This disclosure relates generally to surface cleaning apparatus, and in particular to a surface cleaning apparatus having a removable air treatment member assembly.
The following is not an admission that anything discussed below is part of the prior art or part of the common general knowledge of a person skilled in the art.
Various types of surface cleaning apparatus are known, including upright surface cleaning apparatus, canister surface cleaning apparatus, stick surface cleaning apparatus, central vacuum systems, and hand carriable surface cleaning apparatus such as hand vacuums. Further, various designs for cyclonic hand vacuum cleaners are known in the art.
The following introduction is provided to introduce the reader to the more detailed discussion to follow. The introduction is not intended to limit or define any claimed or as yet unclaimed invention. One or more inventions may reside in any combination or sub-combination of the elements or process steps disclosed in any part of this document including its claims and figures.
The directness and length of an air flow passage are important features of any surface cleaning apparatus, since an increase in the length of an air flow path through a surface cleaning apparatus and changes in air flow direction through an air flow path may result in an increase in back pressure and a reduction in air flow velocity at the dirty air inlet, which may result in a reduction in cleaning efficiency. These features are especially important for hand vacuum cleaners and other surface cleaning apparatus that are meant to be carried during a cleaning operation, and often do not incorporate a high power suction motor.
To shorten and/or straighten an air flow path or passage, a nozzle portion, an air treatment member assembly and a suction motor of a surface cleaning apparatus may be aligned. The nozzle portion may be upstream of the air treatment member assembly, and the air treatment member assembly may be upstream of the suction motor.
In many surface cleaning apparatus, an air treatment member assembly is removable so such as to allow a user to clean an air treatment member, replace a filter, or empty a dust collection chamber. It may be desirable to allow the air treatment member assembly by itself so that the air treatment member assembly may be manipulated without the added weight of any part of the body portion. For example, the a nozzle portion may be positioned forward of the air treatment member assembly. The suction motor may be housed in a main body joined to a nozzle portion by a pair of spaced apart arms. The removable air treatment member assembly may be removable received between the spaced apart arms, the main body, and the nozzle portion.
A removable air treatment member assembly received between a main body. When the air treatment member assembly is in an operating position, the air treatment member assembly air inlet may be in air flow communication with a nozzle portion air outlet and the air treatment member assembly air outlet may be air flow communication with a main body air inlet.
In accordance with one aspect of this disclosure, which may be used alone or in combination with any other aspect, a removable air treatment member assembly is removable upwardly and at least a portion of a lower surface of the air treatment member assembly rests on another portion of the surface cleaning apparatus such as the main body or the handle assembly when the air treatment member assembly is in the operating position. For example, a rearward portion of the air treatment member assembly may rest on a portion of the handle assembly.
Seating the air treatment member assembly on the main body or the handle assembly may simplify inserting and/or securing the air treatment member assembly in the operating position. It may also increase the stability of the air treatment member assembly, and reduce movement between the air treatment member assembly and other parts of the surface cleaning apparatus During use of the surface cleaning apparatus. Reduced movement may increase the performance of the surface cleaning apparatus, such as by reducing wear on interfacing materials or by preventing misalignment.
In accordance with this broad aspect, there is provided a hand vacuum cleaner comprising:
In any embodiment, the handle assembly may comprise a hand grip and a finger guard positioned forward of the hand grip and the finger guard may be positioned below the base portion.
In any embodiment, the finger guard may extend away from the base portion.
In any embodiment, a rear end of the air treatment member assembly may have an air treatment member air outlet, a front end of the main body may have a main body air inlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend upwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet, a rear end of the nozzle portion may have a nozzle portion air outlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend upwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet and a rear end of the nozzle portion may have a nozzle portion air outlet wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend upwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In accordance with this broad aspect, there is also provided a hand vacuum cleaner comprising:
In any embodiment, a handle assembly comprising a pistol grip handle may be positioned on a lower portion of the main body.
In any embodiment, a rear end of the air treatment member assembly may have an air treatment member air outlet, a front end of the main body may have a main body air inlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend upwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet, a rear end of the nozzle portion may have a nozzle portion air outlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend upwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet and a rear end of the nozzle portion may have a nozzle portion air outlet wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend upwardly and forwardly at an angle to the inlet axis.
In accordance with this broad aspect, there is also provided a hand vacuum cleaner comprising:
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet, a rear end of the nozzle portion may have a nozzle portion air outlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet may be in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet may extend upwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, the surface cleaning apparatus includes a pistol grip handle assembly on a lower portion of the main body and rearward of a volume between the pair of arms, the nozzle portion, and the main body, and the air treatment member assembly is removable downwardly.
A pistol grip handle permits for a more ergonomic grip during operation of the surface cleaner apparatus than alternative handles, allowing for easier operation and/or greater efficiency. A surface cleaning apparatus with an aligned nozzle portion, air treatment member assembly, and main body may be more maneuverable with a pistol grip handle rearward of the air treatment member assembly in an operating position. This position may position the pistol grip handle proximate (e.g., underneath) the suction motor when the suction motor is in a main body aligned with a nozzle portion and the air treatment member assembly, which may be advantageous as the suction motor is often the heaviest component of a surface cleaning apparatus.
In accordance with this broad aspect, there is provided a hand vacuum cleaner comprising:
In any embodiment, the handle assembly may comprise a pistol grip hand grip and a finger guard positioned forward of the pistol grip hand grip and the finger guard is positioned rearward of the volume.
In any embodiment, the pistol grip hand grip may extend away from the lower portion of the main body.
In any embodiment, a rear end of the air treatment member assembly may have an air treatment member air outlet, a front end of the main body may have a main body air inlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend downwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet, a rear end of the nozzle portion may have a nozzle portion air outlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend downwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, a front end of the air treatment member assembly may have an air treatment member air inlet and a rear end of the nozzle portion may have a nozzle portion air outlet wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend downwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, the air treatment member assembly may be rotatably insertable into hand vacuum cleaner.
