1. Technical Field
The invention relates to a molded block of concrete for building a supporting wall which is in particular inclined to the vertical against an earth backfill and in which the individual molded blocks are arranged one above the other in layers. Furthermore, the invention relates to a corresponding supporting wall comprising such molded blocks.
2. Prior Art
Such molded blocks or supporting walls are known in various embodiments in practice. To be mentioned by way of example is EP 0 191 908 B1, originating from the applicant.
The molded blocks and supporting walls known from the prior art basically perform their purpose. However, laying is laborious, in particular with regard to the necessary anchoring measures to secure the supporting wall.
Against this background, the invention is based on the object of further developing molded blocks and supporting walls of the type mentioned at the beginning.
A molded block to achieve this object is a molded block of concrete for building a supporting wall which is in particular inclined to the vertical against an earth backfill and in which the individual molded blocks are arranged one above the other in layers, characterized in that the molded block is formed as a cavity block with at least one cavity or a vertically directed aperture, the, or essentially each, cavity or aperture being arranged in such a way that, with the molded blocks arranged offset in relation to one another in layers in a supporting wall, preferably the essentially load-transferring regions of the molded blocks arranged above or below one another are arranged essentially in line in the load-transferring direction. The fact that the molded block is formed as a cavity block with at least one cavity or a vertically directed aperture has the effect that the molded block has a lower weight than conventional molded blocks for building supporting walls. The molded block can consequently be laid more easily, in particular manually. Furthermore, it is provided that the, or essentially each, cavity or aperture is arranged in such a way that, with the molded blocks arranged offset in relation to one another in layers in a supporting wall, load-transferring regions of molded blocks arranged above or below one another are arranged essentially in line in the load-transferring direction. This configuration makes very large cavities or apertures possible, so that the molded blocks have a comparatively low weight. The applicant has recognized that, if the load-transferring regions are arranged in line in spite of the offset arrangement in layers, the entire load-transferring cross section can be used for dimensioning purposes, so that the remaining walls can be made relatively thin.
In a preferred embodiment of the invention, it is provided that the molded block is trapezoidally formed in horizontal projection. The or each cavity may be formed continuously from an upper side to an underside of the molded block, so that vertically directed apertures are created. In a preferred embodiment of the invention, the molded block has three cavities or apertures, which are separated from one another by obliquely directed webs.
Visible faces of the molded block preferably have a specially formed surface, for example a surface similar to natural stone.
A further special feature comprises the formation of depressions intended for receiving connecting means that are envisaged when building special supporting walls.
The supporting wall according to the invention is a supporting wall comprising molded blocks of concrete, which is preferably inclined to the vertical against an earth backfill and in which the individual molded blocks are arranged one above the other in layers, characterized in that the molded blocks according to the invention are used. The supporting wall thereby benefits from the advantages that can be achieved by using the molded blocks.
In a preferred development of the invention, it is provided that the supporting wall comprises at least two walls, individual molded blocks of the two walls being connected to one another by connecting means. This results in a supporting wall which has a much greater static width and withstands correspondingly greater loading by the earth backfill.
Preferred developments of the invention concern the type of connection of the two walls and the configuration of the connecting means. Depending on requirements, the molded blocks of each layer may be connected to one another, or else only the blocks of every second, third, etc. layer. The same applies to the arrangement in horizontal projection.
The rear wall may have the same height, a smaller height or a greater height than the front wall, depending on requirements in terms of statics. A further special feature comprises that the molded blocks can not only be laid as straight walls but also make it possible to lay curved walls.
Preferred exemplary embodiments of the invention are explained below on the basis of the drawing, in which:
Shown in the figures are on the one hand a molded block 20 of concrete (
The molded blocks 20 have in each case a number of upright side walls 23, 24, and also an essentially horizontally directed upper side 25 and underside 26. The molded blocks 20 are essentially trapezoidally formed in horizontal projection. In this case, two opposite side walls 24 are parallel to one another and two opposite side walls 23 converge toward one another.
The molded block 20 may be produced in conventional (concrete block) molds, so that the side walls 23, 34 are formed by upright walls of mold cavities. The molded blocks 20 may be produced in the molds with the underside 26 facing upward, so that the upward-facing underside 26 can be shaped or embossed by a die.
In the exemplary embodiment shown, it is provided that at least one of the two parallel side walls 24, preferably at least the longer side wall 24, is provided with a special structure, for example a structure similar to natural stone. To achieve this effect, the mold may be formed for example according to the applicant's DE 102 47 259 A.
