This application claims the benefit of priority under 35 U.S.C. §119 of German Patent Application DE 10 2005 056969.2 filed Nov. 30, 2005, the entire contents of which are incorporated herein by reference.
The invention relates to a support unit for a scraper movable through a pipeline having radially expandable support elements for receiving components facing the pipe wall, the support elements being successively arranged in the circumferential direction of the pipeline and a method for positioning components facing the pipe wall of a scraper movable through a pipeline having radially expandable support elements for receiving components facing the pipe wall, the support elements being successively arranged in the circumferential direction of the pipeline.
Scrapers are used in pipelines, particularly for water, oil or gas transportation, for discovering faults in the pipeline, for cleaning pipelines and the like. These functions are essentially taken over by components located on the outer circumference on support parts, such as sensors for inspecting the state of the pipeline wall. There is a clearly definable spacing between the components and the inner wall or outer wall in the case of different cross-sectional robot sizes. The components are fixed to radially expandable support elements, which succeed one another in the circumferential direction of the pipeline.
In order to be able to use such scrapers in pipelines with different standard widths, such as 26 and 42 inches, or to be able to inject the scrapers via supply lines into the pipeline, test scrapers with radially expandable support structures located on a central pulling part are known and on the circumference thereof are located sensors. Such support structures with a circumference variable as a function of the internal cross-section of the pipeline have several substantially radially arranged support arms pivotable about axes perpendicular to the longitudinal median axis of the pulling part (DE 197 46 510 A1, DE 197 46 511 A1).
It is also known from DE 197 46 511 A1 for the positioning of sensors in circumferentially displaced manner on in each case two support frames which are movable axially against one another and which in the case of a given pipe circumference can be moved into one another in such a way that the sensors cover the entire pipeline circumference. The sensors are not uniformly distributed, because the spacings between the two support frames vary. This construction is relatively complicated and leads to high production costs, because for each different pipe diameter in each case a different support frame is required. It is also desirable to have a greater measurement resolution in the circumferential direction of the pipeline and for this purpose a larger number of sensors relative to the pipe diameter is necessary.
DE 102 10 746 C1 describes a sensor support body of a scraper, in which the individual segments are joined together in the circumferential direction of the pipeline to form a hollow body with a cylindrical surface, the segments in the axial direction comprising at least two successive skid pairs, which are elastically interconnected by connecting elements in order to bring about a high arc traversability of the scraper. EP 255 619 B1 and DE 203 06 958 U1 disclose a sensor support in the form of a sleeve with rubber-like characteristics, which can adapt to the pipe wall and in particular to pipeline unevennesses. These arrangements lead to higher operational and functional reliability of the scraper, but are only suitable for testing pipelines having a standard width. For different pipe diameters different constructions are necessary, which leads to high manufacturing costs and to a considerable storage expenditure.
The problem of the invention is to provide a device of the aforementioned type which, whilst avoiding the aforementioned disadvantages, can be more particularly used in pipelines having different standard widths and has a high operationally reliability, a higher measurement resolution in the circumferential direction and a simple, inexpensive construction.
In the case of a device of the aforementioned type, the invention solves this problem in that in each case at least two successive support elements are interconnected pivotably by at least one connecting member articulated thereto that the angular spacing of the support elements is varied through connecting members pivotably articulated thereto and connecting the same under the action of radially inwardly or outwardly acting forces in such a way that on expansion or compression the spacing of two successive support elements is increased or decreased by in each case the same amount.
In a device constructed according to the invention, there is consequently a uniform spacing in the circumferential direction of the pipeline between in two respective successive support elements as a result of a pivoting of the connecting elements in or counter to the scraper movement direction during the expansion of the support elements. This leads to a uniform distribution of the components in the circumferential direction of the pipeline in the case of different pipe diameters.
At least two components are arranged in displaced manner in the circumferential direction of the pipeline in each expansion position on the given support elements. Alternatively in a specific expansion position the components on the support elements are positioned parallel to the scraper movement direction.
In a preferred development the components are successively arranged on the support elements in the support element extension direction, so as to form an angle of less than 90° to the scraper movement direction, the support element is curved in the circumferential direction of the pipeline. On changing the expansion position of the support elements, there is a change to the angle of the support element extension direction and the successively positioned components with respect to the scraper movement direction. Following an expansion of the support elements said angle is larger and following a compression of the support elements said angle is smaller. Thus, in different expansion positions there is an uninterrupted arrangement of components over the entire pipe circumference. During the movement of the scrapers through a given axial position of the pipeline, the entire pipe circumference is uniformly traversed by the components at said axial position. Preferably all the components have the same radial spacing from the pipe wall in each expansion state.
