The invention of the current application relates to a support for a positioning apparatus, in particular to a support for a coordinate measurement machine (CMM).
A positioning apparatus, such as a CMM, can comprise one or more members that are moveable relative to each other for positioning a tool, such as an inspection device, relative to a workpiece/artefact. For example, a CMM traditionally comprises a plurality of moveable members, e.g. linearly moveable members arranged in series. Generally, positioning apparatus are configured to facilitate relative motion of a tool and/or object in at least two or three mutually orthogonal dimensions, e.g. X, Y and Z. Such positioning apparatus are commonly known as “Cartesian” positioning apparatus (or Cartesian CMM).
Commonly relative movement between the tool and the object can be achieved by mounting the object on a platform and movement of the tool relative to the object. Movement of the tool in three orthogonal directions can be achieved by providing a stationary beam mounted on two (or more) supports, often referred to as a Y-beam. Another beam may be mounted perpendicular to the Y-beam in such a way as to allow movement along the Y-beam, this beam is often referred to as the X-beam. A further beam can be mounted to the X-beam orthogonal to both the X-beam and the Y-beam in such a way as to allow movement along the X-beam and to allow movement of the further beam (or part of the further beam) in the elongate direction of the further beam (often referred to as the Z-direction). The further beam is often called the quill. Examples of such arrangements are disclosed by U.S. Pat. No. 5,505,004 and EP 2594893.
EP 2594893 discloses an apparatus having longitudinal members mounted on pillars and where the longitudinal members are connected by cross members to form a frame to cause deformations of the frame itself to be uncoupled from those of the pillars.
U.S. Pat. No. 5,505,004 discloses an apparatus where a beam is connected to a first leg by a pivot joint which permits the beam to rotate in the vertical plane of the legs, and is connected to the second leg by a connection which permits the beam to rotate in a vertical plane and also move in a direction of its longitudinal axis in relation to the second leg.
According to a first aspect of invention there is provided a positioning apparatus comprising a support extending in a first direction, and a beam extending in a second direction, the beam movably mounted to the support so as to be movable in the first direction and exerts a load on the support, wherein the support comprises a profile which when the beam exerts the load thereon the profile of the support is deformed such that the beam is maintained at a substantially constant orientation for all locations of the beam along the support. Optionally the first direction and the second direction are perpendicular. Optionally the first direction lies in a horizontal plane. Optionally the second direction lies in a horizontal plane. Optionally the load applied by the beam onto the support comprises a vertical component.
The support may be mounted on two or more pillars. Optionally the support may be at least 2 metres in length, optionally at least 2.5 metres in length, optionally at least 3 metres in length, optionally at least 3.5 metres in length, optionally at least 4 metres in length, optionally at least 5 metres in length.
Maintaining the beam at constant orientation for all locations along the support can allow improved metrological performance and/or can allow the use of longer beams. This can allow larger objects to be measured by a CMM. The invention can also allow the use of lighter beams compared to the prior art while providing the same measurement space. This can reduce the moving mass which can provide dynamic advantages.
Optionally deformation of the support by the load applied by the beam is such that the beam is maintained at a substantially constant height for all locations of the beam along the support. The beam may be maintained at a substantially constant angle relative to a horizontal plane.
Optionally the support is configured to compensate for YRX deformations. Optionally the support is configured to compensate for YRZ deformations. Optionally the support is configured to compensate for both YRX and YRZ deformations. Optionally the support is configured to compensate for XRY deformations. Optionally the support is configured to compensate for XRZ. Optionally the support is configured to compensate for both XRY and XRZ.
The beam may extend between the support and a substantially inflexible support. Optionally the substantially inflexible support comprises granite. Optionally the beam is movably mounted thereto so as to be movable in the first direction. Optionally the support comprises a (further) beam. Optionally the support comprises a pair of substantially parallel spaced apart supports.
Optionally the beam extends between the pair of spaced apart supports (which may comprise beams) and is movably mounted thereto so as to be movable in the first direction.
A first support of the pair of parallel spaced apart supports may be optimised for maintaining the beam at a constant angle, and a second support of the pair of parallel spaced apart supports may optimised for maintaining the beam at a constant height. Alternatively, both of the parallel spaced apart supports may be optimised for maintaining the beam at a constant angle. Optionally both of the parallel spaced apart supports may be optimised for maintaining the beam at a constant height. Optionally both of the parallel spaced apart supports may have identical profiles.
Optionally the positioning apparatus comprises a coordinate measurement machine.
According to a second aspect of invention there is provided a support for a positioning apparatus comprising the profile as defined an any previous claim.
According to a third aspect of invention there is provided a method of manufacturing the positioning apparatus of the first aspect. The method of manufacturing the positioning apparatus of the first aspect may comprise machining the support to have a profile such that when the beam exerts the load thereon the profile of the support is deformed such that the beam is maintained at a substantially constant orientation for all locations of the beam along the support. Optionally the profile is a non-linear profile. Optionally at least part of profile is curved. Optionally an error map is created for deviations of height and/or angle of the beam for locations of the beam along the support.
