1. Field of the Invention
The present invention relates to supported catalysts, more specifically to supported catalysts containing nanometer sized platinum particles dispersed throughout the catalyst support material.
2. Description of the Related Art
Many industrial products such as fuels, lubricants, polymers, fibers, drugs, and other chemicals would not be manufacturable without the use of catalysts. Catalysts are also essential for the reduction of pollutants, particularly air pollutants created during the production of energy and by automobiles. The majority of industrial catalysts are composed of a high surface area support material upon which chemically active metal nanoparticles (i.e., nanometer sized metal particles) are dispersed. The support materials are generally inert, ceramic type materials having surface areas on the order of hundreds of square meters/gram. This high specific surface area usually requires a complex internal pore system. The metal nanoparticles are deposited on the support and dispersed throughout this internal pore system, and are generally between 1 and 100 nanometers in size.
The effect of nanoparticle size on catalytic activity is recognized in the current art. An article by Alexis T. Bell entitled, “The Impact of Nanoscience on Heterogeneous Catalysis,” Vol. 299, Science, Mar. 14, 2003, teaches that the reactivity and selectivity of catalyst nanoparticles are strongly dependent on their size.
In addition to size, chemical softness of nanoparticles, in particular, chemical softness at the surfaces of nanoparticles, affects the catalytic efficiency of nanoparticles. The present invention provides a method for modeling the chemical softness of nanoparticles, so that the catalytic efficiency of such nanoparticles can be quantified in a systematic manner.
The supported catalysts containing platinum nanoparticles having average surface softness values (expressed in scaled units ranging from 0 to 1) between 0.07198 and 0.09247 exhibit high catalytic efficiency. The catalytic efficiency of such platinum nanoparticles for CO oxidation, expressed as the turn-over frequency (TOF), expressed as per second/per exposed (surface) atom, was observed to be on or above 0.03062 s−1. By contrast, the TOF of two prior art nanoparticle samples was observed to be 0.02946 s−1 and 0.02982 s−1, respectively. The supported catalysts containing platinum nanoparticles with tighter average surface softness ranges exhibit even higher catalytic efficiencies. The TOF for CO oxidation of platinum nanoparticles having average surface softness values (expressed in scaled units ranging from 0 to 1) between 0.08031 and 0.08679 was observed to be on or above 0.06554 s−1.
The chemical softness of a nanoparticle is obtained using results from Density Functional Theory (DFT) modeling, an extended version of Embedded Atom Method (EAM) modeling, and continuum modeling based on size and shape of the nanoparticle. In the embodiment of the invention described herein, a platinum nanoparticle of a certain size and shape is first modeled using the extended EAM (XEAM) and EAM parameters that have been validated with results from DFT modeling, to obtain atomic energy densities at each atom location. The chemical softness value at each atom location is then calculated from the atomic energy densities and various parameters that are derived based on results from DFT modeling. The surface chemical softness value is derived from the local chemical softness values based on the geometry and atomistic structure of the platinum nanoparticle.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The physical characteristics of the platinum batches and their measured TOF for CO oxidation are summarized in Table 1 below. The example column identifies the synthesis example that is disclosed in U.S. patent application Ser. No. 10/975,646. The support material for all batches is alumina having a BET surface area of 150 m2/g. Other support materials that may be used to support platinum nanoparticles include silica, oxides of vanadium, oxides of titanium, oxides of zirconium, oxides of iron, cerium oxides, carbon, zeolites, and molecular sieves.
The characterization of the platinum batches was carried out by transmission electron microscopy (TEM). Alternatively, scanning transmission electron microscopy (STEM) may be used. Prior to the measurements, a statistically valid sample (about 10-20%) of the platinum metal particles were prepared using the technique described below and disclosed in U.S. patent application Ser. No. 11/016,578, filed Dec. 17, 2004, the entire contents of which are incorporated by reference herein.