In any embodiment, the volume may have a forward portion and a rearward portion, the air treatment member assembly may have a front end that is positionable in the forward portion of the volume and a rear end of the air treatment member assembly is rotatable towards the operating position when the forward portion of the air treatment member assembly is positioned in the forward end of the volume.
In any embodiment, an air treatment member assembly air inlet may be proximate a nozzle portion air outlet of the nozzle portion when the forward end of the air treatment member assembly is positioned in the forward portion of the volume.
In any embodiment, the front end of the air treatment member assembly may have an air treatment member air inlet, a rear end of the nozzle portion may have the nozzle portion air outlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend downwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, a rear end of the air treatment member assembly may have an air treatment member air outlet and a front end of the main body has a main body air inlet wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend downwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, a rear end of the air treatment member assembly may have an air treatment member air outlet, a front end of the main body may have a main body air inlet and the dirty air inlet may have an inlet axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend downwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, at least one of the nozzle portion air outlet, the air treatment member assembly air inlet, the air treatment member assembly air outlet and the main body air inlet is retractable.
An air inlet and/or air outlet may be retractable to reduce friction between adjacent materials (e.g., a sealing member) during insertion and/or removal of the air treatment member assembly. For example, an inlet or an outlet may be axially retracted before the air treatment member assembly is removed so that adjacent materials do not slide against one another. Sliding of materials against one another may be particularly damaging when the materials are air flow sealing materials, such as a gasket. Reducing wear on materials may assist in preventing air flow leaks from an air flow passage.
In accordance with this broad aspect, there is provided a hand vacuum cleaner comprising:
In any embodiment, at least one of the nozzle portion air outlet and the air treatment member assembly air inlet may be retractable and at least one of the air treatment member assembly air outlet and the main body air inlet may be retractable.
In any embodiment, at least one of the nozzle portion air outlet and the air treatment member assembly air inlet may be retractable.
In any embodiment, at least one of the air treatment member assembly air outlet and the main body air inlet may be retractable.
In any embodiment, a front end of the main body may have a main body air inlet, the dirty air inlet may have an inlet axis and a plane may extend at an angle of 5° to 85° to a dirty air axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air outlet is in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet extend generally parallel to the plane.
In any embodiment, when the air treatment member assembly is in the operating position, the air treatment member air outlet may be in air flow communication with the main body air inlet and each of the air treatment member air outlet and the main body air inlet may extend downwardly and rearwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, a rear end of the nozzle portion may have a nozzle portion air outlet, the dirty air inlet may have an inlet axis and a plane may extend at an angle of 5° to 85° to a dirty air axis wherein, when the air treatment member assembly is in the operating position, the air treatment member air inlet is in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet extend generally parallel to the plane.
In any embodiment, when the air treatment member assembly is in the operating position, the air treatment member air inlet may be in air flow communication with the nozzle portion air outlet and each of the air treatment member air inlet and the nozzle portion air outlet may extend downwardly and forwardly at an angle to the inlet axis.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, the hand vacuum cleaner may have a front end and a rear end, a longitudinal axis may extend between the front and rear ends and the at least one of the nozzle portion air outlet, the air treatment member assembly air inlet, the air treatment member assembly air outlet and the main body air inlet that is retractable may be axially translatable.
In any embodiment, the rear end of the air treatment member assembly may have a recess for receiving therein a portion of the main body when the air treatment member assembly is mounted to the hand vacuum cleaner in the operating position.
In any embodiment, the air treatment member assembly may be removable upwardly or downwardly.
In any embodiment, the air treatment member may comprise a cyclone.
In any embodiment, the air treatment member assembly may have a front openable door.
In any embodiment, the air treatment member assembly may comprise a pre-motor filter positioned rearward of the air treatment member.
In any embodiment, the pre-motor filter may be provided at a rear end of the air treatment member.
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, one or more of a nozzle portion air outlet, air treatment member air inlet, air treatment member air outlet, and main body air inlet is angled relative to an inlet axis, and the air treatment member assembly is removable downwardly.
Inlets and outlets may be angled relative an inlet axis to reduce friction between adjacent materials during removal of the air treatment member assembly. For example, when an air treatment member assembly is removed downward relative the inlet axis, an angled inlet of the air treatment member assembly may move away from an angled outlet of the nozzle portion with less sliding against the outlet of the nozzle portion. Angled inlets or outlets may reduce the wear of these materials (e.g., gaskets or other sealing members) and reduce the risk of air flow leaks forming in the air flow passage.
In accordance with this broad aspect, there is also provided a hand vacuum cleaner comprising:
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80° and the main body air inlet extends at a mating angle.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80° and the nozzle portion air outlet extends at a mating angle.
In any embodiment, the air treatment member assembly may be rotatably insertable into hand vacuum cleaner.
In any embodiment, the volume may have a forward portion and a rearward portion, the air treatment member assembly may have a front end that is positionable in the forward portion of the volume and a rear end of the air treatment member assembly is rotatable towards the operating position when the forward portion of the air treatment member assembly is positioned in the forward end of the volume.
In any embodiment, an air treatment member assembly air inlet may be proximate a nozzle portion air outlet of the nozzle portion when the forward end of the air treatment member assembly is positioned in the forward portion of the volume.
In any embodiment, the rear end of the air treatment member assembly may have a recess which receives a portion of the front end of the main body when the air treatment member assembly is in the operating position.
In any embodiment, the air treatment member assembly may comprise a cyclone chamber and a pre-motor filter media positioned exterior to the cyclone chamber.
In any embodiment, the rear end of the air treatment member assembly may have a pre-motor filter media which is accessible when the air treatment member assembly is removed.
In any embodiment, a surface cleaning apparatus may further comprise a handle provided on a lower side of the main body.
In accordance with this broad aspect, there is also provided a hand vacuum cleaner comprising:
In any embodiment, the air treatment member air outlet may have an outlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle from the inlet axis downwardly and rearwardly to the plane is between 60° and 80°.
In any embodiment, the air treatment member air inlet may have an inlet port that is located in a plane and, when the air treatment member assembly is in the operating position, an included angle downwardly and forwardly from the inlet axis to the plane is between 60° and 80°.
