This disclosure relates to supporting consumer products for display and storage, and more particularly, to supporting consumer products on adjustable and mobile shelves within a self-supporting frame system for use in, for example, a walk-in cooler or other display area.
Storage and display of consumer products may be accomplished by a variety of different devices, structures, and methods. In particular, the storage and display of food products and beverages may typically utilize a shelving system consisting of a frame and one or more shelves connected to the frame. The frame, generally, may include four vertical legs, which allow each shelf to be attached to the legs at each corner of the shelf. In such a fashion, many product shelving systems may rely almost exclusively on the connection of the shelves to the vertical legs to allow the entire structure to stand upright and support the product. Often, for heavier product to be supported by the shelving system, more shelves must be included within the system to provide additional structural stability.
Consumer products, such as food and beverage containers, also come in many different sizes and configurations. For example, although particular beverage containers, such as, for example, aluminum cans, are substantially similar in certain dimensions (e.g., diameter), different brands or drink-types may come in containers of varying height. Often, a shelving system designed to support various types of containers may be able to change a distance between shelves to account for the height difference in the containers. In order to change this distance, however, product may need to be removed from the particular shelf or shelves before such a change may take place. Moreover, depending on the number of shelves to be changed and the degree to which such shelves support the shelving system frame, an amount of time and labor required to effect such a change may be great.
In the case of food and beverage containers, such containers often break or leak the food substance onto the shelving system on which they are supported. Because cleanliness in the storage and display of food and beverages may be of particular concern for certain businesses, such as grocery stores and convenience stores, broken or leaking food and beverage containers may cause problems for a particular shelving system. For instance, various shelving systems may be particularly immobile when supporting a capacity of food and beverage product. Thus, food and beverage substances that leak onto a floor below the shelving system may be particularly difficult to remove. In such cases, removal of the entire capacity of food product or even disassembly of the shelving system may be required in order to sanitize the floor.
This disclosure relates to supporting consumer products for display and storage, and more particularly, to supporting consumer products on adjustable and mobile shelves within a self-supporting frame system for use in, for example, a walk-in cooler or other display area.
In one general aspect, a shelving system for supporting consumer products includes a self-supporting frame including a substantially U-shaped opening and a mobile shelf lockably engageable within the substantially U-shaped opening. The mobile shelf is removable from the substantially U-shaped opening independent of movement of the frame without unloading one or more consumer products from the mobile shelf. In more specific aspects, the mobile shelf may include a support surface adapted to pivotally rotate to at least one support angle. The support surface may pivotally rotate to the support angle without unloading one or more consumer products from the mobile shelf. Also, the mobile shelf may disengage the self-supporting frame using a single point of control.
In another general aspect, a shelving system for supporting consumer products includes a base structure, a plurality of substantially vertical support members, one or more side cross-members, and a mobile support shelf. The base structure includes two side base members, where each side base member includes a slot at a first end of the side base member. The base structure further includes a front base member attached to a second end of each side base member to define a substantially U-shaped enclosure. Each vertical support member includes a base end and a top end and each support member is attached to the base structure at the base end. Also, each side cross-member is coupled between two vertical support members, where each side cross-member is substantially coplanar with one of the two side base members. The mobile support shelf includes a shelf frame adapted to fit within the U-shaped enclosure. The shelf frame includes one or more wheels coupled to the shelf frame and a latch pin adapted to engage the slot in a proximate side base member as the shelf frame is inserted into the U-shaped enclosure. The mobile support shelf also includes a shelf pivotally coupled to the shelf frame and a release lever coupled to the latch pin and adapted to disengage the latch pin from the slot. In certain aspects, the shelf may be a wire shelf including one or more side rails and a front rail at the front end of the shelf. The wheels, in various aspects, may be fully rotatable caster wheels.
In more particular aspects, the system may further include a top structure, which includes a front top member and a back top member. The front top member and the back top member are attached to two vertical support members at or near the top ends of the two vertical support members. A top shelf may be attached to at least one of the top structure and one or more vertical support members. In some aspects, the top shelf may be coupled to the front top member and the back top member by one or more shelf clips.
The system may further include a plurality of support legs adapted to adjust a height of the base structure, where each side base member may include a vertical aperture adapted to receive a support leg. At least one support leg may include a substantially conical support foot. Also, the system may further include one or more substantially vertical rack gears, where each vertical rack gear may be configured to receive a pinion gear. In some aspects, each vertical rack gear may be attached to one of the plurality of vertical support members.
