Schaeffer et al., “Enzyme Inhibitors. XIX. The Synthesis of Some 1-Hydroxy-2-hydroxymethyl-4-(6-substituted-9-purinyl)cyclohexanes as Nucleoside Analogs,” Journal of Medicinal Chemistry, 11(1), 15-20 (Jan., 1968).††.* |
Pérez-Pérez et al., “Application of the Mitsunobu-Type Condensation Reaction to the Synthesis of Phosphonate Derivatives of Cyclohexenyl and Cyclohexanyl Nucleosides,” Journal of Organic Chemistry, 60(6), 1531-1537 (Jun., 1995).††.* |
Mikhailov et al., “Use of Cyclohexene Epoxides in the Preparation of Carbocyclic Nucleosides,” Nucleosides & Nucleotides, 15(4), 867-878 (1996).††.* |
Marquez et al., “Carbocyclic Nucleosides,” Medicinal Research Reviews, 6(1), 1-40 (Jan. 1, 1986).††.* |
Borthwick et al., “Synthesis of Chiral Carbocyclic Nucleosides,” Tetrahedron, 48(4), 571-623 (Jan. 24, 1992).††.* |
Knapp, “Iodolactamization: Aspects and Applications,” Advances in Heterocyclic Natural Product Synthesis, vol. 3, JAI Press, Inc., 1996, only pp. 57-98 suppied.††.* |
Crane et al., “Isonucleosides from Glucosamine,” Journal of Carbohydrates • Nucleosides • Nucleotides, 7(5), 281-296 (1980).* |
Knapp, Spencer et al. “Iodolactamization: 8-exo-iodo-2-azabicyclo[3.3.0]octan-3-one.” Organic Syntheses 70: 101-10 (1992). |
Verheggen, I., et al. “Synthesis and Antiherpes Virus Activity of 1,5-Anhydrihexitol Nucleosides.” J. Med. Chem. 26: 2033-40 (1993). (Issue No. 14). |