In any embodiment, the air treatment member assembly may be rotatably insertable into hand vacuum cleaner.
In any embodiment, the volume may have a forward portion and a rearward portion, the air treatment member assembly may have a front end that is positionable in the forward portion of the volume and a rear end of the air treatment member assembly is rotatable towards the operating position when the forward portion of the air treatment member assembly is positioned in the forward end of the volume.
In any embodiment, an air treatment member assembly air inlet may be proximate a nozzle portion air outlet of the nozzle portion when the forward end of the air treatment member assembly is positioned in the forward portion of the volume.
In any embodiment, the rear end of the air treatment member assembly may have a recess which receives a portion of the front end of the main body when the air treatment member assembly is in the operating position.
In any embodiment, the air treatment member assembly may comprise a cyclone chamber and a pre-motor filter media positioned exterior to the cyclone chamber.
In any embodiment, the rear end of the air treatment member assembly may have a pre-motor filter media which is accessible when the air treatment member assembly is removed.
In any embodiment, a surface cleaning apparatus may further comprise a handle provided on a lower side of the main body.
It will be appreciated by a person skilled in the art that an apparatus or method disclosed herein may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination.
These and other aspects and features of various embodiments will be described in greater detail below.
For a better understanding of the described embodiments and to show more clearly how they may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way.
Various apparatuses, methods and compositions are described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover apparatuses and methods that differ from those described below. The claimed inventions are not limited to apparatuses, methods and compositions having all of the features of any one apparatus, method or composition described below or to features common to multiple or all of the apparatuses, methods or compositions described below. It is possible that an apparatus, method or composition described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus, method or composition described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicant(s), inventor(s) and/or owner(s) do not intend to abandon, disclaim, or dedicate to the public any such invention by its disclosure in this document.
The terms “an embodiment,” “embodiment,” “embodiments,” “the embodiment,” “the embodiments,” “one or more embodiments,” “some embodiments,” and “one embodiment” mean “one or more (but not all) embodiments of the present invention(s),” unless expressly specified otherwise.
The terms “including,” “comprising” and variations thereof mean “including but not limited to,” unless expressly specified otherwise. A listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a,” “an” and “the” mean “one or more,” unless expressly specified otherwise.
As used herein and in the claims, two or more parts are said to be “coupled”, “connected”, “attached”, or “fastened” where the parts are joined or operate together either directly or indirectly (i.e., through one or more intermediate parts), so long as a link occurs. As used herein and in the claims, two or more parts are said to be “directly coupled”, “directly connected”, “directly attached”, or “directly fastened” where the parts are connected in physical contact with each other. None of the terms “coupled”, “connected”, “attached”, and “fastened” distinguish the manner in which two or more parts are joined together.
Furthermore, it will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the example embodiments described herein. However, it will be understood by those of ordinary skill in the art that the example embodiments described herein may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the example embodiments described herein. Also, the description is not to be considered as limiting the scope of the example embodiments described herein.
As used herein, the wording “and/or” is intended to represent an inclusive—or. That is, “X and/or Y” is intended to mean X or Y or both, for example. As a further example, “X, Y, and/or Z” is intended to mean X or Y or Z or any combination thereof.
General Description of a Surface Cleaning Apparatus
Referring to
Optionally, surface cleaning apparatus 100 may be removably mountable on a base so as to form, for example, an upright vacuum cleaner, a canister vacuum cleaner, a stick vacuum cleaner or stick vac, a wet-dry vacuum cleaner and the like.
As illustrated in
Power may be supplied to the surface cleaning apparatus 100 by an electrical cord 112 that may be connected to a standard wall electrical outlet. The cord 112 may optionally be detachable from the hand vacuum 100. Alternatively, or in addition, the power source for the surface cleaning apparatus may be one or more onboard energy storage members, including, for example, one or more batteries.
As exemplified in
In the illustrated embodiment, an air treatment member assembly 130 and a nozzle portion 132 are aligned with the main body 124. The surface cleaning apparatus 100 has a dirty air inlet 134 in the nozzle portion 132, a clean air outlet 136 downstream from the dirty air inlet 134 and an air flow passage extending there between. The air flow passage extends through the air treatment member assembly 130.
Referring now to
Air treatment member assembly 130 includes at least one air treatment member 144. The at least one air treatment member 144 is configured to treat the air in a desired manner, including, for example, removing dirt particles and other debris from the air flow. The air treatment member 144 may be provided upstream or downstream from the suction motor 138, and may be any suitable member that can treat the air. Optionally, the air treatment member 144 may include at least one cyclonic cleaning stage. Each cyclonic cleaning stage may include a cyclone unit that has one or more cyclone chambers (arranged in parallel with each other) and one or more dirt collection chambers, of any suitable configuration. The dirt collection chambers may be external to the cyclone chambers, or may be internal the cyclone chamber and configured as a dirt collection area or region within the cyclone chamber. Alternatively, the air treatment member may incorporate a bag, a porous physical filter media (such as foam or felt) or other air treating means.
Illustrated in
The cyclone chamber 146 defines a cyclone axis 152, about which air may circulate when in the cyclone chamber 146, and may include a vortex finder 147. Air may enter the cyclone chamber 146 through a chamber inlet in a sidewall of conduit portion 149 extending from an inlet 178 of air treatment member assembly 130 described below. Any cyclone inlet known in the cyclone arts may be used. An exemplary tangential cyclone chamber inlet 145 is shown in
Optionally, as exemplified, in
In the embodiment of
In the embodiment of
As exemplified in
As exemplified, the air inlet conduit 158 may be located above (e.g., closer to the upper end 120 than) the cyclone axis 152, and may be spaced from the axis 152 by a distance 162. The distance 162 may be selected so that the inlet conduit 158 is above the cyclone axis 152 but a projection of part or all of the conduit may pass through cyclone chamber 146, which may help reduce the overall height of the apparatus 100. Alternatively, the distance 162 may be selected to be large enough that the air inlet conduit 158 is above the cyclone chamber 146, above cyclone axis 152, and/or above other features, which may help facilitate using a generally linear air flow passage and/or provide a desirable hand feel.
