This application claims the priority of German Patent Application, Serial No. 10 2009 024 738.6, filed Jun. 12, 2009, pursuant to 35 U.S.C. 119(a)-(d), the content of which is incorporated herein by reference in its entirety as if fully set forth herein.
The invention relates to a supporting structure for an open-space photovoltaic system with several ground supports with one end rising from the ground, with beams being supported on the other end, and with module rails mounted on the beams for attachment of fastening means, in particular clamps, for photovoltaic modules.
The following discussion of related art is provided to assist the reader in understanding the advantages of the invention, and is not to be construed as an admission that this related art is prior art to this invention.
Supporting structures of this type are widely used. They have mostly a superstructure where ground supports of different lengths rise vertically from the ground or are embedded vertically in a foundation connected with the ground. The ground supports are arranged in two rows, with the row with short ground supports and the row with the longer ground supports both extending in East-West direction. Beams or joists are placed on top of the free ends of the ground supports, which also oriented in East-West direction, and attached. This produces two continuous beams having a length of, for example, hundred meters, which are each supported by a plurality of ground supports. One of the continuous beams is at a lower level than the other, with a typical height difference ranging from, for example, 60 cm to 80 cm. The height difference defines the slope of the module rails, which extend perpendicular to the supports and are mounted thereon in North-South direction, with respect to the ground plane. The photovoltaic modules all then attached on the module rails with clamps.
This arrangement provides an advantageous angle of incidence for the photovoltaic modules, but is relatively complex and relatively massive, in order to be able to withstand wind forces which attack below the mounted inclined PV modules. Moreover, automated installation of the PV modules is difficult due to the large inclination. In addition, in an arrangement with several rows, space must be left between the rows to prevent shadowing of the lower region of the adjacent northern row of PV modules by the upper photovoltaic modules of the adjacent southern row of photovoltaic modules. Finally, ground supports and beams cannot be used for dual purposes where a row of beams supports module rails for two rows of photovoltaic modules, as this is not possible due to the aforementioned required spaces between the rows and the different levels.
It would therefore be desirable and advantageous to obviate the aforementioned disadvantages associated with the massive structure and the space requirement, to provide an improved supporting structure for a photovoltaic system which facilitates automatic installation of the photovoltaic modules and reduces oscillations caused by the wind load by transferring the associated wind forces into the ground.
The present invention resolves prior art problems by arranging at least two mutually parallel rows having each at least four ground supports in substantially North-South direction, installing a corresponding beam in substantially East-West direction on or between ground supports located at the same position along a row, mounting at least one module rail on or between two corresponding adjacent beams in substantially North-South direction, wherein the other ends of the ground supports are located at the same height above the ground, so that the beams and the module rails extend substantially plane-parallel to the ground, wherein each parallel aligned row of ground supports disposed at the same position in the row has ground supports with a comparably rigid flexural characteristic, and wherein at least two comparatively flexible intermediate ground supports are located between each of two consecutive ground supports with rigid flexural characteristic.
This arrangement allows installation of the photovoltaic modules without requiring a large area; however, because the photovoltaic modules extend parallel to the ground, the light efficiency is reduced.
The reduced light efficiency can be compensated in part by installing the photovoltaic modules on the module rails with an angle of inclination between 2° and 20°. Advantageously, the angle of inclination may be provided by the type of the fastening means. For example, clamps may be employed which support the lower edge of a photovoltaic module on a support surface which is located at a lower level than the upper edge of the preceding photovoltaic module which rests on the clamp on a support surface at a higher level. Such clamps are commercially available for use with system installed on flat roofs.
A large facility dimensioned according to the invention with a rectangular design may have edge lengths of several hundreds of meters, which may introduce substantial forces under windy conditions or may even cause oscillations. The substantial forces are counteracted according to the invention in that each parallel aligned row of ground supports at the same position in the row has a comparable rigid flexural characteristic, and two comparatively flexible intermediate ground supports are located between two corresponding consecutive ground supports with the rigid flexural characteristic. A portion of the forces is then advantageously transferred through flexing of the intermediate ground supports into the ground as a bending moment, while only fixed points are defined to prevent excessive flexing. A buildup of oscillations can be counteracted with springs, as described below in more detail.
The supporting structure described above represents the smallest unit exhibiting the advantages of the invention. In practical application with large photovoltaic systems extending over several hundred meters and having areas of up to 1 km2 equipped with PV modules, the smallest unit can be easily expanded or multiplied. The smallest feasible lower dimension to justify the costs for construction vehicles, installation automat, personnel, etc., appears to include at least four mutually parallel rows having each at least four ground supports and accordingly four beams. The term “beam” in the context of the present invention refers to any support member capable of supporting module rails. It is also not required that a corresponding dedicated, separate beam is mounted on or between two grounds supports. The beam may be dimensioned to extend across several ground supports. Accordingly, only a portion of the beam is then located between two grounds supports.
As mentioned above, large areas of contiguous metal may be accumulated in an area, which would represent an attractive target for lightning strikes during a thunderstorm. Accordingly, the entire metal mass is advantageously subdivided into a large number of small, mutually insulated metal masses, which then no longer form a large “striking electrode” for a lightning bolt. This is accomplished by fabricating at least one of the parts: ground support, beam, module rail, or fastening means from an electrically insulating material. Alternative or additional measures provide:
The aforementioned different flexural characteristics can be due to the cross sections of the ground supports. For example, the ground supports may be round pipes having different diameters, wherein the rigid ground supports have a greater diameter than the flexible ground supports. IPE or a wide-flanged-I-beams can also be used as ground supports, which can be installed in the longitudinal or transverse direction depending on the desired flexing direction. The terms “rigid” and “flexible” are meant to indicate relative properties and do not represent a limitation with respect to the physical value of the flexural characteristic.
