The present invention relates to devices and methods for the reduction of noise, flash and recoil from the sudden release of gas or other fluid, and more particularly, to the reduction of noise, flash from the discharge of a firearm.
A shockwave has a sharp change of pressure in a narrow region traveling through a medium, especially air. In a firearm application, the shockwave is the result of gas exceeding the speed of sound. Typical devices designed to suppress firearms are composed of a series of baffles. The size and shape of the baffles vary greatly. They are generally designed to obstruct the forward flow of the gas. While existing suppression devices are useful, further improvements are possible.
In view of the foregoing background, it is therefore an object of the present invention to provide improved suppression devices and related methods for controlling the release of fluid flows exhibiting shockwaves.
According to an embodiment of the present invention, a firearm suppression device comprises an outer wall extending around a propagation path between outer wall inlet and outlet ends an outer wall extending around a propagation path between outer wall inlet and outlet ends, one or more baffles extending inwardly from the outer wall toward the propagation path between the outer wall inlet and outlet ends, and one or more inner wall sections corresponding to the baffles and extending around the propagation path inwardly of the outer wall and outwardly of the baffle opening of the corresponding one of the plurality of baffles such that a circumferential volume is defined between the outer wall and the at least one inner wall section.
Each baffle defines a baffle opening between a baffle inlet face and a baffle outlet face through which the propagation path passes, and is preferably angled toward the outer wall inlet end from the outer wall. Each inner wall section extends around the propagation path inwardly of the outer wall and outwardly of the baffle opening of the corresponding one of the baffles such that a circumferential volume is defined between the outer wall and the inner wall section. Each inner wall section extends from the corresponding baffle toward the outer wall inlet end between inner wall section first and second ends, and adjoins the baffle inlet face of the corresponding baffle at the first end.
First and second fluid flow paths are defined through the inner wall section first and second ends, respectively, that communicate with the circumferential volume. A portion of fluid propagating along the propagation path will be deflected by the baffle inlet face of the baffle through the first fluid flow path into the circumferential volume, and out the second fluid path back toward the propagation path.
According to a method aspect, a method of shockwave suppression includes channeling a shockwave from a muzzle of the firearm (or other shockwave source) into a suppression device along a firing axis (or other propagation path), and within the suppression device, deflecting a portion of the shockwave away from the firing axis, and channeling the deflected portion through a feedback path and back to a region behind the deflected shockwave.
These and other objects, aspects and advantages of the present invention will be better appreciated in view of the drawings, and following detailed description of preferred embodiments.
According to an embodiment of the present invention, referring to
A plurality of inner wall sections 26 extend from respective ones of the baffles 22A, 22B toward the inlet end 16 around the propagation path 14 inwardly of the outer wall 12 such that a plurality of circumferential volumes 28 are defined. First and second fluid flow paths 30, 32 extend through each inner wall section 26 at first and second ends thereof 34, 36. As will be explained in greater detail below, a portion of the fluid propagating along the propagation path (i.e., as part of a shockwave) will be deflected by each baffle 22A, 22B, through the first fluid flow paths 30 into the circumferential volumes 28 and out of the second fluid flow paths 32 back toward the propagation path 14.
Referring also to
Referring also to
As appreciated from
Although the baffle openings 24A, 24B are different diameters, the angle of each of the baffles 22A, 22B is preferably equal—and most preferably angled at 45 degrees. Each baffle 22A, 22B is advantageously frustoconical, with its baffle opening 24A, 24B being formed at the missing tip thereof.
Similarly, the fluid flow paths 30, 32 are angled toward the outlet wall inlet end 20 from the circumferential volume 28. Preferably, the angles of the first and second fluid flow paths 30, 32 equal the angles of the baffles 22A, 22B. In the depicted embodiment, each of the fluid flow paths 30, 32 is formed by a plurality of holes extending round their respective inner wall section first and second ends 34, 36. The diameters of the holes of the first fluid flow path 30 are preferably greater than the diameters of the holes of the second fluid flow path 32. The numbers of holes in the first and second flow paths 30, 32 is preferably equal.
Referring to
In operation, with reference to
At each baffle 22A, 22B, the high pressure side of the deflected shockwave enters a feedback path through the first fluid flow paths 30 at areas 70A, into the circumferential volume 28, and back out the second fluid flow path 32 to a lower pressure region behind the deflected shockwave. For as long as the shockwave persists, this feedback circulation continues—with successively decreasing force moving from the inlet end 16 to the outlet end 20. Preferably, the shockwave is dissipated until fluid flow velocity is at or below subsonic levels. By using the baffles 22A with the larger openings 24A first, additional volume for shockwave expansion is permitted, helping to prevent the development of an unsafe overpressure condition near the inlet end 16.