Optionally, the nozzle portion 132, or other portion of the apparatus 100, may be provided with any suitable electrical connector 164 that can establish an electrical connection between the apparatus 100 and any accessory tool (e.g., elongate wand 108), cleaning head and the like that is connected to the nozzle portion 132. In such a configuration, the hand vacuum 100 may be used to power a surface cleaning head having a rotating brush, or other tools of that nature, using either the power supplied by the wall outlet and/or an onboard battery pack.
Referring again to
Volume Between Nozzle Portion and Main Body
Referring again to
A volume 172 (see also
First and second laterally spaced apart opposed arm members 168, 170 may allow the air treatment member assembly 130 to be removably positionable in the volume 172 without the added size or weight of a housing and/or body portion joining the nozzle portion 132 and main body 124 and housing the air treatment member assembly 130.
One or more electrical conduits 174 (
Air Treatment Member Assembly
Referring now to
Illustrated air treatment member assembly 130 has a front end 176 having an air inlet 178 and a rear end 180 having an air outlet 182. The air inlet 178 is provided to be in air flow communication with a nozzle air outlet 184 (see also
The air treatment member assembly 130 also includes an air treatment member assembly body 188. An interior of the air treatment member assembly body 188 may be accessible, such as through an openable door. In some embodiments, opening a door or other openable member may provide access to one or to two or more regions.
In the illustrated example, a rear door 190 is pivotally attached to air treatment member assembly body 188 at hinge 192. Access to an interior of body 188 may allow a user to maintain or clean an air treatment member or replace other components such as filters. As illustrated in
Optionally, one or more pre-motor filters may be placed in the air flow passage between the air treatment member 144 and the suction motor 138. While the premotor filter and optional premotor filter housing may be of any suitable configuration, in the illustrated example they are formed in rear door 190. Accordingly, as exemplified in
The premotor filter housing 194 may be closed. Accordingly, for example, a back panel module 200 may be provide. In the illustrated embodiment, premotor filter 196 is a multilayer filter held in a removable back panel module 200. Pre-motor filter 196 may be accessed by opening the premotor filter housing 194, such as by depressing buttons 198 on back panel 200 to release projections 202 from sidewalls of rear door 190, at which point back panel 200 may be withdrawn from rear door 190. Any opening means may be used.
It will alternately be appreciated that the pre-motor filter(s) may be provided in a front end of the main body, and may be revealed when the air treatment member assembly is removed.
Alternately, as exemplified in
The pre-motor filter 196 may be any suitable filter, including any suitable porous media filter (i.e. foam and/or felt and the like) and may have any suitable shape that is consistent with the configuration of the pre-motor filter housing 194. A pre-motor filter 196 may have an upstream filter face axis or plane 197 (
The air treatment member assembly may be lockably securable in the volume by any means known in the vacuum cleaner arts. As exemplified, first and second inter-engageable members (such as retracting snap-fit projections 206 and slots 208) are utilized wherein the first interengageable member is moveable between a locked position and an air treatment member assembly removable position. As exemplified, an actuator for the retracting snap-fit projections 206 (e.g., buttons 204), may be provide don rear door 190. Buttons 204 are provided for use in retracting snap-fit projections 206. When the air treatment member assembly 130 is in an operating position, projections 206 rest within slots 208, which may be provided in first and second arm members 168, 170 (
A rear end 180 of an air treatment assembly 130 may have a recess for receiving a portion of the main body 124 therein when the air treatment member assembly 130 is mounted to the hand vacuum cleaner 100 in the operating positon. This recess may allow for a more compact construction, such as by allowing a portion of the main body 124 to occupy a space that is not needed by the functioning of the air treatment member assembly 160. In the illustrated example, recess 209 is provided to receive portion 211 (
In some embodiments, the portion 211 of the main body 124 may be a projection of the main body that forms a concave portion 213 (
Air Treatment Member Assembly Removable Downwardly
In accordance with an aspect of this disclosure, which may be used alone or in combination with any other aspect, air treatment member assembly 130 may be removed from the operating position in any suitable direction, such as downwardly as described in the following paragraphs, or upwardly as described subsequently. Upwardly removable air treatment member assemblies may be more secularly held in position, while downwardly removable air treatment member assemblies may be more easily removable. In some cases, an air treatment member assembly may be removable upwardly and downwardly.
Referring to
Air treatment member assembly 130 may be vertically translatable into and/or out of the volume as discussed subsequently or, alternately, the air treatment member assembly 130 may be rotatably insertable into hand vacuum cleaner 100.
As exemplified
The rear end 180 may then be rotated upwardly towards the operating position. As the rear end 180 is rotated upwardly into the rearward portion 212 of volume 172, the air inlet of the air treatment member assembly 130 rotates to align and abut with the nozzle portion air outlet 184. Accordingly, when the air treatment member assembly 130 is in the operating position, the air inlet of the air treatment member assembly 130 is in flow communication with the nozzle portion air outlet 184. If a sealing member or a gasket is provided on one or both of the air inlet of the air treatment member assembly 130 and the nozzle portion air outlet 184, then the sealing member may be compressed at the air treatment member assembly is rotated into position without the sealing member sliding against a hard surface.
Optionally as exemplified in
As exemplified in
While in the illustrated embodiment, the air treatment member assembly 130 is removable downwardly, in other embodiments an upwardly removable air treatment member assembly 130 may also be rotatably inserted.
Pistol Grip Handle
Any suitable user grip portion may be provided to allow a user to carry hand vacuum cleaner 100. However, in accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, the surface cleaning apparatus includes a pistol grip handle assembly. A pistol grip handle may be a convenient handle forming an ergonomic grip for a user, and may provide a desirable hand feel to a user.
