Supporting multiple multicast trees in trill networks

Information

  • Patent Grant
  • 9608833
  • Patent Number
    9,608,833
  • Date Filed
    Friday, February 18, 2011
    13 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
Abstract
Systems and techniques for supporting multiple multicast trees are described. Some embodiments provide a system that determines an internal multicast group identifier based on a source address, a multicast address, and a multicast tree identifier field associated with a multicast packet. The system can then forward the multicast packet based on the internal multicast group identifier. Specifically, the system can determine a first set of bits based on the source address and the multicast address of the multicast packet. The system can determine a second set of bits based on the multicast tree identifier field of the multicast packet. Next, the system can combine the first set of bits and the second set of bits to obtain the internal multicast group identifier. In some embodiments, the scope of an internal virtual network identifier does not extend beyond a switch or a forwarding module within a switch.
Description
BACKGROUND

Technical Field


This disclosure relates to data communication and networking More specifically, this disclosure relates to systems and techniques for supporting multiple multicast trees in TRILL (Transparent Interconnection of Lots of Links) networks.


Related Art


The insatiable demand for bandwidth and the ever increasing size and complexity of computer networks has created a need for increasing the bandwidth and improving manageability of computer networks.


Computer networks often use multicasting to efficiently distribute high bandwidth content (e.g., streaming video) to multiple end-hosts in the network. In multicasting, copies of packets are forwarded over a multicast tree in the network. In some approaches, the network supports a single multicast tree for a given source and multicast address. For purposes of load balancing and failure recovery, it is generally desirable to support multiple multicast trees for a given source and multicast address. Unfortunately, supporting multiple multicast trees in the network can significantly increase the amount of resources required at each switch.


SUMMARY

Some embodiments of the present invention provide systems and techniques for efficiently supporting multiple multicast trees for a given source and multicast address. Specifically, some embodiments provide a system (e.g., a switch) that can determine an internal multicast group identifier based on a source address, a multicast address, and a multicast tree identifier field associated with a multicast packet. The multicast packet can be an Ethernet or TRILL multicast packet. The system can then forward the multicast packet based on the internal multicast group identifier. In this disclosure, unless otherwise stated, the phrase “based on” means “based solely or partly on.”


In some embodiments, the system can determine a first set of bits based on the source address and the multicast address of the multicast packet, and a second set of bits based on the multicast tree identifier field of the multicast packet. The system can then combine (e.g., concatenate) the first set of bits and the second set of bits to obtain the internal multicast group identifier.


The system can forward the multicast packet by determining a set of egress ports based on the internal multicast group identifier, and sending at least one copy of the multicast packet through each port in the set of egress ports. Note that multiple copies of the multicast packet may be sent over the same egress port if the multicast packet is to be forwarded to multiple Virtual Private Networks (VPNs) coupled to the egress port.


If the multicast packet is an Ethernet packet, the system can add a TRILL header to each copy of the multicast packet, and forward the TRILL-encapsulated packets based on the internal multicast group identifier.


In some embodiments, the scope of an internal multicast group identifier does not extend beyond a switch. As a packet traverses through different switches in the network, each switch can determine a different internal multicast group identifier.


Some embodiments of the present invention provide a network which includes at least one source switch, one or more intermediate switches, and at least one destination switch. A source switch may determine an internal multicast group identifier for a multicast packet based on one or more fields in the packet's header. Next, the source switch may encapsulate a copy of the multicast packet in a TRILL multicast packet, and forward the TRILL multicast packet based on the internal multicast group identifier.


The TRILL multicast packet may pass through one or more intermediate switches before reaching the destination switch. Each intermediate switch may determine an internal multicast group identifier, and forward the TRILL multicast packet based on the internal multicast group identifier. When the TRILL multicast packet reaches the destination switch, the destination switch may decapsulate the TRILL multicast packet to obtain the multicast packet, and forward the multicast packet based on an internal multicast group identifier. The internal multicast group identifier determined by a switch may or may not be the same as the internal multicast group identifiers that were determined by other switches that processed the multicast packet or the TRILL multicast packet.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a TRILL network in accordance with some embodiments of the present invention.



FIG. 2 illustrates a portion of an Ethernet packet which includes a TRILL header in accordance with some embodiments of the present invention.



FIG. 3A illustrates how an internal multicast group identifier can be determined in accordance with some embodiments of the present invention.



FIGS. 3B and 3C illustrate different multicast trees for the same source and multicast address in accordance with some embodiments of the present invention.



FIG. 3D illustrates how internal multicast group identifiers can be determined in accordance with some embodiments of the present invention.



FIG. 3E illustrates how an internal multicast group identifier can be used to determine a set of egress ports in accordance with some embodiments of the present invention.



FIG. 4 illustrates how an RBridge can perform network layer multicasting in a TRILL network in accordance with some embodiments of the present invention.



FIG. 5 illustrates a switch in accordance with some embodiments of the present invention.



FIG. 6A presents a flowchart that illustrates a process for forwarding packets based on an internal multicast group identifier in accordance with some embodiments of the present invention.



FIG. 6B presents a flowchart that illustrates a process for performing network layer multicasting in a TRILL network in accordance with some embodiments of the present invention.



FIG. 7 illustrates a system in accordance with some embodiments of the present invention.





DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


TRILL (Transparent Interconnection of Lots of Links)


TRILL combines the advantages of bridging and routing. Bridges (e.g., devices that perform layer-2 forwarding) can transparently connect multiple links to create a single local area network. However, the topology on which traffic is forwarded in a bridged network must be a tree to prevent loops. Unfortunately, forwarding the traffic over a tree causes traffic concentration on the links that correspond to the tree edges, leaving other links completely unutilized. Unlike bridges, Internet Protocol (IP) routers (e.g., devices that perform IP forwarding) do not need to create a spanning tree for forwarding traffic. However, routers that forward IP traffic require more configuration than bridges, and moving nodes in an IP network requires changing the IP address of the nodes. Each link in an IP network is associated with an address prefix, and all nodes on that link must have that IP prefix. If a node moves to another link that has a different IP prefix, the node must change its IP address. Unless otherwise stated, the term “IP” refers to both “IPv4” and “IPv6” in this disclosure.


A TRILL network includes “routing bridges” (referred to as RBridges) which route packets, but like bridges, learn layer-2 address locations through receipt of packets. Since packets are routed, packet forwarding is not limited to a spanning tree. Also, since a hop count is included in a TRILL packet, packets do not circulate forever in the network in the presence of loops. Further, since the layer-2 address locations are learned, a TRILL network allows IP nodes to move from one link to another in the network without any restrictions.