Advantageously, the rigid flexing direction for the intermediate ground supports extends in the East-West direction and for all other ground supports in the North-South direction. This is related to the later installation of the module rails which are tensioned. The rigid flexing direction of the intermediate ground supports in the East-West direction prevents excursions at great lengths which could cause the PV modules made of glass to push against each other. However, the ground supports may also be installed with the directions reversed or even in arbitrary directions.
To simplify their fabrication, the module rails are provided as bands or cables with a ready-made length and have on at least one end a spring element—preferably in conjunction with an isolator. Several of these ready-made module rails are then connected with one another via the spring and optionally the isolator. This preparation of the module rails reduces the complexity of installation on-site, which is more expensive than at the place of manufacture.
To simplify installation, the ground supports may be arranged in a grid pattern, wherein the module rails in this grid pattern are provided with preparation means for preparing their attachment to the beams. The preparation means is in its simplest form an opening or a hole extending through the module rail, through which a screw can later be screwed into the beam for affixing the module rail on the beam.
The module rails are typically made of aluminum profile. Alternatively, to shorten the installation time, the module rail may advantageously be a flat steel band, wherein the spring is realized by corrugating the flat steel band at an end.
A height of the beams or joists of 0.5 m to 1.5 m above terrain ground, i.e., above ground level, has proven to be sufficient in the context of the stated object to achieve a low installation height of the supporting structure.
According to a possible method of the invention for installing the supporting structure, the ground supports are first fixedly installed in the ground so that their free ends are all approximately at the same height and several parallel adjacent rows are formed, whereafter the beams are connected with the free ends of the ground supports which are located next to one another at the same position of the rows. In an additional step, the module rails are attached on one end and tensioned by applying a tension force at the other end, whereafter they are attached on the beams in the tensioned state. This approach requires that the module rails are made of at least a flexible material, for example the aforementioned flat steel, or even made of a flexible material, such as nylon or Teflon band, which then has an integrated spring action. The band which is attached with one end to the beam on the rigid ground support is tensioned with a cable winch until all openings are located at the height of additional beams. The band is then affixed in this position to the beams through the holes.
Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:
a is a detailed view of a cross-section of a ground support, wherein the ground support is rigidly installed in the N-S direction,
b is a detailed view of an intermediate ground support cross-section, wherein the ground support is flexibly installed in the N-S direction,
a shows a beam with a module rail before tensioning, and
b shows a module rail affixed on the beam after tensioning.
Throughout all the figures, same or corresponding elements may generally be indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the figures are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted.
Turning now to the drawing, and in particular to
The rows 3a, 3b are oriented in the terrain in North-South direction N-S and connected at their upper, i.e., free, end to joists or beams 7. These are only schematically indicated in
According to
At least two module rails 9 adapted to receive or support several photovoltaic modules 11 are installed on the beams 7 in mutually parallel relationship in the North-South direction N-S. With this arrangement, all module rails 9 are located in a plane extending plane-parallel to the ground 13.
As shown in
A corresponding isolator 21 (see
The detail circle of
Alternatively, the ground supports 5 may be round pipes with different diameters, wherein the rigid ground supports 5 have a greater diameter than the flexible ground supports 5′.
A method for installing the supporting structure 1 is described in more detail with reference to
The winch is operated until the module rail 9 is tightened to a point where all openings separated by the same spacing as the spacing between the beams 7 are located on top of the respective beam 7. This position is illustrated in
a and 6b further illustrate a first insulation means 29 which electrically insulates the module rail 9 from the beam 7. Also shown is a second insulation means 31, which electrically insulates the beam 7 from the ground support 5. Both measures are intended to prevent large, electrically contiguous masses of metal to reduce the risk of a lightning strike.
In summary, a supporting structure 1 for an open-space photovoltaic system is advantageously provided, which has several ground supports 5, 5′ which rise at one end from the ground, with beams 7 resting on the other end, wherein module rails 9 are secured on the beams 7 to which then fastening means, in particular clamps, for photovoltaic modules 11 can be attached. The ground supports 5 form at least two aligned rows 3a, 3b having each at least three ground supports 5 oriented it essentially North-South direction. A corresponding beam 7 is installed substantially in the East-West direction on or between ground supports 5, 5′ disposed at the same position in the row 3a, 3b. At least two module rails 9 are attached on or between two respective adjacent beams 7 in essentially North-South direction. The other ends of the ground supports 5, 5′ are at the same level above terrain ground 13, so that the beams 7 and the module rails 9 extend it essentially plane-parallel to the terrain ground 13. This arrangement enables an effective installation with little material consumption, and the supporting structure 1 exposes only a small effective surface area to wind gusts. Each row 3a, 3b of ground supports includes ground supports 5, 5′ with partially relatively rigid and flexible flexural characteristics.
While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit and scope of the present invention. The embodiments were chosen and described in order to explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 024 738.6 | Jun 2009 | DE | national |