Referring to
The pistol grip handle assembly 128 may be provided on any portion of the main body. As exemplified, the pistol grip handle assembly 128 is optionally provided at a rearward end of the hand vacuum 100 and may extend downwardly and rearwardly from the suction motor housing. Accordingly, as exemplified, handle assembly 128 is provided on a lower portion of the main body 124. This position may allow the user to more easily maneuver the suction motor 138, as the suction motor 138 is often one of the heaviest parts of a surface cleaning apparatus. This position may also allow the user to more easily insert and remove a downwardly removable air treatment member assembly 130.
Optionally, as exemplified, handle assembly 128 may include a pistol grip hand grip 224 and a finger guard 226 positioned forward of the pistol grip hand grip 224 and rearward of the volume 172. A hand grip 224 may extend away from the lower portion 228 of main body 124, such as to allow a user to rest the weight of the suction motor 138 generally above the user's gripping hand.
While a power source may be provided at any suitable location on a hand vacuum cleaner 100, in the illustrated example electrical cord 112 enters the housing 126 at a lower end 230 of handle assembly 128. This may improve the maneuverability of the hand vacuum cleaner. In embodiments in which a battery pack is include, the battery pack may also be located on or in a lower end 230 of a handle assembly 128. Battery packs are also generally one of the heavier components of a hand vacuum cleaner, and placing a battery pack proximate a handle may improve the hand feel of the cleaner, as may positioning a battery pack generally opposite suction motor 138 across a handle assembly 128.
A hand grip may form a handle axis generally perpendicular to the suction motor axis and/or generally vertical when the hand vacuum cleaner 100 is in an operating position, which may contribute to a desirable hand feel. In the illustrated example, hand grip 224 has a handle axis 225 (see also
Bleed Valve
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, a bleed valve may be positioned at least partially and, optionally, fully within the volume defined by the air treatment member assembly 130. Accordingly, for example, a rear end of the air treatment member assembly 130 may have a recess in which the bleed valve is received when the air treatment member assembly 130 is in the operating position. A hand vacuum cleaner 100 may include a bleed valve to help prevent damage to a motor if, e.g., the dirty air inlet 134 is obstructed, by bleeding air into the air flow passage when pressure within the air flow passage increases above a predetermined pressure.
Positioning the bleed valve at least partially within the volume defined by the air treatment member assembly 130 may enable the bleed valve to be positioned and oriented so as to provide a compact construction. Accordingly, in some embodiments, a bleed valve may be positioned below suction motor 138 but forward of hand grip 224 and rearward of an air treatment member assembly 130 to provide a compact construction. Optionally, the bleed valve may be positioned rearward of the air treatment member 144 and/or rearward of a pre-motor filter. Alternately, or in addition, the bleed valve may also be oriented with an axis perpendicular to the suction motor axis 140 to provide a further compact construction.
As exemplified in
A bleed valve may be above or below the suction motor in a suitably compact position, and may be below the suction motor if the handle assembly and/or the air treatment member assembly extend below the suction motor. In the illustrated example, the bleed valve assembly 232 is generally below suction motor 138, and is below a forward portion 236 of main body 124.
The bleed valve is provided in a housing that may be formed by part or all of the main body. As exemplified, the bleed valve may be provided in an openable chamber such that the bleed valve and/or the bleed valve passage may be accessible by opening a portion (e.g., a door) of the bleed valve chamber.
As exemplified, bleed valve assembly 232 includes a bleed valve 234 and a bleed valve outlet passage 239. Bleed valve 234 is joined to an air flow passage upstream of suction motor 138 and downstream of the pre-motor filter 196 by bleed valve outlet passage 239. Bleed valve 234 is received in a bleed valve chamber 238, which is joined to a housing surface vent 240 on a surface of housing 126 by a bleed valve inlet passage 242.
In the illustrated embodiment, bleed valve chamber 238 is formed by a front panel 244 enclosing a recess 245 in a forward portion of finger guard 226. Surface vent 240 is also formed in front panel 244, and front panel 244 forms a front wall of bleed valve inlet passage 242. In
Bleed valve 234 has a bleed valve axis 246. Bleed valve axis 246 is generally perpendicular to inlet conduit axis 160, suction motor axis 140, and cyclone axis 152. A bleed valve axis 246 perpendicular to the inlet conduit axis 160 may allow for a more compact construction. In the illustrated example, the bleed valve axis 246 is also generally horizontal when the hand vacuum cleaner 100 is in an operating position. This orientation of axes 246, 160, 140, 152 may contribute to a compact construction and/or a more desirable hand feel.
As discussed previously, air treatment member assembly 130 has a recess 209 is provided to receive portion 211 which, as exemplified, comprises the bleed air chamber front panel 244. As the bleed air chamber is accordingly positioned with the air treatment member assembly 130 when the air treatment member assembly 130 is in the operating position, housing surface vent 240 is positioned so as to be exterior to the air treatment member assembly 130 when the air treatment member assembly 130 is in the operating position.
Optionally, as exemplified in
Angled Inlet or Outlet
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, one or more of a nozzle portion air outlet, air treatment member air inlet, air treatment member air outlet, and main body air inlet is angled relative to an inlet axis, and the air treatment member assembly is removable upwardly or downwardly.
Inlets and outlets may be angled relative an inlet axis to reduce friction between adjacent materials (e.g., a sealing member and a face of a component) during removal of the air treatment member assembly. For example, when an air treatment member assembly is removed downward, an angled inlet of the air treatment member assembly may move away from an angled outlet of the nozzle portion with reduced or no sliding against the outlet of the nozzle portion. Angled inlets or outlets may reduce the wear of these materials and reduce the risk of air flow leaks forming in the air flow passage.
At least one angled inlet or outlet may reduce material wear, and in particular angling an interfacing pair of inlet and outlet may reduce material wear.
Referring to
In the illustrated example, each of outlet 184 of nozzle portion 132, inlet 178 of air treatment member assembly 130, outlet 182 of air treatment member assembly 130, and inlet 186 of main body 124 is angled relative to inlet conduit axis 160 of inlet conduit 158. Outlet 184 and inlet 178 extend downwardly and forwardly at an included angle 248 to the inlet conduit axis 160 when the air treatment member assembly 130 is in an operating position. Outlet 182 and inlet 186 extend downwardly and rearwardly at an included angle 250 to the inlet conduit axis 160 when the air treatment member assembly 130 is in an operating position.
