Supporting device for dividable parachute grenade

Information

  • Patent Grant
  • 10337845
  • Patent Number
    10,337,845
  • Date Filed
    Tuesday, April 18, 2017
    7 years ago
  • Date Issued
    Tuesday, July 2, 2019
    5 years ago
  • Inventors
    • Jansson; Håkan
  • Original Assignees
  • Examiners
    • Morgan; Derrick R
    Agents
    • WRB-IP LLP
Abstract
A dividable parachute grenade is provided including a grenade casing, a nose cone, a detonating fuse, a dividing charge, a payload, a parachute device, a grenade bottom, and a supporting device, wherein the supporting device is annular and includes pretensioned sector elements fixed to a fixing ring in the recess on the inner side of the grenade casing, the sector elements are pretensioned with a tension ring arranged around the annular supporting device via recessed grooves in the sector elements, whereof the supporting device is arranged extensibly in the radial direction in a recess on the inner side of the grenade casing behind the payload and supports the payload in the extended position during the acceleration phase of the grenade, and stays in the grenade after the separation of the payload from the grenade.
Description
BACKGROUND AND SUMMARY

The present invention relates to a supporting device for a payload in a dividable parachute grenade.


In order to support a payload in a dividable parachute grenade during the acceleration phase of the grenade and prevent the payload from being pressed against the parachute, which makes division of the grenade more difficult, the parachute is normally arranged in a supporting cylinder which extends from the back of the grenade to the back plane of the payload. The supporting cylinder is usually constituted by two steel tube halves, which, after division of the grenade, are released from the grenade and fall down to the ground, which poses a risk to humans in the area.


It is desirable to provide a supporting device for a payload in a dividable parachute grenade, configured to prevent the payload from being pressed against the parachute during the acceleration phase of the grenade, at the same time as the supporting device is safe for the environment after the separation of the payload from the grenade.


It is also desirable to provide a simple supporting device having few parts.


Thus, according to an aspect of the present invention, a supporting device for a payload in a dividable parachute grenade comprising a grenade casing, a nose cone, a detonating fuse, a dividing charge, a payload, a parachute device, a grenade bottom, and a supporting device arranged between the payload and the parachute device.


Characteristic of an aspect of the invention is that the supporting device is arranged extensibly in the radial direction in a recess on the inner side of the grenade casing behind the payload, wherein the supporting device supports the payload in the extended position during the acceleration phase of the grenade. After muzzle passage and setback, the rotation of the grenade causes the supporting device to open and remain in the grenade after the separation of the payload from the grenade.


According to a second embodiment of an aspect of the invention, the supporting device is annular and comprises pretensioned sector elements which are fixed to a fixing ring in the recess on the inner side of the grenade casing.


According to a third embodiment of an aspect of the invention, the sector elements are pretensioned via an elastic tension ring, which is arranged around the annular supporting device via recessed grooves in the sector elements.


According to a fourth embodiment of an aspect of the invention, the sector elements are curved in the radial direction and conical in the axial direction. The sector elements comprise a rear end face, closest to the parachute device, comprising hollow bushings in the radial direction for fixing of the sector elements via the fixing ring. The front end face of the sector elements, closest to the payload, comprises recessed grooves for application of the resilient tension ring.


According to a fifth embodiment of an aspect of the invention, the sector elements are pretensioned via torsion springs arranged in the recess on the inner side of the grenade casing.


The invention, according to aspects thereof, yields a number of advantages and effects, of which the most important are as follows:


By replacing the cylindrical container with an extensible supporting device arranged in a recess on the inner side of the grenade casing behind the payload, a smaller and lighter supporting device, which stays in the grenade after separation of the payload, parachute and grenade bottom of the grenade, is obtained.





BRIEF DESCRIPTION OF THE DRAWINGS

Further advantages and effects of the invention will emerge during study and consideration of the following, detailed description of the invention, with simultaneous reference to FIGS. 1-7 of the drawing, in which:



FIG. 1 shows schematically a longitudinal section of a pretensioned extensible supporting device in the extended position, arranged in a dividable grenade comprising a nose cone, a detonating fuse, a grenade casing, a dividing charge, a payload, a parachute device and a grenade bottom.



FIG. 2 shows schematically a detailed view of a pretensioned annular supporting device in the retracted position during mounting of a payload, according to FIG. 1.



FIG. 3 shows schematically a detailed view of a pretensioned annular supporting device in the extended position during the acceleration phase of the grenade, according to FIG. 1.



FIG. 4 shows schematically a detailed view of the pretensioned annular supporting device in the retracted position after the acceleration phase of the grenade, according to FIG. 1.



FIG. 5 shows schematically a detailed view of a pretensioned annular supporting device comprising sector elements, fixing ring and pretensioning wire in the extended position during the acceleration phase, according to FIG. 1.



FIG. 6 shows schematically a detailed view of a pretensioned annular supporting device comprising sector elements, fixing ring and pretensioning wire, in the retracted position during the division phase of the grenade, according to FIG. 1.