FIG. 1 illustrates a TRILL network in accordance with some embodiments of the present invention. TRILL network 100 can be a service provider's network which includes core RBridges 102 and 104 and edge RBridges 106, 108, and 110. RBridges 102, 106, 108, and 110 are coupled to customer devices, whereas RBridge 104 is not. Specifically, port P3 on RBridge 102 can be coupled to a device in customer C3's network at site S1; ports labeled P1 on RBridges 106, 108, and 110 can be coupled to devices in customer C1's networks at sites S2, S3, and S4, respectively; and port P3 on RBridge 110 can be coupled to a device in customer C3's network at site S5. Note that the port numbers in FIG. 1 match the customer numbers, i.e., ports labeled P1 are associated with customer C1, ports labeled P3 are associated with customer C3, etc. This has been done for ease of discourse. In general, any port on any RBridge can potentially be assigned to one or more virtual networks that are associated with one or more customers.


A virtual local area network (VLAN) in a customer's network may span multiple customer sites. For example, VLANs 112 and 114 in customer C3's network include nodes in sites S1 and S5. Similarly, VLANs 116 and 118 in customer C1's network include nodes in sites S2 and S3, and VLAN 120 in customer C1's network includes nodes in sites S3 and S4.


Nodes that belong to the same VLAN, but which are located at different sites, can communicate with each other transparently through TRILL network 100. Specifically, the ingress RBridge can encapsulate a packet (e.g., an Ethernet packet with or without one or more VLAN tags) received from a customer and route the packet within TRILL network 100 using a TRILL header. The egress RBridge can then strip the TRILL header and send the original customer packet on the appropriate port. For example, packet 122 can originate in customer C3's network at site S1, and be received on port P3 of RBridge 102 with a VLAN tag associated with VLAN 112. Next, RBridge 102, which is the ingress RBridge for this packet, can encapsulate packet 122 by adding a TRILL header to obtain packet 124 (the TRILL header is the shaded portion in packet 124). Next, the TRILL header of packet 124 can be used to route packet 124 through TRILL network 100 until packet 124 reaches RBridge 110, which is the egress RBridge for the packet. RBridge 110 can then strip away the TRILL header on packet 124 to obtain the original packet 122, and send packet 122 on port P3 so that the packet can be delivered to the intended destination in VLAN 112 in customer C3's network at site S5. In FIG. 1, the packet that is received at the ingress RBridge and the packet that is sent from the egress RBridge are shown to be the same. However, these packets can be different. For example, if VLAN translation is being performed, then the packet that is received at the ingress RBridge and the packet that is sent from the egress RBridge can have different VLAN tags.


Further details on TRILL and RBridges can be found in Radia Perlman, Rbridges: Transparent Routing, Proceedings of IEEE INFOCOM, 2004, which is incorporated herein by reference. Details on TRILL and RBridges can also be found in Joe Touch and Radia Perlman, TRILL: Problem and Applicability, IETF RFC 5556, May 2009, which is incorporated herein by reference. Details of the TRILL packet format and RBridge forwarding can be found in IETF draft “RBridges: Base Protocol Specification,” available at http://tools.ietf.org/html/draft-ietf-trill-rbridge-protocol-16, which is incorporated herein by reference.


Although some examples in this disclosure are presented in the context of a TRILL network that includes RBridges, the present invention is not limited to TRILL networks or RBridges. The terms “frame” or “packet” generally refer to a group of bits. The use of the term “frame” is not intended to limit the present invention to layer-2 networks. Similarly, the use of the term “packet” is not intended to limit the present invention to layer-3 networks. Unless otherwise stated, the terms “frame” or “packet” may be substituted with other terms that refer to a group of bits, such as “cell” or “datagram.”


Network Virtualization


Network virtualization enables a service provider to provision virtual networks (VNs) over a common network infrastructure. To a user on a VN it appears as if the traffic is being carried over a separate network that has been specifically built for the user. However, in reality, the traffic from multiple VNs may be carried over a common network infrastructure.


Network virtualization has many uses. For example, network virtualization can be used to create multiple, logically distinct networks on the same physical network to comply with government regulations. Other uses of network virtualization include, but are not limited to, partitioning network resources between different organizations in a company, reducing network costs and simplifying network management during a merger between two companies by provisioning a virtual private network for each company.


One approach for supporting network virtualization is to duplicate resources (e.g., routers, switches, etc.) in the network so that the resources can be provisioned on a per-customer basis. However, this approach is impractical because it is costly and it is not scalable.


Some embodiments of the present invention implement network virtualization and/or partitioning in the TRILL network by embedding a VPN identifier in a TRILL option field in the TRILL header. Specifically, the ingress RBridge can determine a VPN identifier for each packet it receives from a customer, and embed the VPN identifier in a TRILL option field in the TRILL header. Next, the VPN identifier can be used to support network virtualization and/or partitioning in the TRILL network. Specifically, once the VPN identifier is embedded into the TRILL header, RBridges in the TRILL network can use the VPN identifier to determine how to handle the packet.


In some embodiments, the system can use a service provider VLAN identifier to implement network virtualization and/or partitioning. Specifically, ingress RBridges can add appropriate S-tags to packets received from customers (note that the S-tag based approach may not work for incoming packets that already have an S-tag). Next, the S-tag can be used to implement virtualization and/or partitioning in the network.


Packet Format



FIG. 2 illustrates a portion of an Ethernet packet which includes a TRILL header in accordance with some embodiments of the present invention. The packet shown in FIG. 2 is for illustration purposes only, and is not intended to limit the present invention.


Packet 200 can include one or more of the following fields: outer MAC (medium access control) addresses 202, outer VLAN tag 204, TRILL header field 206, TRILL option field 208, inner MAC addresses 210, and inner VLAN tags 212. Typically, the packet is transmitted from top to bottom, i.e., the bits associated with outer MAC addresses 202 will appear on the transmission medium before the bits associated with outer VLAN tag 204 appear on the transmission medium, and so forth. The contents of these fields and their uses are discussed below.


Outer MAC addresses 202 can include outer destination MAC address 214 and outer source MAC address 216. These MAC addresses and outer VLAN tag 204 typically change at each TRILL hop as the packet traverses the service provider's network. Specifically, at each hop, outer source MAC address 216 is associated with the MAC address of the source node (e.g., RBridge) for that hop, outer destination MAC address 214 is associated with the MAC address of the destination node (e.g., RBridge) for that hop, and outer VLAN tag 204 is associated with the VLAN that includes the source node and the destination node for that hop.


Outer VLAN tag 204 can include Ethernet type field 218 and outer VLAN identifier 220. The value of Ethernet type field 218 can indicate that the next field is a VLAN identifier. VLAN identifier 220 can be used in the service provider's network to create multiple broadcast domains.