Angles 248, 250 may be any suitable angle to reduce material ware. Each of angles 248, 250 may be individually selected to be between 45° and 85°, 70° and 80° or 60° and 80°. Accordingly, angles 248, 250 may be the same or different. It will be appreciated that a greater angle may result in less significant wear reduction, while lesser angles may result in an interface between an inlet and an outlet that is more parallel to air flow direction and harder to seal.
Optionally, as exemplified, each of the inlets and outlets has a port that is located in the same plane as the respective inlet and the outlet with which it is associated.
In the illustrated example, air treatment member assembly air inlet port 252 (
Also in the illustrated example, air treatment member assembly air outlet port 254 (
Opposite angles may be used in some embodiments, such as when an air treatment member assembly 130 is to be removable upwardly.
Referring to
As illustrated in the embodiment of
Retractable Inlet or Outlet
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, at least one of the nozzle portion air outlet, the air treatment member assembly air inlet, the air treatment member assembly air outlet and the main body air inlet is retractable.
An air inlet and/or air outlet may be retractable to reduce friction between adjacent materials during removal of the air treatment member assembly. For example, an inlet or an outlet may be retracted before the air treatment member assembly is removed and/or as the air treatment member assembly is inserted into the volume so that adjacent materials are spaced apart so that adjacent portions (e.g., a sealing member and an air flow port) do not slide against one another during insertion and/or removal of the air treatment member assembly or the amount of engagement is reduced during insertion and/or removal. Sliding of materials against one another may be particularly damaging when the materials are air flow sealing materials, such as gasket. Reducing wear on materials may assist in preventing air flow leaks from an air flow passage.
In some embodiments (not shown), one or more air inlet or air outlet may be retractable. For example, one or more of outlet 184 of nozzle portion 132, inlet 178 of air treatment member assembly 130, outlet 182 of air treatment member assembly 130, and inlet 186 of main body 124 by be retractable.
In some embodiments, when one or more of the inlets or outlets is retractable an angle between the inlet conduit 160 and a plane to which an inlet or outlet extends generally parallel may be between 5 and 85°, as retraction of the inlet or outlet may greatly change the dynamics of material wear. For example, a plane may extend at angle 256 or 258, and angle 256 or 258 may be an included angle and may be between 5° and 85°. The angle from the conduit axis 160 to the plane may be upwardly or downwardly and forwardly or rearwardly, and retractable inlets or outlets may be used with upwardly removable air treatment member assembly's, downwardly removable air treatment member assemblies, or otherwise removable air treatment member assemblies. However, an angle 256 downwardly and rearwardly and an angle 258 downwardly and forwardly may reduce the necessary retraction distance for a downwardly removable air treatment member assembly 130. Similarly, an angle 256 upwardly and rearwardly and an angle 258 upwardly and forwardly may reduce the necessary retraction distance of an inlet or outlet for an upwardly removable air treatment member assembly 130.
Retraction of an inlet or outlet may be in any suitable direction, however axial translation of the inlet or outlet may result in reduced device complexity. For example, an inlet may be an end of a conduit having a conduit axis, and the conduit may translate axially away from a mating air flow conduit. In some cases, retraction may be the result of a pinching mechanism actuated by a user, such as activated by a user when releasing the air treatment member assembly by retracting projections of the air treatment member assembly from slots in the arms of the hand vacuum cleaner.
Removable Post-Motor Filter Cover
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, one or more post-motor filters may be positioned in the air flow passage between the suction motor 138 and the clean air outlet 136 and a motor housing cover may be removable and may enclose the post motor filter. A removable motor housing cover may allow access to a post motor filter chamber and a post motor filter contained therein.
Referring now to
Removable cover 260 may be removably secured in any suitable way. In the illustrated example, removable cover 260 is positioned over post motor filter 264. A rearward end 266 of cover 260 includes a projection 268 (
As exemplified in
Air Treatment Member Assembly Seating on a Base
In accordance with one aspect of this disclosure, which may be used alone or in combination with any other aspect, a removable air treatment member assembly is removable upwardly and seats on a lower portion of the main body when the air treatment member assembly is in the operating position.
Seating the air treatment member assembly on the lower portion of the main body may simplify inserting or securing the air treatment member assembly. It may also increase the stability of the air treatment member assembly, and reduce movement between the air treatment member assembly and other parts of the surface cleaning apparatus. Reduced movement may increase the performance of the surface cleaning apparatus, such as by reducing wear on interfacing materials or by preventing misalignment.
The air treatment member assembly 130 may seat on any portion of the main body or any member attached to the main body. Accordingly, the air treatment member assembly 130 may seat on a base portion 280 wherein the base portion 280 may be provided on any suitable lower portion of the main body 124 to provide a seat for a part of the air treatment member assembly 130.
As exemplified in
As exemplified, base portion 280 is an upward-facing lip on which a rear edge 282 of the air treatment member assembly 130 may seat. In some cases, base portion 280 may form a wider seat. For example, in some embodiments, suction motor 138 may be set back further, and handle assembly 128 may have a larger upper surface provided to receive the air treatment member assembly 130. A larger base portion 280 may provide a more secure seat, but may not be as compact.
An upwardly removable air treatment member assembly 130 may rest upon base portion 280, and a secure seat for an upward removable air treatment member assembly 130 may allow air treatment member assembly 130 to remain in an operating position without a need for snap-fit projections 206. However, in some cases fasteners such as snap-fit projections 206 may be used to more securely hold air treatment member assembly 130 in an operating position.
Hand Vacuum Cleaner Stand
In accordance with another aspect of this disclosure, which may be used alone or in combination with any other aspect, the hand vacuum cleaner may be configured to stand on a horizontal surface with the hand grip portion facing upwardly. An advantage of this design is that a hand vacuum cleaner 100 may also have a resting position in which hand vacuum cleaner 100 may be set down on a surface with a rear handle assembly 128 raised for easy user access.