FIG. 7 shows schematically a detailed view of a sector element, according to FIG. 1.





DETAILED DESCRIPTION

In a conventional embodiment of a dividable parachute grenade, the parachute device is arranged in a cylindrical steel container, which supports the payload and prevents it from being pressed against the parachute device during the acceleration phase of the grenade. The cylindrical steel container, which is dividable into two similar halves, is released after the division and falls down to the ground.


By replacing the cylindrical steel container with a supporting device which is mounted in the inner side of the grenade casing, a situation in which this is released upon division and falls down to the ground is avoided. The said supporting device is arranged extensibly in the radial direction in a recess on the inner side of the grenade casing behind the payload, which results in a smaller and lighter supporting device which stays in the grenade after the division of the grenade.


The proposed supporting device can be likened to a locking chuck which opens and closes during the various phases of the grenade, i.e. during the acceleration and division/rotation phase of the grenade. Upon mounting of the payload, the chuck springs apart and admits the payload into the grenade case. Once the payload has passed through the chuck, the pretension in a tension ring causes the chuck to spring/be lowered out of the recess and to close behind the payload.


The acceleration in the barrel and the angle of the contact surface between payload and supporting device has the effect that the chuck supports the back plane of the payload and prevents this from moving backwards towards the parachute. After muzzle passage and setback, the rotation of the grenade causes the chuck to spring/be lowered into the recess, to open, and to remain thus during the rest of the flight of the grenade.



FIG. 1 shows a longitudinal section of a dividable parachute grenade 1, comprising a grenade casing 2, a nose cone 3, a detonating fuse 4, a dividing charge 5, a payload 6, a parachute device 7, a grenade bottom 8 and a supporting device 9 which is arranged recessed on the inner side of the grenade case 2 between the payload 6 and the parachute device 7. The payload 6 can be constituted, for example, by a flare or a smoke generator.



FIGS. 2-7 show a first embodiment of an annular supporting device 9 which is arranged extensibly in the radial direction in a turned-out recess 10 on the inner side of the grenade case 2. The recess 10 is realized such that the cross section corresponds to the cross section of the supporting device 9.


The weight of the supporting device 9 maximally corresponds to the weight of the material from the turned-out recess. The weight of the grenade 1 is therefore reduced at least by a weight corresponding to the weight of the two steel tube halves. The reduced weight can be exploited, for example, for a larger payload or a larger parachute.


The annular supporting device 9. FIGS. 5-6, is sectioned into a number of sector elements 13, preferably twelve sector elements 13, which are fixed to a fixing ring 14 via radial hollow bushings 18 in the sector elements 13. The fixing ring 14 is preferably made of a resilient steel material, but can also be made of a composite material, such as, for example, a reinforced carbon fibre material.


The sector elements 13 are curved in the radial direction and conical in the axial direction and comprises a rear end face 17, closest to the parachute device 7, and front end face 19, closest to the payload 6 (FIG. 7). The rear end face 17 comprises the hollow bushing 18, in which the fixing ring is arranged for fixing of the sector elements 13. On the front end face 19 there is arranged a recessed groove 16 configured for application of a tension ring 15 around the sector elements 13. The tension ring 15 is preferably made of an elastic/resilient material, for example a metallic material, in the form of a metal spring, or a rubber, plastics or composite material, in the form of a plastics spring.


The resilient characteristics of the supporting device 9 are enabled by the slightly conical shape of the sector elements, which means that, once the tension ring 15 is applied around the sector elements 13, the front parts, end faces 19, of the sector elements 13 strive to spring out in the radial direction, i.e. to fall into the recess 10.


During the various phases of the grenade, the supporting device 9 switches from the extended position from the recess, during the acceleration phase, to the retracted position in the recess, during the division/rotation phase, FIGS. 2-4. The switch between extended and retracted position is determined by factors such as the spring force of the spring ring 15, the spring force of the sector elements 13 and the rotation force of the grenade 1.


When the grenade 1 is over the intended target area, the detonating fuse 4 initiates the dividing charge 5, either by remote control via GPS or by pre-programming, wherein the bursting pressure from the boosting charge 5 presses the payload 6, the parachute device 7 and the grenade bottom 8 backwards in the grenade 1, so that break pins holding the grenade bottom 8 to the grenade case 2 break and the payload 6 is released from the grenade 1 (not shown).


The parachute device 7 is connected to the payload 6 via parachute cords which are arranged in the parachute 7 (not shown). The parachute cords are connected to the payload 6 via a ball-beating-controlled 11 pivot 12 arranged on the rear end face of the payload 6 (FIG. 1).


The invention is not limited to shown embodiments, but can be varied in different ways within the scope of the patent claims.