TRILL header field 206 can include Ethernet type field 222 and TRILL header 224. The value of Ethernet type field 222 can indicate that the next field is a TRILL header. TRILL header 224 can include information for routing the packet through a TRILL network that is embedded in the service provider's network. Specifically, as shown in FIG. 2, TRILL header 224 can include version field 246 which indicates the TRILL version, reserved field 248 which may be reserved for future use, multicast field 250 which indicates whether this packet is a multicast packet, TRILL option length 252 which indicates the length (in terms of 32-bit words) of any TRILL option field that follows the TRILL header, and hop count 254 which may be decremented at each RBridge as the packet traverses the service provider's network.


TRILL header 224 also includes egress RBridge nickname 256 and ingress RBridge nickname 258. Ingress RBridge nickname 258 corresponds to the ingress RBridge which receives the packet from the customer's network, and, for unicast packets, egress RBridge nickname 256 corresponds to the egress RBridge which sends the packet to the customer's network. For multicast packets, egress RBridge nickname 256 corresponds to the egress RBridge at the root of the multicast tree on which the packet is to be forwarded. For example, in FIG. 1, when packet 122 is received at ingress RBridge 102, ingress RBridge 102 can use the header information in packet 122 to determine that packet 122 needs to be routed to egress RBridge 110. Next, ingress RBridge 102 can add TRILL header field 206 to packet 122 to obtain packet 124. Specifically, RBridge 102 can set ingress RBridge nickname 258 in packet 124's TRILL header to RBridge 102's nickname, and set egress RBridge nickname 256 in packet 124's TRILL header to RBridge 110's nickname. RBridge 102 can then forward packet 124 based solely or partly on packet 124's TRILL header.


TRILL option field 208 can include bit-encoded options and one or more options encoded in a TLV (type-length-value) format. Specifically, TRILL option field 208 can include bit-encoded options 260 which are one-bit option flags, and TLV-encoded option 226. For example, a 20-bit VPN identifier can be encoded as a TLV-encoded option. Specifically, the value of type field 262 can indicate that this option specifies a VPN identifier. Length field 264 can indicate the length of the data portion of the TLV-encoded option in octets. In the packet shown in FIG. 2, TLV-encoded option 226 is used for specifying a 20-bit VPN identifier, and length field 264 is set to the value 0x6. The data portion of TLV-encoded option 226 begins immediately after length field 264. Specifically, in the packet shown in FIG. 2, the total length (in octets) of fields 266, 268, and 228 is equal to 0x6 as specified by length field 264. Further, as shown in FIG. 2, the last 20 bits of the data portion in TLV-encoded option 226 can be used for specifying VPN identifier 228.


Note that a 20-bit VPN identifier can be specified using a smaller data portion, e.g., only 0x3 octets instead of 0x6 octets. However, some embodiments use the following non-obvious insight: it may be desirable to align the 20-bit VPN identifier with the word boundary to simplify chip design and/or to improve performance. Thus, in some embodiments, 0x6 octets are used instead of 0x3 octets so that the 20-bit VPN identifier is aligned with a 32-bit word boundary. For example, as shown in FIG. 2, VPN identifier 228 is aligned with the 32-bit word boundary.


Inner MAC addresses 210 can include inner source MAC address 232 and inner destination MAC address 230. Inner MAC addresses 210 can be the MAC addresses that were present in the header of the packet that was received from the customer's network. For example, in FIG. 1, suppose a source node in VLAN 112 in customer C3's network at site S1 sends a packet to a destination node in VLAN 112 in customer C3's network at site S5. In this scenario, inner source MAC address 232 can correspond to the source node at site S1, and inner destination MAC address 230 can correspond to the destination node at site S5.


Inner VLAN tags 212 can include one or more VLAN tags that are used within the customer's network. For example, inner VLAN tags 212 can include an S-tag which includes Ethernet type field 234 and S-VLAN-identifier 236, a C-tag which includes Ethernet type field 238 and C-VLAN-identifier 240, and a congestion-notification-tag (CN-TAG) which includes Ethernet type field 242 and flow-identifier 244. Each VLAN tag can also include a three-bit Priority Code Point (PCP) field, e.g., PCP 270, and a one-bit Canonical Form Indicator (CFI) field, e.g., CFI 272. The values in Ethernet type fields 234, 238, and 242 can indicate that the tag includes a VLAN identifier for an S-tag, a VLAN identifier for the C-tag, and a flow-identifier, respectively. The S-tag and the C-tag can be used by the customer to create a stacked-VLAN architecture, e.g., as defined in the Provider Bridging standard. The S-tag may also be used by the service provider to implement network virtualization and/or partitioning. The congestion-notification-tag may be used by the customer to manage network congestion.


Note that a packet may or may not include all of the fields shown in FIG. 2. For example, in some embodiments, a packet may not include inner VLAN tags 212 and/or outer VLAN tag 204. Further, certain combinations of fields may not be allowed in some embodiments. For example, in some embodiments, a packet may include either an S-tag or a TRILL option field, but not both. Additionally, the values of some fields may be related to each other. For example, in some embodiments, S-VLAN-identifier 236 may be copied into the 12 least significant bits of VPNID 228.


VLAN tagging is specified in IEEE (Institute of Electrical and Electronics Engineers) standard IEEE 802.1Q. The original specification of this standard describes how a single VLAN tag can be added to an Ethernet packet to create multiple broadcast domains within the same local area network (LAN). The term “Q-in-Q tagging” (also referred to as “QinQ tagging”) refers to an amendment of this standard which allows an S-VLAN tag (a service VLAN tag is sometimes referred to as a provider tag) to be stacked in a single Ethernet packet. Q-in-Q tagging enables a service provider to carry VLAN traffic from multiple customers on a shared Q-in-Q network infrastructure without restricting the VLAN address space available to each customer. Further details on Q-in-Q tagging can be found in the specification for standard IEEE 802.1ad. In some embodiments, the system can add a TRILL header to a Provider Bridging (Q-in-Q) packet. In these embodiments, the packet received from the customer network may include an S-tag. The service provider's network may then add a TRILL header to the packet. In some embodiments, the system may ensure that the priority bits in the outermost VLAN tag are the same as the priority bits in the S-tag.


Supporting Multiple Multicast Trees in TRILL Networks


When a multicast packet is received on an input port, the multicast packet header is processed by the switch to determine the set of output ports on which the multicast packet is to be forwarded. Oftentimes, the forwarding mechanism (e.g., an application-specific integrated circuit designed for performing forwarding look-ups) is the bottleneck in the data path. Consequently, increasing the processing speed and decreasing the size and complexity of the forwarding mechanism is usually very important.


One approach for supporting multiple multicast trees is to have multiple forwarding entries (e.g., one entry per multicast tree) in the forwarding table for a given source address and multicast group address. Unfortunately, this approach can substantially increase the size of the forwarding table or severely limit the number of multicast groups that can be supported by the forwarding table.