The molded block 20 is formed as a cavity block. In the exemplary embodiment shown, a total of three vertically directed apertures 27, 28, 29 are provided. The apertures 27, 28, 29 extend continuously from the upper side 25 to the underside 26 of the molded block 20. The apertures 27, 28, 29 are triangularly formed in horizontal projection and arranged such that they are evenly distributed over the cross section of the molded block 20. The base of the largest aperture 27 runs parallel to the shorter side wall 24 and extends over virtually its entire width. The point of the aperture 27 lies approximately in the longitudinal center of the longer side wall 24. The two other apertures 28 and 29 are approximately the same size, but smaller than the aperture 27. The bases of the apertures 28, 29 are arranged parallel to the longer side wall 24. The points of the apertures 28, 29 point toward the shorter side face 24. The apertures 28, 29 are respectively arranged on different sides of the aperture 27.
The apertures 27, 28, 29 are laterally bounded by remaining outer walls 30 in the region of the side walls 23, 24, and also inner webs 31, which run between the walls 30 and separate the apertures 27, 28, 29 from one another. The webs 31 run in a way corresponding to the arrangement of the apertures 27, 28, 29 from the corner regions of the shorter side wall 24 in the direction of the longitudinal center of the longer side wall 24. The upper side and underside of the webs 31 lie in the plane of the upper side 25 and underside 26, respectively, of the molded block 20.
Also formed in the region of the underside 26 of the molded block 20 are depressions 32, which serve for receiving connecting means 33. The depressions 32 run parallel to the side walls 24 and are arranged at a distance from them. In cross section, the depressions 32 are initially rectangularly formed, starting from the underside 26, followed by a region converging toward the upper side 25. The maximum depth of the depressions 32 is the same in each case.
The molded blocks 20 shown in
As can be seen from
As
It is not imperative for the load-transferring regions to be arranged completely in line one above the other. It is also conceivable that this applies for example only to part of the walls 30 and webs 31. In this case, there is just a reduction in the cross-sectional area of the molded block 20 that can be used for load transfer, so that the load-transferring regions may have to be made with a greater wall thickness, or only lower loads can be accepted.
The supporting wall 21 shown in
To connect the two walls 39, 40 to one another, every second layer of the molded blocks 20 of the two walls 39, 40 is connected in the region of the depressions 32 by connecting means 33. In this case, a connecting means 33 respectively connects two opposing molded blocks 20. In the present case, the connecting means 33 is led through the depressions 32 of the opposing molded blocks 20 in the manner of a loop. It is not imperative for the connecting means 33 to be formed as a closed band. It may also be that the connecting means 33 are formed as two essentially C-shaped, clasp-like formations, which engage in the depressions 32 from both sides.
In the present case, the connecting means 33 are placed in the depressions 32, so that a jointed connection of the opposing molded blocks 20 is created. From a statics viewpoint, this creates a supporting wall 21 with a greater width, which can accept greater loads (in particular tilting moments) than conventional, single-skin supporting walls 21. The covering of the rear wall 40 by the earth backfill 22 also contributes to this.
The supporting wall 21 shown in
In principle, supporting walls 21 which have more than two walls 39, 40 can also be built by the system presented. For example, the walls may also be formed with a graduated height with increasing distance from the visible side 36.
Furthermore, it is conceivable that an anchorage by the connecting means 33 is not provided over the entire height of the walls 39, 40. The number of connecting means 33 may additionally vary. Depending on requirements in terms of statics, every layer or every second layer may be connected by connecting means 33. Greater intervals are also conceivable. In the longitudinal direction of the wall, it is also not imperative for every molded block 20 to be connected to an opposing molded block 20 of another wall 39, 40. Depending on dimensioning in terms of statics, greater intervals may also be chosen here.
As mentioned at the beginning, the molded blocks 20 can be laid without mortar, so that the retention between the individual layers is obtained by the dead weight of the blocks and the covering by the earth backfill 22. Alternatively, positive or non-positive connections may of course also be provided between the molded blocks 20 of neighboring layers.
The connecting means 33 provided here should be produced from a durable material that is fit for the intended purpose. Connecting means 33 made of plastic or (stainless) metal are conceivable for example.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 024 802.8 | May 2004 | DE | national |
This patent application is the United States Patent Cooperation Treaty (PCT) Chapter II National Phase of PCT/EP2005/005341 having an international filing date of 17 May 2005, which claims priority on German patent application no. 10 2004 024 802.8 having a filing date of 17 May 2004. The PCT applicant is SF-Kooperation GmbH Beton-Konzepte, a corporation of Germany, having a business address of Bremerhavener Heerstrasse 10, 28717, Bremen, Germany.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/005341 | 5/17/2005 | WO | 00 | 11/16/2007 |