1. Field of the Invention
The present invention relates to a supporting pedestal capable of adjusting an angle of an antenna module, and more particularly, to a supporting pedestal capable of adjusting an angle of an antenna module rapidly and capable of being installed on a ground, a wall and an inclined roof.
2. Description of the Prior Art
For supporting an antenna module on a platform effectively (such as on a ground, a wall or an inclined roof), an antenna system includes a supporting device, such as a supporting pedestal, connecting to the antenna module and disposed on the platform. For example, the antenna module can be disposed on the ground, the wall or the inclined roof, and the antenna module ( ) is orientated to a satellite, and an azimuth of the antenna module can be adjusted according to signals from the satellite. A conventional supporting pedestal includes a tube and a pedestal. A pivot hole and a slot are formed on the pedestal, and the slot is around under the pivot hole. Therefore, the tube of the conventional supporting pedestal pivots on the pivot hole on the pedestal, and can pivot relative to the pedestal along the slot. However, a rotary range of the tube relative to the pedestal is limited. For example, the tube can not pivot to a position parallel to a bottom of the pedestal, and the antenna module can not be located at a position parallel to a vertical wall by a straight tube when the supporting pedestal is installed on the vertical wall. For solving the drawback, the conventional supporting pedestal further includes a curved tube for supporting the antenna module on the wall, the ground and the inclined roof in any conditions. Cost of the conventional supporting pedestal is increased due to the curved tube, accordingly.
The present invention provides a supporting pedestal of adjusting an angle of an antenna module rapidly for solving above drawbacks.
According to the claimed invention, a supporting pedestal includes a pedestal. The pedestal includes a base and a first board disposed on a lateral side of the base. A first pivot hole and a first slot are formed on the first board, and a distance between the first pivot hole and each section of the first slot being constant. The pedestal further includes a second board disposed on the other lateral side of the base and opposite to the first board. A second pivot hole is formed on the second board. The pedestal further includes a rib disposed on an edge of the base and connecting to the first board and the second board for preventing the first board and the second board from bending relative to the base. The first pivot hole and the second pivot hole are respectively formed on lateral sides of the first board and the second board adjacent to the rib. The pedestal further includes a tube disposed between the first board and the second board. A pivoting hole is formed on the tube. The pedestal further includes a first pivoting component passing through the first pivot hole, the second pivot hole and the pivoting hole so that the tube pivots relative to the pedestal via the pivoting hole. The pedestal further includes a first locking component for passing through the first slot and fixing at a first locking hole on the tube when the tube pivots relative to the first board and the second board at a predetermined angle, so as to fix the tube relative to the first board and the second board.
According to the claimed invention, the first slot is a quarter arc slot.
According to the claimed invention, a second slot is further formed on the second board, a distance between the second pivot hole and each section of the second slot is constant, and two end points of the second slot and the second pivot hole are respectively three corner points of a right triangle.
According to the claimed invention, the supporting pedestal further includes a second locking component for passing through the second slot and fixing at a second locking hole on the tube when the tube pivots relative to the first board and the second board at a predetermined angle, so as to fix the tube relative to the first board and the second board.
According to the claimed invention, the second slot is a quarter arc slot.
According to the claimed invention, at least one fixing hole and a slot are formed on the base.
According to the claimed invention, the tube is a circular tube or a square tube.
According to the claimed invention, an antenna system includes an antenna module and a supporting pedestal for supporting the antenna module. The supporting pedestal includes a pedestal disposed on a platform. The pedestal includes a base and a first board disposed on a lateral side of the base. A first pivot hole and a first slot are formed on the first board, and a distance between the first pivot hole and each section of the first slot being constant. The pedestal further includes a second board disposed on the other lateral side of the base and opposite to the first board. A second pivot hole is formed on the second board. The pedestal further includes a rib disposed on an edge of the base and connecting to the first board and the second board for preventing the first board and the second board from bending relative to the base. The first pivot hole and the second pivot hole are respectively formed on lateral sides of the first board and the second board adjacent to the rib. The pedestal further includes a tube disposed between the first board and the second board. A pivoting hole is formed on the tube. The pedestal further includes a first pivoting component passing through the first pivot hole, the second pivot hole and the pivoting hole so that the tube pivots relative to the pedestal via the pivoting hole. The pedestal further includes a first locking component for passing through the first slot and fixing at a first locking hole on the tube when the tube pivots relative to the first board and the second board at a predetermined angle, so as to fix the tube relative to the first board and the second board.
The supporting pedestal of the present invention forms the pivot holes on the lateral sides of the board adjacent to the rib. Two ends of the slot and the pivot hole can be respectively three corner points of a right equilateral triangle, and two equilateral sides of the right equilateral triangle are respectively perpendicular and vertical to the base. Therefore, the pedestal of the present invention has small size and light weight, so as to decrease manufacturing cost and transportation cost of the supporting pedestal.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
As shown in
Besides, as shown in
In conclusion, the supporting pedestal 14 of the present invention forms the pivot holes (the first pivot hole 221 and the second pivot hole 241) on positions of the boards (the first board 22 and the second board 24) adjacent to the base 20 and the rib 26, and forms the slots (the first slot 223 and the second slot 243) surrounding the pivot holes on the boards as the quarter arc, so that the tube 28 can pivot relative to the pedestal 18 along the slots. For example, when the tube 28 slides to ends of the first slot 223 and the second slot 243 adjacent to the base 20 along the first slot 223 and the second slot 243, an axial direction of the tube 28 can be parallel to the base 20, which means the tube 28 is parallel to the platform 16. When the tube 28 slides to the other ends of the first slot 223 and the second slot 243 away from the base 20 along the first slot 223 and the second slot 243, the axial direction of the tube 28 can be perpendicular to the base 20, which means the tube 28 is perpendicular to the platform 16. Therefore, the supporting pedestal 14 of the present invention can utilize a straight tube (a non-curved tube) to support the antenna module 12 for adjusting the angle of the antenna module 12 relative to the platform 16 within 0 degree to 90 degrees. Furthermore, pivot of the tube 28 and the pedestal 18 of the present invention is located adjacent to the rib 26, so as to increase the structural strength of the supporting pedestal 14 for preventing the first board 22 and the second board 24 of the pedestal 28 from bending relative to the base 20 due to overweight of the antenna module 12.
Comparing to the prior art, the supporting pedestal of the present invention forms the pivot holes on the lateral sides of the board adjacent to the rib. Two ends of the slot and the pivot hole can be respectively three corner points of a right equilateral triangle, and two equilateral sides of the right equilateral triangle are respectively perpendicular and vertical to the base. Therefore, the pedestal of the present invention has small size and light weight, so as to decrease manufacturing cost and transportation cost of the supporting pedestal.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
100105967 | Feb 2011 | TW | national |