Some embodiments determine an internal multicast group identifier based on one or more fields in the multicast packet's header. The multicast group identifier is then used to determine a set of egress ports through which the multicast packet is to be forwarded.



FIG. 3A illustrates how an internal multicast group identifier can be determined in accordance with some embodiments of the present invention.


Internal multicast group identifier 312 is composed of two sets of bits. The first set of bits 308 can be determined by looking up forwarding table 304 using the source address and multicast address 302 of a multicast packet. In some embodiments, forwarding table 304 is implemented using a content-addressable memory. The second set of bits 310 can be determined based on a multicast tree identifier 306 in the multicast packet. If the multicast packet does not have a multicast tree identifier, the switch can select the second set of bits 310 on its own, e.g., by using a hash-based technique.


Note that the forwarding table does not store an entry for each multicast tree supported by the switch. Instead, the forwarding table stores a single entry for a given source address and multicast address. The second set of bits is then used to select a particular tree from the multiple multicast trees that are associated with the given source address and multicast address. Since the forwarding table is not required to store an entry for each multicast tree, some embodiments of the present invention are capable of supporting a substantially greater number of multicast trees than other approaches that require the forwarding table to store an entry for each multicast tree.



FIGS. 3B and 3C illustrate different multicast trees for the same source and multicast address in accordance with some embodiments of the present invention.


RBridges 322-336 can be in a TRILL network. A multicast group can include RBridges 322, 326, 328, 330, and 336 (the RBridges in the multicast group are shown using a dotted circle). FIGS. 3B and 3C illustrate two multicast trees using dotted lines. Note that both multicast trees are rooted at RBridge 330.



FIG. 3D illustrates how an internal multicast group identifier can be determined in accordance with some embodiments of the present invention.


When a multicast packet is received at RBridge 326, it may use source and multicast address 352 of the multicast packet to look up forwarding table 354 to obtain a first set of bits 358. Source and multicast address 352 can be Ethernet or IP addresses.


Next, RBridge 326 may use the multicast tree identifier in the multicast packet to determine a second set of bits. Note that the multicast tree identifier in the multicast packet identifies the multicast tree over which the multicast packet is to be forwarded. In some embodiments, the multicast tree identifier is an RBridge nickname. For example, RBridge 330 may be associated with multiple nicknames which may correspond to multiple multicast trees rooted at RBridge 330.


The multicast tree illustrated in FIG. 3B can be associated with multicast tree identifier 356, and RBridge 326 may use multicast tree identifier 356 to determine second set of bits 360. The multicast tree illustrated in FIG. 3C can be associated with multicast tree identifier 366, and RBridge 326 may use multicast tree identifier 366 to determine second set of bits 370.


RBridge 326 can then combine the first set of bits and the second set of bits to obtain the internal multicast group identifier. For example, if the multicast packet contains multicast tree identifier 356, RBridge 326 can combine first set of bits 358 with second set of bits 360 to obtain internal multicast group identifier 362. On the other hand, if the multicast packet contains multicast tree identifier 366, RBridge 326 can combine first set of bits 358 with second set of bits 370 to obtain internal multicast group identifier 372.



FIG. 3E illustrates how an internal multicast group identifier can be used to determine a set of egress ports in accordance with some embodiments of the present invention.


Egress port lookup table 380 can be used to determine a set of egress ports based on the internal multicast group identifier. For example, performing a table lookup at RBridge 326 using internal multicast group identifier 362 may output set of egress ports {P-336}. Port P-336 represents a port on RBridge 326 that is coupled to RBridge 336. Similarly, performing a table lookup at RBridge 326 using internal multicast group identifier 372 may output set of egress ports {P-322, P-336}. Port P-322 represents a port on RBridge 326 that is coupled to RBridge 322. Once the set of egress ports has been determined, the system can forward copies of the multicast packet through the egress ports. Egress port lookup table 380 may be implemented as an array that is indexed using the internal multicast group identifier. Each entry in the array may store the set of egress ports.


Network Layer Multicasting in TRILL Networks


Some embodiments provide systems and techniques for performing network layer (e.g., IP layer) multicasting. Computer networking is typically accomplished using a layered software architecture, which is often referred to as a networking stack. Each layer is usually associated with a set of protocols which define the rules and conventions for processing packets in that layer. Each lower layer performs a service for the layer immediately above it to help with processing packets. At the source node, each layer typically adds a header as the payload moves from higher layers to lower layers through the source node's networking stack. The destination node typically performs the reverse process by processing and removing headers of each layer as the payload moves from the lowest layer to the highest layer at the destination node.


The multicast group membership at the network layer (e.g., the IP layer) can span multiple virtual networks, e.g., VPNs and/or VLANs. For example, in FIG. 1, a network layer multicast group may include end-hosts that are part of VLANs 116, 118, and 120 at sites S2, S3, and S4, respectively. In some embodiments, an RBridge can perform network layer multicasting, i.e., the RBridge can forward packets based on a network-layer multicast-address in addition to forwarding packets based on the TRILL header, VPN identifier, MAC addresses, and/or VLAN tags.



FIG. 4 illustrates how an RBridge can perform network layer multicasting in a TRILL network in accordance with some embodiments of the present invention.


RBridges 402-416 can be in a TRILL network which includes multiple virtual networks, e.g., VPNs and/or VLANs. Each virtual network may support multiple TRILL multicast trees. For example, TRILL multicast tree 418, which is illustrated using dotted lines, may belong to VLAN V1, and TRILL multicast tree 420, which is illustrated using dashed lines, may belong to VLAN V2.


A network layer (e.g., IP layer) multicast group can include end-hosts that are spread across multiple virtual networks, e.g., VPNs and/or VLANs. For example, a multicast group may include end-hosts that are in VPNs and/or VLANs coupled to RBridges 402, 408, 412, and 416 (these RBridges have been highlighted by drawing a circle around them). When a multicast packet for this multicast group is received at an RBridge, the RBridge may forward the multicast packet over a TRILL multicast tree on a particular VLAN. For example, when the multicast packet is received at RBridge 404, it may forward the packet over TRILL multicast tree 418 on VLAN V1.


When the multicast packet is received at RBridge 410, it may forward the packet based on the multicast packet's network-layer multicast-address. Specifically, RBridge 410 may determine that the multicast packet needs to be forwarded on both VLAN V1 and VLAN V2. RBridge 410 may forward the multicast packet on any one of the multiple multicast trees that are supported on VLAN V2. However, to ensure correct multicast forwarding, RBridge 410 may need to forward the multicast packet on VLAN V1 along the same multicast tree on which the multicast packet was received. Specifically, if RBridge 410 forwards the multicast packet on a multicast tree on VLAN V1 that is different from the one it was received on, it can create a forwarding loop and/or the multicast packet may not reach all of the end-hosts in the multicast group. Note that these problems do not arise if the network does not support multiple multicast trees.