In general, the spacing between baffles should be long enough so that the pressure building up at the first fluid flow path 30 begins driving feedback circulation before the pressure at the second fluid flow path 32 counters the desired circulation. However, excessive baffle spacing can delay initiation of feedback circulation such that its impact on the overall dissipation of the shockwave is decreased. The use of larger holes for the first fluid flow path 30 relative to the second fluid flow path 32 helps facilitate initiation and maintenance of the desired feedback flow. Additionally, the use of equal numbers of holes at the same circumferential positions helps achieve a symmetrical reflow of fluid along the feedback path.
It will be appreciated that devices and methods according to the present invention advantageously provide a feedback path from the high pressure area of a shock wave to the low pressure area following the shockwave. This action advantageously slows the flow of fluids exhibiting a shockwave, dissipates energy in the fluid flow exhibiting the shockwave, reduces the noise of a high pressure fluid release, delays the release of the fluid, and provides time for the escaping fluid to cool.
The modular nature of the depicted suppressor device 10, employing an outer wall 12 with separate chambers 60A, 60B is advantageous with respect to design, manufacture and maintenance. Depending on the desired suppression parameters, any number and combination of chambers 60A, 60B, can be arranged within a suitably dimensioned outer wall. Depending on the desired application of the suppressor device, the inlet and/or outlet ends can be equipped with various fittings, couplers, quick disconnects, terminators or the like.
Alternatively, however, a suppressor device could be made within the scope of the present invention in which some or all of the baffles and/or inner wall sections could be formed integrally with the outer wall. Additionally, while the depicted outer wall 12 and chambers 60A, 60B are generally cylindrical, the present invention does not necessarily require this. Other outer wall and chamber geometries, including rectangular/square cross-sections, oval cross-sections and even varying cross-sections could also be advantageously employed.
In the depicted embodiment, the baffle openings 24A, 24B are aligned along a central axis of the outer wall 12. The present invention could include baffle openings aligned along some other common axis within the outer wall. Additionally, in applications where a solid projectile is not required to pass through the baffle openings, configurations could potentially be used where a strict collinear arrangement of openings is not employed. Moreover, the size, shape, angle, number and pattern of fluid flow path openings can be varied.
In general, the foregoing embodiments are described for illustrative and exemplary purposes; the present invention is not necessarily limited thereto. Rather, those skilled in the art will appreciate that various modifications, as well as adaptations to particular circumstances, will fall within the scope of the invention as herein shown and described and of the claims appended hereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/782,467, filed on Dec. 20, 2018, and U.S. Provisional Patent Application Ser. No. 62/651,082, filed on Mar. 31, 2018, the contents of which applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1017003 | Kenny | Feb 1912 | A |
4576083 | Seberger, Jr. | Mar 1986 | A |
5029512 | Latka | Jul 1991 | A |
5136923 | Walsh, Jr. | Aug 1992 | A |
5659158 | Browning | Aug 1997 | A |
6575074 | Gaddini | Jun 2003 | B1 |
8100224 | Olson | Jan 2012 | B1 |
8844422 | Klett | Sep 2014 | B1 |
8875612 | Klett | Nov 2014 | B1 |
8991551 | Latka | Mar 2015 | B2 |
9239201 | Reis Green | Jan 2016 | B1 |
9709354 | Larue | Jul 2017 | B2 |
9739296 | Schlosser | Aug 2017 | B2 |
10088259 | Dueck | Oct 2018 | B2 |
10107581 | Garst | Oct 2018 | B2 |
10113826 | Bray | Oct 2018 | B2 |
10281228 | Marfione | May 2019 | B1 |
10746491 | Garst | Aug 2020 | B2 |
10794651 | Crown | Oct 2020 | B2 |
20110297477 | Koumbis | Dec 2011 | A1 |
20120152093 | Koumbis | Jun 2012 | A1 |
20160209152 | Dueck et al. | Jul 2016 | A1 |
20170102202 | Victor | Apr 2017 | A1 |
20180135932 | Tomczak | May 2018 | A1 |
20210123364 | Baxter | Apr 2021 | A1 |
Entry |
---|
PCT International Bureau; PCT International Search Report and Written Opinion dated Mar. 3, 2020; entire document. |
Number | Date | Country | |
---|---|---|---|
62782467 | Dec 2018 | US | |
62651082 | Mar 2018 | US |