Filing Date:Apr. 14, 2017; 37 Pages. |
Ghosh et al.,“Rotor Support System Having a Shape Memory Alloy”,,Pending U.S. Appl. No. 15/811,169, filed Nov. 13, 2017; 34 Pages. |
Number | Date | Country | |
---|---|---|---|
20190162077 A1 | May 2019 | US |