Note that an RBridge may or may not be configured to perform network layer multicasting. For example, in the above example, RBridge 404 is not configured to perform network layer multicasting, whereas RBridge 410 is configured to perform network layer multicasting.


In some embodiments, the multicast packet can be a TRILL multicast packet, and can include a multicast tree identifier associated with the multicast tree over which the multicast packet is to be forwarded. The header of a TRILL multicast packet can include a multicast field (e.g., multicast field 250 in FIG. 2) which indicates that the TRILL packet is a multicast packet. The egress RBridge nickname (e.g., egress RBridge nickname 256 in FIG. 2) can correspond to the root of the multicast tree over which the multicast packet is to be forwarded.



FIG. 5 illustrates a switch in accordance with some embodiments of the present invention.


Switch 500 can include a plurality of mechanisms which may communicate with one another via a communication channel, e.g., a bus. Switch 500 may be realized using one or more integrated circuits.


In some embodiments, switch 500 is an RBridge (e.g., RBridge 102) which includes receiving mechanism 502, determining mechanism 504, forwarding mechanism 506, encapsulation mechanism 508, and decapsulation mechanism 510. In some embodiments, these mechanisms may be part of an application-specific integrated circuit.


Receiving mechanism 502 may be configured to receive a multicast packet (e.g., an Ethernet or TRILL multicast packet). Determining mechanism 504 may be configured to determine an internal multicast group identifier based on a source address, a multicast address, and a multicast tree identifier field associated with the multicast packet.


Forwarding mechanism 506 may be configured to forward the packet based on the internal multicast group identifier. Specifically, forwarding mechanism 506 may include a table (e.g., an array in memory) which is indexed using the internal multicast group identifier. Each record in the table (e.g., an array element) can include information that indicates how to forward the packet. For example, the record may include a set of egress port identifiers that identifies the egress ports. The record may also include instructions and/or information for modifying one or more fields in the header (e.g., the record may indicate that VLAN translation is to be performed and specify the new VLAN identifier). Additionally, the record may include header fields that need to be added to the packet (e.g., a TRILL header). Multiple copies of a multicast packet may be sent on an egress port of switch 500 if the multicast packet is to be sent to multiple VLANs that are coupled to the egress port.


Encapsulation mechanism 508 may be configured to encapsulate a copy of the multicast packet in a TRILL multicast packet. Specifically, encapsulation mechanism 508 may add a TRILL header to a copy of the multicast packet to obtain a TRILL multicast packet. In some embodiments, the TRILL header and the internal multicast group identifier may be determined concurrently. Once the TRILL header has been added, the TRILL multicast packet can be sent through the outgoing port.


Decapsulation mechanism 510 may be configured to decapsulate a TRILL multicast packet (e.g., by removing the TRILL header) to obtain the multicast packet that was encapsulated in the TRILL multicast packet. The multicast packet can then be forwarded to the customer's network (e.g., a customer VLAN).


In some embodiments, switch 500 (e.g., RBridge 410 in FIG. 4) may be configured to perform network layer multicasting. In these embodiments, receiving mechanism 502 may be configured to receive a multicast packet that includes a network-layer multicast-address. Specifically, receiving mechanism 502 may receive the multicast packet on a first multicast tree (e.g., TRILL multicast tree 418 in FIG. 4) associated with a first virtual network (e.g., VLAN V1). The multicast packet may include a first multicast tree identifier associated with the first multicast tree. The first multicast tree identifier can be the nickname of the RBridge at the root of the first multicast tree.


Determining mechanism 504 may be configured to determine, based on the network-layer multicast-address, one or more multicast trees associated with one or more virtual networks over which the packet is to be forwarded. For example, determining mechanism 504 may be configured to determine, based on the network-layer multicast-address, a second multicast tree (e.g., TRILL multicast tree 420 in FIG. 4) associated with a second virtual network (e.g., VLAN V2) over which the multicast packet is to be forwarded.


Forwarding mechanism 506 may be configured to forward the multicast packet on one or more multicast trees. For example, forwarding mechanism 506 may be configured to forward the multicast packet on the first multicast tree associated with the first virtual network, and forward a copy of the multicast packet on the second multicast tree associated with the second virtual network. The copy of the multicast packet may include a second multicast tree identifier associated with the second multicast tree. The second multicast tree identifier can be the nickname of the RBridge at the root of the second multicast tree.


In some embodiments, determining mechanism 504 may be configured to determine an internal multicast group identifier based on the network-layer multicast-address and a network-layer source-address of the multicast packet, and forwarding mechanism 506 may be configured to forward the multicast packet based on the internal multicast group identifier.


Note that FIG. 5 is for illustration purposes only, and is not intended to limit the present invention to the forms disclosed. Specifically, in some embodiments, switch 500 may not be an RBridge, and/or may include fewer or more mechanisms than those shown in FIG. 5.



FIG. 6A presents a flowchart that illustrates a process for forwarding packets based on an internal multicast group identifier in accordance with some embodiments of the present invention.


The process can be performed by a switch, e.g., RBridge 102. Upon receiving a multicast packet (e.g., an Ethernet or TRILL multicast packet), the switch can determine an internal multicast group identifier based on a source address (e.g., a source MAC or IP address), a multicast address (e.g., a multicast MAC or IP address), and a multicast tree identifier field associated with the multicast packet (operation 602).


In some embodiments, the system can determine the internal multicast group identifier by combining two sets of bits: one set of bits determined based on the source address and the multicast address, and a second set of bits determined based on the multicast tree identifier. Specifically, in some embodiments, combining the two sets of bits involves concatenating the two sets of bits to create the internal multicast group identifier.


For example, the source IP address and the multicast IP address can be used to look up the first set of bits in a context addressable memory. If the multicast packet includes a multicast tree identifier (e.g., RBridge nickname), then the multicast tree identifier can be used to determine the second set of bits. If the multicast packet does not include a multicast tree identifier, then the system can determine the second set of bits by hashing one or more fields in the multicast packet (or by any other means). Next, the first set of bits can be concatenated with the second set of bits to obtain the internal multicast group identifier.


Next, the switch can forward the multicast packet based on the internal multicast group identifier (operation 604). Specifically, the system can determine a set of egress ports based on the internal multicast group identifier. Next, the system can send at least one copy of the multicast packet through each port in the set of egress ports. The switch can additionally encapsulate the multicast packet in a TRILL multicast packet by adding a TRILL header, and send copies of the TRILL multicast packet through the set of egress ports which was determined based on the internal multicast group identifier.



FIG. 6B presents a flowchart that illustrates a process for performing network layer multicasting in a TRILL network in accordance with some embodiments of the present invention.