In certain more specific implementations, the side cross-members may be welded to the vertical support members. In addition, in various aspects, at least one of the base structure, the plurality of substantially vertical support members, the one or more side cross-members, and the top structure may be made of corrosion resistant steel; titanium; powder-coated extruded aluminum; or composite plastic. At least one of the top structure, the plurality of substantially vertical support members, and the base structure may also be detachably secured to the walk-in cooler. In some aspects, the consumer products may include at least one of a bottled consumer product; a canned consumer product; and a housing consisting of multiple drink and/or food containers
In more particular aspects, a guide plug may be coupled to the first end of each side base member, where the guide plug may direct the shelf frame into the U-shaped enclosure. Further, a front end of the shelf may be located a first distance from the shelf frame and the system may further include a shelf position seat formed with the shelf frame and a position bar pivotally attached to the shelf and adapted to engage the shelf position seat to displace a back end of the shelf a second distance from the shelf frame. In certain implementations, the second distance may be greater than the first distance. A difference between the first distance and the second distance may be approximately 3½ inches.
In various implementations, the base structure may be a first U-shaped base structure and the front base member may include a first aperture. In such implementations, the system may further include a second base structure including a first substantially L-shaped base component consisting of a first protrusion adapted to insert within the first aperture. The first substantially L-shaped base component may be detachably secured to the front base member. Further, the plurality of vertical support members may consist of four vertical support members and the system may also include a first additional vertical support member and a second additional vertical support member. Each of the first and second additional vertical support members may include a base end and a top end and each may be attached to the first substantially L-shaped base component at the base end. The first substantially L-shaped base component may also include a second aperture, and the system may further include a third base structure comprising a second substantially L-shaped base component consisting of a second protrusion adapted to insert within the second aperture. The second substantially L-shaped base component may be detachably secured to the first substantially L-shaped base component.
In another general aspect, a method for installing a shelving system for supporting consumer products in a walk-in cooler or other display area includes placing a base structure on a substantially planar surface where the base structure includes two side base members and a front base member defining a substantially U-shaped enclosure; attaching a plurality of vertical support members to the base structure at a base end of each vertical support member; attaching a plurality of side cross-members to adjacent vertical support members, the cross-members substantially coplanar with the side base members; attaching a front top member and a back top member to the plurality of vertical support members at a top end of each vertical support member; and detachably securing at least one of the base structure, the plurality of vertical support members, or the top structure to the walk-in cooler; and lockably engaging a wheeled support shelf within the substantially U-shaped enclosure.
Various implementations of a system for supporting consumer products according to the present disclosure may include one or more of the following features. For example, the system may include a frame structure that is self-supporting and may remain upright during product loading and removal. As another example, the system may include a substructure that minimizes product handling during product exchange and increases safety during a product loading process of the system. Also, the system may include a frame structure that allows a particular adjustable shelf to be installed or removed independently of other adjustable shelves within the system. As another example, the system may include a frame structure that remains decoupled from a walk-in cooler structure without loss of structural integrity. The system may also allow for a frame structure that may be adjustable for plumb at multiple points of the frame structure without removal of product. As another example, the system may include a frame structure that may provide a more sanitary food and beverage support system by allowing less food and beverage substance to become entrained in the frame structure. As an even further example, the system may include a frame structure and moveable product support shelf that allows a floor beneath the frame structure to achieve a higher degree of sanitation. The system may also allow consumer product to be supported and displayed at various gravity feed angles on a moveable support shelf. As another example, the system may allow for a moveable support shelf to lockably engage with a frame structure to allow for easier product removal and exchange independent of movement of the frame structure. As another example, the device or system may allow for multiple frame structures to share one or more vertical supports to more efficiently utilize floor space.
Various implementations of a device or a system for supporting consumer products according to the present disclosure may also include one or more of the following additional features. For example, the device or system may allow for a substantially infinitely adjustable shelf independently moveable and removable of other adjustable shelves. Also, the device or system may allow for an adjustable shelf to be vertically adjusted under load from a single point of adjustment. As another example, the device or system may utilize a single drive mechanism to adjust an adjustable shelf within a frame structure through substantially infinite increments. As yet another example, the device or system may utilize a worm gear mechanism to hold an adjustable shelf in a static position while under load. As an additional example, the device or system may allow for varying gravity feed angles of an adjustable shelf. As yet an additional example, the device or system may allow for a mobile, cantilevered shelf through a rack and pinion gear system. In addition, the device or system may allow an adjustable shelf to receive high loads by utilizing a rack and pinion gear system at each corner of the adjustable shelf with one point of adjustment control. Further, the device or system may at least partially prevent a catastrophic failure of a mobile shelf by engaging a frame structure and dispersing a friction of a load over a large contact area.
