1. Field of the Invention
The present invention relates to a means to expel water from a water-sport boot during use, and more particularly, to a check valve for a wetsuit boot.
2. Description of the Related Art
Surf boots, typically made of a neoprene rubber upper with a rubber sole, are often worn in conjunction with a full neoprene wetsuit, particularly when additional protection is required against cold water temperature and/or sharp bottom conditions. A surf boot is shown in
Typically, the ankle section of the boot is tucked up under the leg of the wetsuit. As the wetsuit takes on water, some of the water within the wetsuit naturally flows downward, and makes its way into the boot despite the sealing provision of most current boot designs. During the course of a surfing session, part of the time is spent standing or walking, either on the surfboard, the ocean bottom or the beach. As the boot fills up, it becomes like a water balloon around the foot, which is difficult to drain without removing the boot, often not a convenient option during the session. And of course, the boot will fill again when returned to the water as wetsuits continually take in a small amount of water by design.
All surf boots currently on the market known to the inventor exhibit this behavior. Proposed solutions have been put forth to add an active pump and valve system to surf boots, utilizing heel pumps. Although such a system may drain a boot, it is inconvenient for a number of reasons. First, the pump action of the heel is not conducive to most parts of the surfing activity. Second, surf boots become quite contaminated with sand and other debris during use, so any kind of pump is a definite reliability risk. Third, surf boots are inexpensive, long-life accessories, so a complex system is detrimental to both of these desirable attributes. To the inventor's knowledge, these disadvantages have kept active pump solutions from actually going to market.
It is an object of the present invention to provide an improved wetsuit boot that can expel excess collected water;
It is a further object of the present invention to provide an improved wetsuit boot that uses a valve means to expel the excess water; and
It is a further object of the present invention to provide an improved wetsuit boot that prevents backflow of water through the valve;
These and other objects and advantages of the present invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings.
A preferred embodiment of the present invention provides double diaphragm check valve for a wetsuit boot having a wall with an inside surface on an inside and an outside surface exposed to the environment, comprising a first body disposed on the inside surface being partially inserted through the wall and having an inlet valve seat, a first elastomeric diaphragm seated within the first valve seat body and supported by the inlet valve seat forming an inlet valve, a second body having an outlet valve seat being disposed on the outside surface and configured to hermitically connect in series to the first body sandwiching the wall therebetween, a second elastomeric diaphragm seated within the second body and supported by the outlet valve seat forming an outlet valve, a chamber formed in the second body between the inlet valve seat configured to provide clearance for the first elastomeric diaphragm, the double diaphragm check valve substantially restricting fluid flow to a direction from the inside to the environment, a fluid under pressure cracking the inlet valve permitting the fluid to enter the chamber and thereafter cracking the outlet valve to permit fluid flow to the environment and substantially preventing backflow.
Preventing backflow of cold water into the boot is important for maintaining comfort and warmth while in the water. All wetsuit components, covering the body (head, feet, and hands) operate on the concept of allowing a quantity of cold water in, thereafter being warmed by the body, and trapping that warmed water between the suit and the skin. It is undesirable to unnecessarily let cold water flow back through the valve because it compromises the warmth of the foot and weighs the foot down.
So, the double check valve design not only allows excess water to flow out, it prevents the expelled water from flowing back in as the valves close due to pressure equalization with the environment. An additional benefit of the effective elimination of water is that the boot fits tightly about the foot; which is important in surfing to prevent lateral motion of the foot in maneuvers.
The double valve design also substantially prevents debris such as sand from entering the boot during use; and any debris that enters the chamber is quickly expelled with the expelling of the water.
An optional protective cover over the outlet valve with apertures formed through it can be included to protect the outlet valve diaphragm and to further prevent the entrance of large objects into the valve, such as pebbles, sticks and the like.
As can be easily imagined, the double valve of the present invention can be used on many boots or shoes of the wetsuit design, including a surfing boot, a diving boot, or a water shoe. Additionally, one or more valves can be installed on the wetsuit boot; although, for most cases, one valve is sufficient.
The simple design of the double valve does not rely on the boot design in any way for its primary function. Therefore, this valve system can be used with any existing wetsuit boot. In fact the double diaphragm check valve can be sold as an upgrade kit to be installed on a standard wetsuit boot. This kit could be sold directly to the user or sold to a surf or dive shop, where a technician can install it for the customer. This can be achieved by punching a hole through the boot wall and adhering the valve to the boot.
Although the valve can be installed anywhere on the boot body, it is preferred that the valve be installed through the wall in an area near a heel portion on the outside of the wetsuit boot. This area is preferred because the water from the wetsuit legs travels into the boot, driven there by the water head; and the valve is preferably at the bottom of the water head, but does not unnecessarily expose the extremities of the foot to the draining water. So, the heal area produces the pressure needed to expel the water through the valve, but does not force water to the toe area.
Preferred and alternate embodiments of the wetsuit valve of the present invention are shown in
Now turning to
Formed within the first body 26 is an inlet valve seat 28 with a support 34 spanning the opening to provide support for the first elastomeric diaphragm 30, being secured to the support 34 by the fastening means 32. The support 34 prevents the first elastomeric diaphragm 30 from being pulled into the interior of the boot 22 and compromising the seal. The support 34 could be a cross structure as shown, or any number of supports that allow water to pass and restrict the first elastomeric diaphragm 30 to opening in a single direction, including a screen and such. The combination of the first body 26 and the first elastomeric diaphragm 30 provide the inlet valve 36 assembly.
The second body 38 is installed from the outside of the boot 22, the socket 66 being inserted through the hole and connecting with the annular wall 64 of the first body 26. The design of the second body 38 is such so that it does not interfere with the opening of the first elastomeric diaphragm 30, the chamber 46 within providing sufficient clearance for proper function. Again, adhesive can be used to secure the outer flange 62 to the boot 22 and the socket 66 to the annular wall 64, providing sufficient sealing. Downstream of the chamber 46 is the outlet valve seat 40 with a support 42 being similar in design to the support 34. A second elastomeric diaphragm 44 is secured to the support 42 by fastening means 48. Together the second elastomeric diaphragm 44, the valve seat 40, and the support 42 form the outlet valve 58.
Water under pressure cracks the inlet valve 36 and travels into the chamber 46, thereafter cracking the outlet valve 58 to exit to the environment. As the interior water pressure reduces upon expulsion, the elastic property of the boot tends to squeeze out the remaining water, creating a slight suction, where the pressure of in the interior is slightly less than the environment. For a single stage valve assembly, there world be a tendency for water to rush back into the boot 22 before the valve is able to fully seat and seal. The design of the double diaphragm check valve 20 in the present invention helps to significantly prevent the backflow of water by placing the inlet valve 56 in series with the outlet valve 58. This additionally protects the inlet valve 36 from contamination from foreign debris.
While particular forms of the invention have been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the claims.
This application is a continuation in part of utility application Ser. No. 11/787,420 filed on Apr. 14, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3599657 | Maldavs | Aug 1971 | A |
4771555 | Ohashi | Sep 1988 | A |
4910887 | Turner et al. | Mar 1990 | A |
5458348 | Lee | Oct 1995 | A |
6379203 | Kuo | Apr 2002 | B1 |
6408540 | DeKalb et al. | Jun 2002 | B1 |
6551160 | Toth et al. | Apr 2003 | B1 |
6742287 | DeKalb et al. | Jun 2004 | B2 |
7107702 | Chavez | Sep 2006 | B1 |
7814681 | Wasserman | Oct 2010 | B2 |
20040211085 | Passke et al. | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11787420 | Apr 2007 | US |
Child | 12053963 | US |