In a preferred development, in each case two successive support elements are pivotably interconnected by two articulated connecting members. In addition, a connecting member is so located on three successive support elements that on pivoting the connecting member about an axis at the central support element the spacing of the respective outer support elements from the central support element is increased or decreased by the same amount. This is brought about in that the connecting member is articulated at its centerpiece in the center of the respective central support element and at its end pieces preferably on a front or rear end of one or the other outer support element in an identical distance to the center.
In a preferred construction the connecting members have a double S-shape. The connecting members can also be constructed as support elements for receiving components facing the pipe wall. They can in particular be sensors for carrying out measurements on the pipeline.
The number of support elements can be chosen freely as a function of the pipe wall sizes or the task involved. The number and spacing of the components located on the support elements can also be varied. In a preferred construction the support elements and/or the connecting members are flexibly designed in order to adapt to the pipe wall shape. Thus, even in the case of ovalizations, bulges or other noncircularities of the pipeline a high operability is ensured. The support elements can be formed by a flexible base element, such as spring steel or plastic, or from several flexibly interconnected components. In an advantageous construction the connecting members have the same resistance moment as the support elements. More particularly if the connecting members act in the manner of springs, a high adaptability of the support unit to the geometrical conditions is ensured.
For radial positioning purposes the support elements can be located on a support frame and supported by the latter. Said support frame can comprise two guide elements associated with a support element and which are positioned to the front and rear with respect to the scraper movement direction. The guide elements can flexibly adapt to the geometrical conditions and can be interconnected by a connecting mechanism. If little space is available, the support frame may only comprise a guide element associated with a support element.
In another preferred construction the support frame comprises a spreading mechanism, which brings into and fixes in the desired radial position the components facing the pipe wall. This spreading mechanism can comprise individual spring elements, which are located on several or all the support elements and act radially. Alternatively the spring elements can act tangentially to the circumferential direction of the pipeline, so that through the pipeline curvature a radial component is produced for positioning the support elements.
In a preferred development of the method according to the invention, on expanding the support elements the angle of an axis on which at least two of the components are successively positioned and which is curved in the pipeline circumferential direction, is increased by in each case the same amount with respect to the scraper movement direction.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
a) is side view of a support element according to the invention;
b) is a plan view of the support element according to the invention;
a) is a diagrammatic plan view of an inventive arrangement of support elements in a first expansion position;
b) is a diagrammatic plan view of an inventive arrangement of support elements in a second position;
a) is a diagrammatic cross-section through an inventive arrangement of support elements in a first expansion position;
b) is a diagrammatic cross-section through an inventive arrangement of support elements in a second expansion position;
a) is a plan view of an inventive support unit in a first expansion position;
b) is a plan view of an inventive support unit in a second expansion position;
a) is a diagrammatic cross-section through an inventive arrangement of support elements with a support frame in a first expansion position;
b) is a diagrammatic cross-section through an inventive arrangement of support elements with a support frame in a second expansion position;
a) is a diagrammatic front view of an inventive arrangement of support elements in a first expansion position;
b) is a diagrammatic front view of an inventive arrangement of support elements in a second expansion position;
a) is a diagrammatic side view of an inventive arrangement of components in a first expansion position; and
b) is a diagrammatic side view of an inventive arrangement of components in a second expansion position.
Referring to the drawings in particular,
a) diagrammatically shows in a broadened representation the arrangement of support elements in an inventive support unit 1, in each case two successive support elements 2 being equidistantly spaced, so that also two horizontally adjacent components are equidistantly spaced. In use, the support unit 1 is circularly bent in such a way that its ends 1a, 1b are adjacent (cf. also
Following an expansion of the closed support unit the spacing between two succeeding support elements 2 is increased to the same amount and as is diagrammatically shown in
In a preferred development the support elements 2 are flexibly constructed permitting an adaptation to curved surfaces. Thus, more particularly on traversing pipelines, there is a uniform arrangement of the components 3 in the radial direction on the inner wall. The support elements 3 of
In a preferred construction the connecting members 4 are flexibly constructed, so that on adapting to the pipeline circumference the support unit 1 has a cylindrical shape or contour, as shown in
For the radial arrangement and fixing of the support elements 2, they are in each case fitted to at least one guide element 6 of a support frame.
In each expansion position preferably the last component 3 of a support element 2 is connected to the first component of the following support element with the same spacing as between the components of one support element in the circumferential direction of the pipeline 5. This is shown in
While specific embodiments of the invention have been described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 056 969 | Nov 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4807484 | Goedecke | Feb 1989 | A |
6196075 | Comello | Mar 2001 | B1 |
6339993 | Comello | Jan 2002 | B1 |
6381797 | Filippovitch | May 2002 | B1 |
7354348 | Kapustin et al. | Apr 2008 | B2 |
20050126316 | Richter | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
203 06 958 | Jul 2003 | DE |
203 06 958 | Aug 2003 | DE |
0 078 072 | May 1983 | EP |
1 046 856 | Oct 2000 | EP |
WO 2004088301 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070119006 A1 | May 2007 | US |