First, the alumina-supported catalyst containing platinum particles is ground or milled into fine powder. Then, the powder is mixed into ethynol, and hydrofluoric acid is added to the solvent. The HF acid is effective in separating the platinum particles from the alumina support. The desired concentration of HF in the resulting solution is about 20%, although HF concentration in the range of 10-50% will also work. The resulting solution is then placed in an ultrasonic chamber and ultrasonic waves are generated and applied to the solution for about 1 hour. After letting the solution sit for 12-24 hours, a sample is extracted from the solution and applied to a molybdenum grid that is used by the TEM device. Before the metal grid is placed in the TEM device for imaging, the sample applied to the molybdenum grid is dried.
The average diameter <D> of the platinum batches is estimated as twice the average harmonic parameter. The harmonic parameter is equal to 2×(Area of the nanoparticle observed with TEM)/(Perimeter of the nanoparticle observed with TEM). Dimension measurements made by TEM have an estimated error of about 10%.
The TOF for CO oxidation of the platinum batches was measured in the following manner. The batch is first subjected to a standardized calcining process. The standardized calcining process includes: (1) loading the batch into a reactor; (2) purging the reactor with He at room temperature to remove air in the reactor; (3) heating the batch in 1% oxygen (remainder inert gas) at a rate of 3° C./minute from room temperature to about 500° C.; (4) purging the reactor for 10 minutes with pure He at 500° C. to remove oxygen; (5) purging the reactor in 5% hydrogen (remainder inert gas) for 1 hour at 500° C.; and (6) purging the reactor in pure He while cooling down the reactor to room temperature. Then, without removing the batch from the reactor, the CO oxidation is carried out. The CO oxidation process includes: (1) purging the reactor with the reaction mixture of 1.4% CO, 5.6% O2 (balance He) at room temperature; and (2) heating the reactor from room temperature to 200° C. at about 2° C./minute with the aforementioned CO/O2 mixture. During this heating step, CO2 yield is measured as a function of the temperature.
In the equation above, N is the total number of atoms and NS is the total number of surface atoms. These values are derived using the area measurements from TEM and rM, the metallic radius of the atom.
Table 1 shows that the TOF for platinum batches with similar average diameters, e.g., Pt-64 vs. Pt-74, may vary quite a bit. This indicates that size alone is a poor predictor of catalytic performance of a nanoparticle. The present invention takes into account additional factors with the goal of more accurately predicting the catalytic performance of a nanoparticle. One such additional factor is chemical softness, in particular, the average chemical softness at the surfaces of the nanoparticle (also referred to herein as “average surface softness”).
The process for determining the average surface softness is illustrated in the flow diagram of
In step 32, the atomic energy density at each atom location of the nanoparticle, Ei, is calculated using an extended version of the EAM. The EAM provides the following formulations for Ei:
The XEAM extends the above formulations for the EAM in the following manner:
The function Φ(Rij) is the pair potential function in the EAM formulation and the function Fi(ρi) is the embedding function in the EAM formulation. The symbol, ρ, represents the (modeled) charge density function. The function, ρi, represents the charge density function at atom location i, and the function, ρasym, represents the asymmetric charge density function at atom location i. The formulations of ρi and ρiasym are set forth below:
where ρja is the charge density contribution coming from site j to the atom at site i. A total of five EAM parameters are used in the EAM. They are: χ, α, β, F1 and ra. The use of these parameters in accordance with EAM and as applied to seven face-centered cubic (fcc) metals (Al, Ag, Au, Cu, Ni, Pd, and Pt) and their binary alloys is described in an article by J. Cai and Y. Ye, “Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys,” Phys. Rev. B, Vol. 54, p. 8398 (1996), the entire contents of which are incorporated by reference herein.
In the embodiment of the invention described herein, these parameters are derived to reproduce the energy density computed using DFT modeling and have the following values for platinum:
χ=4.3 Å−1;
α=0.4033 eV;
β=5.6379;
F1=0.6815 eV; and
ra=2.3839 Å.
In step 33, the chemical softness at each atom location of the nanoparticle, si, is calculated using the following formulation:
where:
the chemical softness, si, is unit-less;
sgs is the softness for the bulk atoms (set to 0);
sat is the softness of a free atom is derived experimentally or it may be calculated using DFT; this value is set to 1 and all other softness values are scaled with respect to this value;
{C1, C2, C3, C4, C5} are universal constants that are used to model any element including platinum;
C1=0.00031671;
C2=2.03164;
C3=−0.0198892;
C4=−6.60821; and
C5=5.04367.