Claims
  • 1. A dividable parachute grenade comprising a grenade casing, a nose cone, a detonating fuse, a dividing charge, a payload, a parachute device, a grenade bottom and a supporting device, wherein the supporting device is annular and comprises pretensioned sector elements fixed to a fixing ring, the fixing ring is received in a recess on an inner side of the grenade casing, the sector elements are pretensioned with a tension ring arranged around the supporting device, the tension ring is received in recessed grooves of the sector elements, wherein, when the sector elements are extended radially, the sector elements and the tension ring are received in a second recess on the grenade casing behind the payload and, when the sector elements are compressed radially, the payload is supported during an acceleration phase of the grenade and the support device stays in the grenade casing after separation of the payload from the grenade casing.
  • 2. Dividable parachute grenade according to claim 1, wherein the sector elements are curved in the radial direction and conical in the axial direction, wherein the sector elements comprise a rear end face, closest to the parachute device, comprising radial hollow bushings for fixing of the sector elements to the fixing ring, and a front end face, closest to the payload, comprising the recessed grooves for application of the tension ring.
  • 3. Dividable parachute grenade according to claim 1, wherein the sector elements are pretensioned with torsion springs arranged in the recess on the inner side of the grenade casing.
Priority Claims (1)
Number Date Country Kind
1630094 Apr 2016 SE national
PCT Information
Filing Document Filing Date Country Kind
PCT/SE2017/050383 4/18/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/184065 10/26/2017 WO A
US Referenced Citations (70)
Number Name Date Kind
1589277 Wiley Jun 1926 A
2717309 Campbell Sep 1955 A
3038407 Robertson Jun 1962 A
3055300 Stoehr Sep 1962 A
3071188 Raulins Jan 1963 A
3096999 Ahlstone Jul 1963 A
3120402 Wallen Feb 1964 A
3222088 Haeber Dec 1965 A
3487781 Oss Jan 1970 A
3502023 Britton Mar 1970 A
3505925 Carr Apr 1970 A
3628812 Larralde Dec 1971 A
3839962 Popovitch et al. Oct 1974 A
3863569 Simmons Feb 1975 A
4119037 Romer Oct 1978 A
4120519 Bridges Oct 1978 A
4184242 Petrie Jan 1980 A
4191406 Eaton Mar 1980 A
4226185 Tobler Oct 1980 A
4337971 Kendrick Jul 1982 A
4373753 Ayers Feb 1983 A
4433859 Driver Feb 1984 A
4516499 Eyman May 1985 A
4557508 Walker Dec 1985 A
4632010 Humphries Dec 1986 A
4790571 Montanari Dec 1988 A
4833993 Garcia-Garcia May 1989 A
4889030 Grosswendt Dec 1989 A
4902045 McGugan Feb 1990 A
4920887 Frehaut et al. May 1990 A
5103734 Arnaud Apr 1992 A
5157816 Huessler Oct 1992 A
5183962 Karius Feb 1993 A
5277460 Grainge Jan 1994 A
5299503 Frehaut et al. Apr 1994 A
5318255 Facciano Jun 1994 A
5370057 Badura Dec 1994 A
5386781 Day Feb 1995 A
5394803 Mort Mar 1995 A
6142424 Wagner Nov 2000 A
6227493 Holemans May 2001 B1
6321656 Johnson Nov 2001 B1
6609734 Baugh Aug 2003 B1
8317234 McKay Nov 2012 B2
8408136 Lee Apr 2013 B1
8616131 Kaddour Dec 2013 B2
8757671 Pallini, Jr. Jun 2014 B2
9255453 Jennings Feb 2016 B1
9528802 Markowitch Dec 2016 B1
9923302 Friesen Mar 2018 B2
10030953 Adams Jul 2018 B2
10094501 Bull Oct 2018 B2
20010009634 Giesenberg Jul 2001 A1
20030168857 Jennings Sep 2003 A1
20040057787 Cleveland Mar 2004 A1
20040226474 Comtesse Nov 2004 A1
20050001427 Liew Jan 2005 A1
20050146137 Davidson Jul 2005 A1
20050193916 Cleveland Sep 2005 A1
20050279890 Holemans Dec 2005 A1
20080011180 Stimpson Jan 2008 A1
20100050897 Kim Mar 2010 A1
20110036261 Krisher Feb 2011 A1
20110044751 Diehl Feb 2011 A1
20130011189 Kamiya Jan 2013 A1
20130199359 Kister Aug 2013 A1
20150211832 Travis Jul 2015 A1
20160033069 Buttolph Feb 2016 A1
20170341782 Rivas S nchez Nov 2017 A1
20190086188 Jansson Mar 2019 A1
Foreign Referenced Citations (7)
Number Date Country
283374 Apr 1913 DE
3743840 Jul 1989 DE
4001767 May 1998 DE
0195854 Oct 1986 EP
19069 Aug 1913 GB
1050229 Dec 1966 GB
2517445 Feb 2015 GB
Non-Patent Literature Citations (1)
Entry
International Search Report (dated Jun. 13, 2017) for corresponding International App. PCT/SE2017/050383.
Related Publications (1)
Number Date Country
20190086188 A1 Mar 2019 US