The process can be performed by a switch, e.g., RBridge 410 in FIG. 4. The switch can receive a multicast packet (e.g., an Ethernet or TRILL multicast packet) that includes a network-layer multicast-address, wherein the multicast packet is received on a first multicast tree associated with a first virtual network (operation 652). For example, RBridge 410 may receive a multicast packet from RBridge 404 over TRILL multicast tree 418 on VLAN V1.


Next, the switch can determine, based on the network-layer multicast-address, a second multicast tree associated with a second virtual network over which the multicast packet is to be forwarded (operation 654). For example, RBridge 410 may determine TRILL multicast tree 420 on VLAN V2 over which the multicast packet is to be forwarded. The second multicast tree can be determined randomly or it can be determined based on link utilization (e.g., by determining the least congested multicast tree).


The switch can then forward the multicast packet on the first multicast tree associated with the first virtual network, and forward a copy of the multicast packet on the second multicast tree associated with the second virtual network (operation 656). For example, RBridge 410 may forward the multicast packet to RBridges 408 and 414 over TRILL multicast tree 418, and forward a copy of the multicast packet to RBridges 406 and 416 over TRILL multicast tree 420.



FIG. 7 illustrates a system in accordance with some embodiments of the present invention.


System 700 can include processor 702 (e.g., a network processor) and memory 704. Processor 702 may be capable of accessing and executing instructions stored in memory 704. For example, processor 702 and memory 704 may be coupled by a bus. Memory 704 may store instructions that when executed by processor 702 cause system 700 to perform the processes illustrated in FIGS. 6A and/or 6B.


Specifically, memory 704 may store instructions for receiving a multicast packet, determining an internal multicast group identifier for a multicast packet based on a source address, a multicast address, and a multicast tree identifier field associated with the multicast packet, and forwarding the multicast packet based on the internal multicast group identifier. Memory 704 may optionally store instructions for encapsulation and/or decapsulation.


In some embodiments, the multicast packet include a network-layer multicast-address and it may be received on a first multicast tree associated with a first virtual network. Memory 704 may store instructions for determining, based on the network-layer multicast-address, a second multicast tree associated with a second virtual network over which the multicast packet is to be forwarded. In these embodiments, memory 704 may also store instructions for forwarding the multicast packet on the first multicast tree associated with the first virtual network, and forwarding a copy of the multicast packet on the second multicast tree associated with the second virtual network.


The data structures and code described in this disclosure can be partially or fully stored on a non-transitory computer-readable storage medium and/or a hardware module and/or a hardware apparatus. A computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other non-transitory media, now known or later developed, that are capable of storing code and/or data. Hardware modules or apparatuses described in this disclosure include, but are not limited to, application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), dedicated or shared processors, and/or other hardware modules or apparatuses now known or later developed. Specifically, the methods and/or processes may be described in a hardware description language (HDL) which may be compiled to synthesize register transfer logic (RTL) circuitry which can perform the methods and/or processes.


The methods and processes described in this disclosure can be partially or fully embodied as code and/or data stored in a computer-readable storage medium or device, so that when a computer system reads and/or executes the code and/or data, the computer system performs the associated methods and processes. The methods and processes can also be partially or fully embodied in hardware modules or apparatuses, so that when the hardware modules or apparatuses are activated, they perform the associated methods and processes. Further, the methods and processes can be embodied using a combination of code, data, and hardware modules or apparatuses.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners having ordinary skill in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: determining circuitry configured to: determine an internal multicast group identifier comprising a first and a second sets of bits, wherein the first set of bits is based on a source address and a multicast address associated with a multicast packet, wherein the second set of bits is based on: a multicast tree identifier in response to associated with the multicast packet being associated with the multicast tree identifier; anda hash-based technique in response to the multicast packet not being associated with a multicast tree identifier; andwherein scope of the internal multicast group identifier is internal and local within the switch; andforwarding circuitry configured to determine one or more output ports for the multicast packet by performing a lookup using the internal multicast group identifier.
  • 2. The switch of claim 1, wherein the determining circuitry is configured to: combine the first set of bits and the second set of bits to determine the internal multicast group identifier by concatenating the first set of bits and the second set of bits.
  • 3. The switch of claim 1, wherein the forwarding circuitry is further configured to: associate at least one copy of the multicast packet with a respective port in the one or more output ports.
  • 4. The switch of claim 1, wherein the multicast packet is a multicast TRILL (Transparent Interconnection of Lots of Links) packet.
  • 5. The switch of claim 1, wherein the multicast tree identifier field is a routing bridge (RBridge) nickname.
  • 6. The switch of claim 1, wherein the source address and the multicast address are Ethernet medium access control (MAC) addresses.
  • 7. The switch of claim 1, wherein the source address and the multicast address are Internet Protocol (IP) addresses.
  • 8. A computing system, comprising: a processor; anda memory storing instructions that when executed by the processor cause the system to perform a method, the method comprising: determining an internal multicast group identifier comprising a first and a second sets of bits, wherein the first set of bits is based on a source address and a multicast address associated with a multicast packet, wherein the second set of bits is based on:a multicast tree identifier in response to associated with the multicast packet, being associated with the multicast tree identifier; anda hash-based technique in response to the multicast packet not being associated with a multicast tree identifier; andwherein scope of the internal multicast group identifier is internal and local within the system; anddetermining one or more output ports for the multicast packet by performing a lookup using the internal multicast group identifier.
  • 9. The computing system of claim 8, wherein the method further comprising: combining the first set of bits and the second set of bits by concatenating the first set of bits and the second set of bits.
  • 10. The computing system of claim 8, wherein the method further comprises: associating at least one copy of the multicast packet with a respective port in the one or more output ports.
  • 11. The computing system of claim 8, wherein the multicast packet is a multicast TRILL (Transparent Interconnection of Lots of Links) packet.
  • 12. The computing system of claim 8, wherein the multicast tree identifier field is a routing bridge (RBridge) nickname.
  • 13. The computing system of claim 8, wherein the source address and the multicast address are Ethernet medium access control (MAC) addresses.
  • 14. The computing system of claim 8, wherein the source address and the multicast address are Internet Protocol (IP) addresses.
  • 15. A method, comprising: determining an internal multicast group identifier comprising a first and a second sets of bits, wherein the first set of bits is based on a source address and a multicast address associated with a multicast packet, wherein the second set of bits is based on: a multicast tree identifier in response to associated with the multicast packet, being associated with the multicast tree identifier; anda hash-based technique in response to the multicast packet not being associated with a multicast tree identifier; andwherein scope of the internal multicast group identifier is internal and local within a switch; anddetermining one or more output ports for the multicast packet by performing a lookup using the internal multicast group identifier.
  • 16. The method of claim 15, further comprising: combining the first set of bits and the second set of bits by concatenating the first set of bits and the second set of bits.
  • 17. The method of claim 15, further comprising: associating at least one copy of the multicast packet with a respective port in the one or more output ports.
  • 18. The method of claim 15, wherein the multicast packet is a multicast TRILL (Transparent Interconnection of Lots of Links) packet.
  • 19. The method of claim 15, wherein the multicast tree identifier field is a routing bridge (RBridge) nickname.
  • 20. The method of claim 15, wherein the source address and the multicast address are Ethernet medium access control (MAC) addresses.
  • 21. The method of claim 15, wherein the source address and the multicast address are Internet Protocol (IP) addresses.
RELATED APPLICATION