As exemplified in
One or more further surfaces may also be provided to cooperate with a resting surface 231 in increasing the stability of a resting position of the hand vacuum cleaner 100. For example, air treatment member assembly 130 may include supporting legs 235 (see for example
Optionally, a front end surface 237 of nozzle portion 132 may also be angled, e.g., at the same angle as resting surface 231, to provide the front end 237 with a mating surface to enable the hand vacuum cleaner to be more stable in the resting position of the hand vacuum cleaner 100. Alternately, or in addition, as exemplified in
While the above description describes features of example embodiments, it will be appreciated that some features and/or functions of the described embodiments are susceptible to modification without departing from the spirit and principles of operation of the described embodiments. For example, the various characteristics which are described by means of the represented embodiments or examples may be selectively combined with each other. Accordingly, what has been described above is intended to be illustrative of the claimed concept and non-limiting. It will be understood by persons skilled in the art that other variants and modifications may be made without departing from the scope of the invention as defined in the claims appended hereto. The scope of the claims should not be limited by the preferred embodiments and examples, but should be given the broadest interpretation consistent with the description as a whole.
Number | Name | Date | Kind |
---|---|---|---|
911258 | Neumann | Feb 1909 | A |
1600762 | Hawley | Sep 1926 | A |
1797812 | Waring | Mar 1931 | A |
1898608 | Alexander | Feb 1933 | A |
1937765 | Leathers | Dec 1933 | A |
2015464 | Saint | Sep 1935 | A |
2152114 | Van Tongeren | Mar 1939 | A |
2542634 | Davis et al. | Feb 1951 | A |
2678110 | Madsen | May 1954 | A |
2731102 | James | Jan 1956 | A |
2811219 | Wenzl | Oct 1957 | A |
2846024 | Bremi | Aug 1958 | A |
2913111 | Rogers | Nov 1959 | A |
2917131 | Evans | Dec 1959 | A |
2937713 | Stephenson et al. | May 1960 | A |
2942691 | Dillon | Jun 1960 | A |
2942692 | Benz | Jun 1960 | A |
2946451 | Culleton | Jul 1960 | A |
2952330 | Winslow | Sep 1960 | A |
2981369 | Yellott et al. | Apr 1961 | A |
3032954 | Racklyeft | May 1962 | A |
3085221 | Kelly | Apr 1963 | A |
3130157 | Kelsall et al. | Apr 1964 | A |
3200568 | McNeil | Aug 1965 | A |
3204772 | Ruxton | Sep 1965 | A |
3217469 | Eckert | Nov 1965 | A |
3269097 | German | Aug 1966 | A |
3320727 | Farley et al. | May 1967 | A |
3372532 | Campbell | Mar 1968 | A |
3426513 | Bauer | Feb 1969 | A |
3518815 | Peterson et al. | Jul 1970 | A |
3530649 | Porsch et al. | Sep 1970 | A |
3543325 | Hamrick et al. | Dec 1970 | A |
3561824 | Homan | Feb 1971 | A |
3582616 | Wrob | Jun 1971 | A |
3675401 | Cordes | Jul 1972 | A |
3684093 | Kono | Aug 1972 | A |
3822533 | Oranje | Jul 1974 | A |
3898068 | McNeil et al. | Aug 1975 | A |
3933450 | Percevaut | Jan 1976 | A |
3988132 | Oranje | Oct 1976 | A |
3988133 | Schady | Oct 1976 | A |
4097381 | Ritzler | Jun 1978 | A |
4187088 | Hodgson | Feb 1980 | A |
4218805 | Brazier | Aug 1980 | A |
4236903 | Malmsten | Dec 1980 | A |
4307485 | Dessig | Dec 1981 | A |
4373228 | Dyson | Feb 1983 | A |
4382804 | Mellor | May 1983 | A |
4409008 | Solymes | Oct 1983 | A |
4486207 | Baillie | Dec 1984 | A |
4494270 | Ritzau et al. | Jan 1985 | A |
4523936 | Disanza, Jr. | Jun 1985 | A |
4678588 | Shortt | Jul 1987 | A |
4700429 | Martin et al. | Oct 1987 | A |
4744958 | Pircon | May 1988 | A |
4778494 | Patterson | Oct 1988 | A |
4826515 | Dyson | May 1989 | A |
D303173 | Masakata et al. | Aug 1989 | S |
4853008 | Dyson | Aug 1989 | A |
4853011 | Dyson | Aug 1989 | A |
4853111 | MacArthur et al. | Aug 1989 | A |
4905342 | Ataka | Mar 1990 | A |
4944780 | Usmani | Jul 1990 | A |
5078761 | Dyson | Jan 1992 | A |
5080697 | Finke | Jan 1992 | A |
5090976 | Dyson | Feb 1992 | A |
5129125 | Gamou et al. | Jul 1992 | A |
5224238 | Bartlett | Jul 1993 | A |
5230722 | Yonkers | Jul 1993 | A |
5254019 | Noschese | Oct 1993 | A |
5267371 | Solerm et al. | Dec 1993 | A |
5287591 | Rench et al. | Feb 1994 | A |
5307538 | Rench et al. | May 1994 | A |