These general and specific aspects may be implemented using a device, system or method, or any combinations of devices, systems, or methods. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Turning particularly to
With reference to
Guide plugs 230, typically, are formed plastic inserts into the side base members 210. The guide plugs 230 have a substantially triangular cross-section protruding outwardly from the side base members 210 and at least partially assist the docking shelf 70 to be inserted within the U-base component 200. Tuning particularly to
The side base members 210 and front base member 205 each include a vertical aperture that may receive the support legs 215. In certain aspects, each support leg 215 consists of a threaded rod on which a support foot 220 may be connected. The support foot 220 may include an adjustable nut at the connection between the foot 220 and the support leg 215, which may allow the height of the side base members 210 and front base member 205 above a supporting surface to be adjusted. The U-base component 200 may thus be leveled plumb to account for variations in the surface as well as adjusted to account for a particular height preference of the U-base component 200.
Turning particularly to
The L-base component 300 shown in
Shelf 602 may be made of any appropriate rigid material, such as stainless steel, titanium, or aluminum, and may be coated with a rubber or plastic covering to facilitate easier cleaning and prevent corrosion. The shelf 602 is shown detachably coupled to the transmission 650 to allow for removal of the shelf 602 from the transmission 650. For example, protrusions on either side of the shelf 602 may fit into shelf hooks 656 on the transmission 650. The protrusions may be secured within the shelf hooks 656 by thumb screws 658, which, generally, at least partially prevent the shelf 602 from becoming disengaged from the transmission 650. In some aspects, the shelf 602 may be detached from the transmission 650 without decoupling the transmission 650 from the vertical rack gears 28 and vertical support members 20.
Transmission 650, generally, provides a mechanism on which the shelf 602 may traverse throughout all intermediate points between the bottom of the frame 12 and the top of the frame 12 while engaged with the two vertical rack gears 28 and two vertical support members 20 located at the back of the frame 12. More specifically, the transmission 650 may include a single worm gear drive mechanism coupled to two pinion gears 660, which engage two stationary vertical rack gears 28. Thus, the transmission 650 provides for the transfer of rotational movement from a single input location, namely, a socket 668, to at least two pinion gears 660. Transmission 650 may include two end plates 652, two slide bearings 654, two shelf hooks 656, two thumb screws 658, and two pinion gears 660. In some aspects, the transmission 650 also includes two pinion shrouds 662 and two shroud pins 664, as well as a gearbox 670 and a shalt shroud 672.
Transmission 650 further allows for a shelf angle of the shelf 602 to be adjusted. For example, the shelf 602 may be, in some aspects, a gravity feed shelf which relies on a slight downward angle to allow food or beverage products to move without assistance to the front bar 608 of the shelf 602. Each end plate 652 includes one or more shelf angle apertures 666. The shelf 602 is further coupled to the end plates 652 at one of the shelf angle apertures 666 via a shelf pin 604. In some aspects, the shelf pin 604 may be tethered to the shelf 602. Further, the shelf pin 604 may be secured through a particular shelf angle aperture 666 with a cotter pin 674 (shown in
With particular reference to
Pinion shroud 662, as shown, covers at least a portion of the pinion gear 660 while allowing the pinion gear 660 to engage the vertical rack gear 28. Generally, the pinion shroud 662 provides protection for the pinion gear 660 to help ensure that, for example, the gear 660 is not damaged during loading and unloading of consumer product from the adjustable shelf 600. Further, the pinion shroud 662 may provide for safer operation of the pinion gear 660 as it traverses the vertical rack gear 28 so as to at least partially prevent human contact with the pinion gear 660. The pinion shroud 662 may also protect the pinion gear 660 from foreign substances, such as food or beverage product, thereby keeping the pinion gear 660 clean and operating normally. In some aspects, the pinion shroud 662 is attached to the end plate 652 with a pivotal pin 663. Additionally, in certain implementations, the pinion shroud 662 may be rotated away from the pinion gear 660 in order to, for example, replace or clean the gear 660. A shroud pin 664, when disengaged from the end plate 652, may allow the pinion shroud 662 to be rotated away from the pinion gear 660.