This application claims priority to U.S. Provisional Application No. 61/352,726, entitled “TRILL Multicast Trees,” by inventors Shunjia Yu, Raj Venkatesan, Anoop Ghanwani, Phanidhar Koganti, Mythilikanth Raman, Rajiv Krishnamurthy, and Dilip Chatwani, filed 8 Jun. 2010, the contents of which are incorporated herein by reference. This application also claims priority to U.S. Provisional Application No. 61/427,057, entitled “Supporting Multiple Multicast Trees in TRILL Networks,” by inventors Shunjia Yu, Nagarajan Venkatesan, Anoop Ghanwani, Phanidhar Koganti, Mythilikanth Raman, Rajiv Krishnamurthy, and Dilip Chatwani, filed 23 Dec. 2010, the contents of which are incorporated herein by reference.

US Referenced Citations (520)
Number Name Date Kind
829529 Keathley Aug 1906 A
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5879173 Poplawski Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrli, III Oct 1999 A
5983278 Chong Nov 1999 A
5995262 Hirota Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6092062 Lohman Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6295527 McCormack Sep 2001 B1
6331983 Haggerty Dec 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6553029 Alexander Apr 2003 B1
6571355 Linnell May 2003 B1
6583902 Yuen Jun 2003 B1
6633761 Singhal Oct 2003 B1
6636963 Stein Oct 2003 B1
6771610 Seaman Aug 2004 B1
6873602 Ambe Mar 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla Jun 2006 B1
7062177 Grivna Jun 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397794 Lacroute Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser, Jr. Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7801021 Triantafillis Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7912091 Krishnan Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8090805 Chawla Jan 2012 B1
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta et al. Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8175107 Yalagandula May 2012 B1
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman et al. Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8451717 Venkataraman May 2013 B2
8462774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8599850 Jha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8706905 McGlaughlin Apr 2014 B1
8724456 Hong May 2014 B1
8798045 Aybay Aug 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8918631 Kumar Dec 2014 B1
8937865 Kumar Jan 2015 B1
8995272 Agarwal Mar 2015 B2
9350680 Thayalan May 2016 B2
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020091795 Yip Jul 2002 A1
20030041085 Sato Feb 2003 A1
20030093567 Lolayekar May 2003 A1
20030097464 Martinez May 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030147385 Montalvo Aug 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030189930 Terrell Oct 2003 A1
20030208616 Laing Nov 2003 A1
20030216143 Roese Nov 2003 A1
20030223428 BlanquerGonzalez Dec 2003 A1
20030233534 Bernhard Dec 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040081171 Finn Apr 2004 A1
20040088668 Hamlin May 2004 A1
20040095900 Siegel May 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040205234 Barrack Oct 2004 A1
20040213232 Regan Oct 2004 A1
20040243673 Goyal Dec 2004 A1
20050007951 Lapuh Jan 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050108375 Hallak-Stamler May 2005 A1
20050122979 Gross Jun 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050259586 Hafid Nov 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima Feb 2006 A1
20060029055 Perera Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060036648 Frey Feb 2006 A1
20060036765 Weyman Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083172 Jordan Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060093254 Mozdy May 2006 A1
20060098589 Kreeger May 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060209886 Silberman Sep 2006 A1
20060221960 Borgione Oct 2006 A1
20060227776 Chandrasekaran Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060242398 Fontijn Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20060291480 Cho Dec 2006 A1
20060294413 Filz Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070053294 Ho Mar 2007 A1
20070074052 Hemmah Mar 2007 A1
20070081530 Nomura Apr 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070116224 Burke May 2007 A1
20070130295 Rastogi Jun 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070211712 Fitch Sep 2007 A1
20070220059 Lu Sep 2007 A1
20070238343 Velleca Oct 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070280223 Pan Dec 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080056135 Lee Mar 2008 A1
20080057918 Abrant Mar 2008 A1
20080065760 Damm Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112133 Torudbakken May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens Jun 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 LaVigne Oct 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080288020 Einav Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090024734 Merbach Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090094354 Rastogi Apr 2009 A1
20090106298 Furusho Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090113408 Toeroe Apr 2009 A1
20090116381 Kanda May 2009 A1
20090122700 Aboba May 2009 A1
20090129384 Regan May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090144720 Roush Jun 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245112 Okazaki Oct 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Ruah Oct 2009 A1
20090249444 Macauley Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090252503 Ishigami Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323698 LeFaucheur Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100002382 Aybay Jan 2010 A1
20100027420 Smith Feb 2010 A1
20100042869 Szabo Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100114818 Lier May 2010 A1
20100131636 Suri May 2010 A1
20100157844 Casey Jun 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100195489 Zhou Aug 2010 A1
20100215042 Sato Aug 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100254703 Kirkpatrick Oct 2010 A1
20100257263 Casado Oct 2010 A1
20100265849 Harel Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100284698 McColloch Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100329110 Rose Dec 2010 A1
20110007738 Berman Jan 2011 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110055274 Scales Mar 2011 A1
20110058547 Waldrop Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110088011 Ouali Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 Van Der Merwe et al. Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110149526 Turner Jun 2011 A1
20110158113 Nanda Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110176412 Stine Jul 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110228767 Singla Sep 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268118 Schlansker Nov 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110273990 Rajagopalan Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286357 Haris Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286462 Kompella Nov 2011 A1
20110292947 Vobbilisetty Dec 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Feb 2012 A1
20120033668 Humphries Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120033672 Page Feb 2012 A1
20120042095 Kotha Feb 2012 A1
20120063363 Li Mar 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120099863 Xu Apr 2012 A1
20120102160 Breh Apr 2012 A1
20120106339 Mishra May 2012 A1
20120117438 Shaffer May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120134266 Roitshtein May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120170491 Kern Jul 2012 A1
20120177039 Berman Jul 2012 A1
20120210416 Mihelich Aug 2012 A1
20120221636 Surtani Aug 2012 A1
20120239918 Huang Sep 2012 A1
20120243539 Keesara Sep 2012 A1
20120250502 Brolin Oct 2012 A1
20120260079 Mruthyunjaya Oct 2012 A1
20120275297 Subramanian Nov 2012 A1
20120275347 Banerjee Nov 2012 A1
20120278804 Narayanasamy Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003549 Matthews Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130034021 Jaiswal Feb 2013 A1