Egs is the atomic energy density for the bulk atoms (this value is different for different metals; for platinum, Egs=−5.7 eV, but for silver, Egs=−2.8 eV); and
Eat is the atomic energy density for a free atom (set to 0).
In step 34, the average surface softness is derived from the local chemical softness values based on the geometry and atomistic structure of the nanoparticle. As part of this derivation, the computed local softness value for each atom, si, is first distributed around that value using a Gaussian distribution with a spread, σ, to model the surface imperfections due to temperature. The spread, σ, is zero for ideal conditions (e.g., T=0° K). Otherwise, the spread, σ, is equal to kB*T, where kB is the Boltzmann constant and T is temperature in °K at which CO2 yield is measured to compute TOF. The Gaussian distributions are then summed to produce the softness profile N(s) that specifies the number of atoms (N) corresponding to a softness value, s. The softness profile, N(s), can be expressed in the following equation form:
where Ntotal is the total number of atoms in the nanoparticle being modeled.
The average surface softness, savg, is derived from the softness profile, N(s), using the following equation:
where f(s) is the filtering function that filters out the softness values associated with the bulk atoms.
The process for determining the average surface softness of a nanoparticle batch is illustrated in the flow diagram of
In step 42, the process steps 32-33 of
The TOF curve plotted against surface softness exhibits a volcano curve in the shape of a Lorentzian function. Table 2 shows different platinum nanoparticle batches and the resulting average surface softness values (expressed in scaled units ranging from 0 to 1) that fall on the volcano curve in the shape of a Lorentzian function. The “TOF vs. softness” volcano curve is shown in
While particular embodiments according to the invention have been illustrated and described above, those skilled in the art understand that the invention can take a variety of forms and embodiments within the scope of the appended claims.
This application claims the benefit of Provisional Patent Application No. 60/629,624, filed Nov. 19, 2004, entitled “Supported Catalysts Having Platinum Particles.”
Number | Name | Date | Kind |
---|---|---|---|
2781323 | Hunter | Feb 1957 | A |
3425875 | Pond et al. | Feb 1969 | A |
4654317 | Sachtler et al. | Mar 1987 | A |
5275999 | Tsurumi et al. | Jan 1994 | A |
5439865 | Abe et al. | Aug 1995 | A |
6121191 | Komatsu et al. | Sep 2000 | A |
6168775 | Zhou et al. | Jan 2001 | B1 |
6197721 | Didillon et al. | Mar 2001 | B1 |
6288295 | Didillon et al. | Sep 2001 | B1 |
6306794 | Suzuki et al. | Oct 2001 | B1 |
6335305 | Suzuki et al. | Jan 2002 | B1 |
6365545 | Komatsu et al. | Apr 2002 | B1 |
6417135 | Dyroff | Jul 2002 | B1 |
6503866 | Shepherd et al. | Jan 2003 | B1 |
6514904 | Moser et al. | Feb 2003 | B1 |
6514905 | Hanaki et al. | Feb 2003 | B1 |
6551960 | Laine et al. | Apr 2003 | B1 |
6660897 | Marchal-George et al. | Dec 2003 | B1 |
6680279 | Cai et al. | Jan 2004 | B2 |
6746597 | Zhou et al. | Jun 2004 | B2 |
6861387 | Ruth et al. | Mar 2005 | B2 |
6919065 | Zhou et al. | Jul 2005 | B2 |
6956007 | Cai et al. | Oct 2005 | B2 |
7037875 | Hu et al. | May 2006 | B2 |
7105137 | Efstathiou et al. | Sep 2006 | B2 |
7109145 | Ruth et al. | Sep 2006 | B2 |
7125822 | Nakano et al. | Oct 2006 | B2 |
7163963 | Fraenkel | Jan 2007 | B2 |
7314846 | Kuno | Jan 2008 | B2 |
7323432 | Niihara et al. | Jan 2008 | B2 |
7381682 | Jia et al. | Jun 2008 | B1 |
7381683 | Wang et al. | Jun 2008 | B1 |
20030104936 | Mao et al. | Jun 2003 | A1 |
20050025960 | Levey et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60629624 | Nov 2004 | US |