According to a fourth aspect of invention there is provided a method of measuring an object using the positioning apparatus of the first aspect. The method of measuring an object using the positioning apparatus of the first aspect may comprise deforming the support by a load applied by the beam as the beam moves along the support in the first direction such that the beam is maintained at a substantially constant orientation for all locations of the beam along the support. Optionally the load applied by the first beam to the second beam is due to the weight of the second beam.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
And
As can be seen in
It is possible using beam theory to calculate YRX for any position of the X-beam 110 along the Y-beam 108. It is also possible to calculate YRX for any position of the X-beam 110 along the Y-beam 108 experimentally. It is also possible to calculate YRX for any position of the X-beam 110 along the Y-beam 108 using a numerical method.
From the calculations 202 and 204 YRX values 206 can be calculated. This can be achieved by subtracting the sag at the rear bearing from the sag at the front bearing for a particular location in order to find the difference in sag for a particular location of the X-beam along the Y-beam. The difference is then divided by the pitch of the bearings (in the embodiment illustrated the pitch is 850 mm). This gives a value for YRX for the particular location of the X-beam along the Y-beam. Performing this calculation for all locations of the X-beam along the Y-beam and subtracting the y=0 value of YRX from each subsequent position gives the third dotted line 206 shown in
In order to improve the measurement accuracy as well as simplify measurement operations it is desirable to reduce or eliminate YRX. This can be achieved by changing the profile of the Y-beam.
It is possible to calculate the profile of a Y-beam required which would reduce YRX to substantially zero for all positions of the X-beam along the Y-beam. Referring to
In order to counteract the deformation of the Y-beam 108 due to the load applied by the X-beam at all locations of the X-beam along the Y-beam 108, it will be understood that the beam can be profiled such that the Y-beam's profile increases in height (in the z-direction) based on the amount of deflection caused by load applied by the X-beam to a Y-beam having a linear profile. In the current embodiment of a Y-beam supported by two pillars 104, 106 this will mean the profiled (i.e. non-linear) Y-beam having a profile corresponding to a fourth order polynomial of the form:
For any given values of coefficients A, B, C, D, E beam theory can be used to calculate the sag (due to X-beam weight) of the Y-beam for locations of a front bearing of the X-beam along the Y-beam and the sag due (to X-beam weight) of the Y-beam for locations of a rear bearing of the X-beam along the Y-beam, i.e. it is possible to calculate values analogous to lines 202, 204 of
It is possible to use a numerical method, for example the GRG non-linear model of Microsoft XL (RTM) to iteratively determine a values of coefficients A, B, C, D, E such that the X-beam is maintained at a substantially constant orientation for all locations along the Y-beam.
Alternatively, it is also possible to determine the coefficients A, B, C, D by calculation.
In other embodiments the desired profile of the Y-beam can be determined experimentally.
In one embodiment a beam having the desired profile is manufactured by a linear beam having the desired length being located on two supports which correspond to the supports of the CMM and then can be machined to give the desired profile. Depending on the machining technique used it may be necessary to apply a cutter radius offset such as that represented by line 304 of
In an alternative embodiment a beam having the desired profile is manufactured by distorting a beam and machining the beam flat. This can be achieved by locating a beam on two pillars (or otherwise suspending the beam and applying a load to the beam). For example, the beam (which may or may not be a linear beam) can be loaded with at least one weight, e.g. weights suspended from one or more locations along the beam between two pillars can be used to distort the beam. The top surface of the beam can then be machined flat. After the beam has been machined flat, the weights can be removed, and the unloaded beam assumes the desired conformation. The positioning of the weights and their mass will depend on the desired conformation of the beam after machining, which in turn depends on factors including the length of the beam, beam cross-section, stiffness of the beam, and the load to be applied by (for example) the X-beam during use. Calculations for determining the mass of the weights needed and their locations can involve beam theory or can be determined experimentally.
While an embodiment relating to reducing YRX has been described, it will be understood that in other embodiments similar methodology can be applied to the X-beam and quill as have been described above in relation to the Y-beam and X-beam for example to reduce XRY (i.e. roll of the quill at positions along the X-beam). In still further embodiments the profile of the Y-beam is such that the change in height (i.e. z-position) of the X-beam is reduced for all locations of the X-beam along the Y-beam. In this case beam theory, or experimentation, or a numerical method may be used to determine the height of the X-beam in positions along the Y-beam and a numerical method, or calculation, or experimentation may be used to calculate the desired profile of the Y-beam. Other embodiments can comprise an X-beam profiled so as to reduce the change in height of the quill in positions of the quill along the X-beam.
In some embodiments the Y-beam can be manufactured to have a profile configured to compensate for the YRX and YRZ deformations.
While in some of the above embodiments a coordinate measuring machine comprising two spaced apart Y-beams have been described, in further embodiments two spaced apart supports may be provided, where a first of the spaced apart supports comprises a Y-beam as described above (comprising a beam which is supported on two (or more) pillars) and the second support comprises a substantially inflexible support, i.e. a support which does not change profile due to the weight of an X-beam on the support. Such a support could comprise a solid granite support, e.g. a piece of granite having a length in the Y-direction required to allow the desired amount of X-beam movement, be suitably shaped for mounting the X-beam thereto, and a height (in the Z-dimension) such that the support extends from the base to the desired height of the support.
Number | Date | Country | Kind |
---|---|---|---|
21200859.3 | Oct 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2022/052506 | 10/4/2022 | WO |