20130066947 Ahmad Mar 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130124707 Ananthapadmanabha May 2013 A1
20130127848 Joshi May 2013 A1
20130132296 Koppenhagen May 2013 A1
20130135811 Dunwoody May 2013 A1
20130136123 Ge May 2013 A1
20130148546 Eisenhauer Jun 2013 A1
20130156425 Kirkpatrick Jun 2013 A1
20130194914 Agarwal Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130223221 Xu Aug 2013 A1
20130223449 Koganti Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130266015 Qu Oct 2013 A1
20130268590 Mahadevan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130294451 Li Nov 2013 A1
20130297757 Han Nov 2013 A1
20130301425 Udutha Nov 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20130308492 Baphna Nov 2013 A1
20130308647 Rosset Nov 2013 A1
20130315586 Kipp Nov 2013 A1
20130322427 Stiekes Dec 2013 A1
20130332660 Talagala Dec 2013 A1
20130336104 Talla Dec 2013 A1
20130346583 Low Dec 2013 A1
20140013324 Zhang Jan 2014 A1
20140019608 Kawakami Jan 2014 A1
20140025736 Wang Jan 2014 A1
20140044126 Sabhanatarajan Feb 2014 A1
20140050223 Foo Feb 2014 A1
20140056298 Vobbilisetty Feb 2014 A1
20140064056 Sakata Mar 2014 A1
20140105034 Sun Apr 2014 A1
20140157251 Hocker Jun 2014 A1
20140298091 Carlen Oct 2014 A1
20140355477 Velayudhan Dec 2014 A1
20150010007 Matsuhira Jan 2015 A1
20150030031 Zhou Jan 2015 A1
20150127618 Alberti May 2015 A1
20150143369 Zheng May 2015 A1
20150172098 Agarwal Jun 2015 A1
20150195093 Mahadevan Jul 2015 A1
20150222506 Kizhakkiniyil Aug 2015 A1
20150248298 Gavrilov Sep 2015 A1
20150263991 MacChiano Sep 2015 A1
20150281066 Koley Oct 2015 A1
20150301901 Rath Oct 2015 A1
20150347468 Bester Dec 2015 A1
20160072899 Tung Mar 2016 A1
Foreign Referenced Citations (12)
Number Date Country
102801599 Nov 2012 CN
0579567 May 1993 EP
0579567 Jan 1994 EP
0993156 Dec 2000 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Dec 2008 EP
2874359 May 2015 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (205)
Entry
“Switched Virtual Internetworking moves beyond bridges and routers”, (Sep. 23, 1994), No. 12, New York, US.
Knight, S. et al. “Virtual Router Redundancy Protocol”, Apr. 1998, XP-002135272.
Eastlake, Donald et al., “RBridges: TRILL Header Options”, Dec. 2009.
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Dec. 2009.
“Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions”.
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, XP-002649647, 2009.
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, Mar. 2010.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, Mar. 2010.
Christensen, M. et al., “Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches”, May 2006.
“Switched Virtual Internetworking moved beyond bridges and routers”, 8178 Data Communications (Sep. 23, 1994), No. 12, New York.
S. Night et al., “Virtual Router Redundancy Protocol”, Network Working Group, XP-002135272, Apr. 1998.
Eastlake 3rd., Donald et al., “RBridges: TRILL Header Options”, Draft-ietf-trill-rbridge-options-00.txt, Dec. 24, 2009.
J. Touch, et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Draft-ietf-trill-rbridge-vlan-mapping-01.txt, Dec. 4, 2009.
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, draft-ietf-trill-rbridge-protocol-16.txt, Mar. 3, 2010.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, Oct. 2002.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08”, 2008.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, from Qin, Zhiren, dated Nov. 12, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, from Patel, Parthkumar, dated Nov. 29, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, from Kavleski, Ryan C., dated Jan. 10, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Jan. 6, 2014.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, from Pascual Peguero, Natali, dated Feb. 20, 2014.
Zhai F. Hu et al. “RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt”, May 15, 2012.
Huang, Nen-Fu et al., “An Effective Spanning Tree Algorithm for a Bridged LAN”, Mar. 16, 1992.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
U.S. Appl. No. Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office Action dated Jun. 20, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Brocade Unveils, “The Effortless Network” Mar. 2012.
Foundary Fastlron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Brocade, “FastIron and Turbolron 24x Configuration Guide”, Feb. 16, 2010.
Brocade, “FastIron Configuration Guide” Dec. 18, 2009.
Brocade, “The Effortless Network: Hyperedge Technology for the Campus LAN” 2012.
Narten, T. et al., “Problem Statement: Overlays for Network Virtualization draft-narten-nvo3-overlay-problem-statement-01”, Oct. 31, 2011.
Knight, Paul et al., “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts”, Jun. 2004.
Brocade “An Introduction to Brocade VCS Fabric Technology”, Dec. 3, 2012.
Kreeger, L. et al., “Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00”, Jan. 30, 2012.
Knight, Paul et al., “Network Based IP VPN Architecture using Virtual Routers”, May 2003.
Louati, Wajdi et al., “Network-Based Virtual Personal Overlay Networks Using Programmable Virtual Routers”, Jul. 2005.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, Man U., dated May 22, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, from Wyllie, Christopher T., dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, from Park, Jung H., dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, from Kavleski, Ryan C., dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, from Chang, Richard K., dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, from Park, Jung H., dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, from Park. Jung H., dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated May 24, 2012.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, from Haile, Awet A., dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, from Haile, Awet A., dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, from Huang, Weibin, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, from Lo, Diane Lee, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, from Ghafoerkhan, Faiyazkhan, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, from Ambaye, Mewale A., dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, from Ambaye, Mewale A., dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, from Mansoury, Nourali, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, from Weidner, Timothy J., dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, from Weidner, Timothy J., dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, from Preval, Lionel, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, from Preval, Lionel, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, from Patel, Parthkumar, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/365,808, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, from Qin, Zhiren, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, from Lee, Chi Ho A., dated Oct. 21, 2013.
‘An Introduction to Brocade VCS Fabric Technology’, BROCADE white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action Dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE Globecom Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011.
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009.
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011.
Open Flow Switch Specification Version 1.2 Dec. 5, 2011.
Office action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014.
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012.
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010.
Office Action dated Jul. 6, 2016, U.S. Appl. No. 14/618,941, filed Feb. 10, 2015.
Office Action dated Jul. 20, 2016, U.S. Appl. No. 14/510,913, filed Oct. 9, 2014.
Office Action dated Jul. 29, 2016, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 28, 2016, U.S. Appl. No. 14/284,212, filed May 21, 2016.
Related Publications (1)
Number Date Country
20110299527 A1 Dec 2011 US
Provisional Applications (2)
Number Date Country
61352726 Jun 2010 US
61427057 Dec 2010 US