With reference to
In some aspects, the worm gear 678 may be a self-locking worm gear, such that only rotational movement applied to the worm wheel 676 to drive the worm gear 678 may drive the shaft 680. Thus, a load of consumer product exerting a downward force on the shelf 602 coupled to the transmission 650 may not rotate the shaft 680 and worm gear 678. In more particular aspects, the worm gear 678 may have a ratio between (and including) approximately 3:1 and approximately 10:1. For instance, the worm gear 678 may be a 5:1 ratio worm gear.
In some aspects, such as when multiple shelving systems 10 are coupled together, the vertical rack gear 28 may be engaged at a particular height by two pinion gears 660, situated side-by-side on the vertical rack gear 28. Thus, two adjustable shelves 600 may share a single vertical rack gear 28 coupled to a single vertical support member 20. A particular adjustable shelf 600, therefore, may operate independently of adjacent adjustable shelves 600 above and below, as well as adjacent adjustable shelves 600 to either side.
Turning particularly to
A pitch of the adjustable shelf 750 may also be varied. For example, the drive shaft 760 may be decoupled from the transmission 650. The transmission 650 may be thus adjusted vertically to change the pitch of the shelf coupled to the transmission 650. Once a desired pitch of the adjustable shelf 750 is determined, the drive shaft 760 may be recoupled to the transmission 650. Once the drive shaft 760 is recoupled to the transmission 650, the pitch of the adjustable shelf 750 may be locked into position.
Turning to
Transmission 762 includes a gear box 764 and a drive extension 766. As illustrated, the gear box 764 may be rotated approximately 90 degrees as compared to the gear box 670. In such a configuration, the gear box 764 may protrude through a shelf coupled to the transmission 762 but allow for increased clearance underneath the shelf. Rotated 90 degrees, the components of the gear box 764, namely, a worm wheel 768 and a worm gear 770, may also be rotated as compared to similar components in gear box 670. The operation and function of the worm wheel 768 and worm gear 770, however, may be substantially similar to those components in gear box 670.
The drive extension 766 may be engaged into a socket 772 of the worm wheel 768 and extended through a shelf coupled to the transmission 762. In some aspects the drive extension 766 may include a reduced diameter portion that allows for the extension 766 to be constrained by the shelf. While the drive extension 766 may be semi-permanently coupled to the gear box 764, the drive extension 766, in some aspects, may be freely removed from the gear box 764. Further, the drive extension may be of varying or adjustable lengths, so that it may be inserted into the socket 772 yet accessible through the shelf regardless of the dimensions of the shelf. In such aspects, the shelf may be adjusted (e.g., traverse in either vertical direction on one or more vertical rack gears) from a single, accessible location. Such a location may be accessible from any side of an adjustable shelf (e.g., adjustable shelves 600, 700 or 750), including, for example, a front side or a rear side. In certain implementations, the drive extension 766 may swivel using a “U” joint or a radial square.
The shelf frame 905 is, typically, substantially square and formed of tubular steel or aluminum structural members. The structural members of the shelf frame may be welded or otherwise mechanically attached, as appropriate. Further, in some aspects, the shell frame 905 is painted or powder-coated to improve corrosion resistance and cleanability. Generally, the shelf 915 is coupled to the shelf frame 905 at one or more pivot pins 940, thus allowing the shelf 915 to rotate from a horizontal orientation through a variety of angled positions. In some aspects, the shelf 91 may be a wire shelf and angled on a downward slope toward a front side of the docking shelf 900 at the pivot pins 940 to allow the consumer products (e.g., food or beverage containers), to slide toward the front for easier removal. The docking shelf 900 further includes one or more latch pins 920 located on the sides of the shelf 900, which allow the shelf 900 to be secured within the shelving system 10. Generally, the latch pins 920 may be compressed as the docking shelf 900 is inserted into the shelving system 10 until each engages a corresponding slot, e.g., slot 235 in U-base component 200. Release handle 930 is coupled to the latch pins 920 through the shelf frame 905. Upon compression of the release handle 930, the latch pins 920 may be retracted and disengaged from the slots 235, thus allowing the removal of the docking shelf 900 from the shelving system 10.
The position bar 925 includes a substantially horizontal portion and one or more lever arms pivotally coupled to the shelf 915. In some aspects, as illustrated in
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/911,995, filed on Apr. 16, 2007, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60911995 | Apr 2007 | US |