5309601 | Hampton et al. | May 1994 | A |
5347679 | Saunders et al. | Sep 1994 | A |
5363535 | Rench et al. | Nov 1994 | A |
5481780 | Daneshvar | Jan 1996 | A |
5504970 | Neshat et al. | Apr 1996 | A |
5599365 | Alday et al. | Feb 1997 | A |
D380033 | Masterton et al. | Jun 1997 | S |
5755096 | Holleyman | May 1998 | A |
5815878 | Murakami et al. | Oct 1998 | A |
5858038 | Dyson et al. | Jan 1999 | A |
5858043 | Geise | Jan 1999 | A |
5893938 | Dyson et al. | Apr 1999 | A |
5935279 | Kilstrom | Aug 1999 | A |
5950274 | Kilstrom | Sep 1999 | A |
5970572 | Thomas | Oct 1999 | A |
6071095 | Verkaar | Jun 2000 | A |
6071321 | Trapp et al. | Jun 2000 | A |
6080022 | Shaberman et al. | Jun 2000 | A |
6122796 | Downham et al. | Sep 2000 | A |
6151407 | Conlon | Nov 2000 | A |
6210469 | Tokar | Apr 2001 | B1 |
6221134 | Conrad et al. | Apr 2001 | B1 |
6228260 | Conrad et al. | May 2001 | B1 |
6231645 | Conrad et al. | May 2001 | B1 |
6251296 | Conrad et al. | Jun 2001 | B1 |
6260234 | Wright et al. | Jul 2001 | B1 |
6345408 | Nagai et al. | Feb 2002 | B1 |
6406505 | Oh et al. | Jun 2002 | B1 |
6434785 | Vandenbelt et al. | Aug 2002 | B1 |
6440197 | Conrad et al. | Aug 2002 | B1 |
6502278 | Oh et al. | Jan 2003 | B2 |
6519810 | Kim | Feb 2003 | B2 |
6531066 | Saunders et al. | Mar 2003 | B1 |
6553612 | Dyson et al. | Apr 2003 | B1 |
6553613 | Onishi et al. | Apr 2003 | B2 |
6560818 | Hasko | May 2003 | B1 |
6581239 | Dyson et al. | Jun 2003 | B1 |
6599338 | Oh et al. | Jul 2003 | B2 |
6599350 | Rockwell et al. | Jul 2003 | B1 |
6613316 | Sun et al. | Sep 2003 | B2 |
6623539 | Lee et al. | Sep 2003 | B2 |
6625845 | Matsumoto et al. | Sep 2003 | B2 |
6640385 | Oh et al. | Nov 2003 | B2 |
6648934 | Choi et al. | Nov 2003 | B2 |
6712868 | Murphy et al. | Mar 2004 | B2 |
6732403 | Moore et al. | May 2004 | B2 |
6746500 | Park et al. | Jun 2004 | B1 |
6782583 | Oh | Aug 2004 | B2 |
6782585 | Conrad et al. | Aug 2004 | B1 |
6810558 | Lee | Nov 2004 | B2 |
6818036 | Seaman | Nov 2004 | B1 |
6833015 | Oh et al. | Dec 2004 | B2 |
6868578 | Kasper | Mar 2005 | B1 |
6874197 | Conrad | Apr 2005 | B1 |
6896719 | Coates et al. | May 2005 | B2 |
6929516 | Brochu et al. | Aug 2005 | B2 |
6968596 | Oh et al. | Nov 2005 | B2 |
6976885 | Lord | Dec 2005 | B2 |
7160346 | Park | Jan 2007 | B2 |
7162770 | Davidshofer | Jan 2007 | B2 |
7175682 | Nakai et al. | Feb 2007 | B2 |
7198656 | Takemoto et al. | Apr 2007 | B2 |
7222393 | Kaffenberger et al. | May 2007 | B2 |
7272872 | Choi | Sep 2007 | B2 |
7278181 | Harris et al. | Oct 2007 | B2 |
7341611 | Greene et al. | Mar 2008 | B2 |
7354468 | Arnold et al. | Apr 2008 | B2 |
7370387 | Walker et al. | May 2008 | B2 |
7377007 | Best | May 2008 | B2 |
7377953 | Oh | May 2008 | B2 |
7386915 | Blocker et al. | Jun 2008 | B2 |
7395579 | Oh | Jul 2008 | B2 |
7429284 | Oh | Sep 2008 | B2 |
7448363 | Rasmussen et al. | Nov 2008 | B1 |
7449040 | Conrad et al. | Nov 2008 | B2 |
7485164 | Jeong et al. | Feb 2009 | B2 |
7488363 | Jeong et al. | Feb 2009 | B2 |
7547337 | Oh | Jun 2009 | B2 |
7547338 | Kim et al. | Jun 2009 | B2 |
7563298 | Oh | Jul 2009 | B2 |
7588616 | Conrad et al. | Sep 2009 | B2 |
7597730 | Yoo et al. | Oct 2009 | B2 |
7628831 | Gomiciaga-Pereda et al. | Dec 2009 | B2 |
7740676 | Burnham et al. | Jun 2010 | B2 |
7770256 | Fester | Aug 2010 | B1 |
7776120 | Conrad | Aug 2010 | B2 |
7779506 | Kang et al. | Aug 2010 | B2 |
7803207 | Conrad | Sep 2010 | B2 |
7805804 | Loebig | Oct 2010 | B2 |
7811349 | Nguyen | Oct 2010 | B2 |
7867308 | Conrad | Jan 2011 | B2 |
7922794 | Morphey | Apr 2011 | B2 |
7931716 | Oakham | Apr 2011 | B2 |
7938871 | Lloyd | May 2011 | B2 |
7979959 | Courtney | Jul 2011 | B2 |
8021453 | Howes | Sep 2011 | B2 |
8062398 | Luo et al. | Nov 2011 | B2 |
8117712 | Dyson et al. | Feb 2012 | B2 |
8146201 | Conrad | Apr 2012 | B2 |
8152877 | Greene | Apr 2012 | B2 |
8156609 | Milne et al. | Apr 2012 | B2 |
8161599 | Griffith et al. | Apr 2012 | B2 |
8225456 | Håkan et al. | Jul 2012 | B2 |
8484799 | Conrad | Jul 2013 | B2 |
8671510 | Han | Mar 2014 | B2 |
8673487 | Churchill | Mar 2014 | B2 |
8875340 | Conrad | Nov 2014 | B2 |
9314139 | Conrad | Apr 2016 | B2 |
10478034 | Han | Nov 2019 | B2 |
10517449 | Han | Dec 2019 | B2 |
10765276 | Shinagawa | Sep 2020 | B2 |
20020011050 | Hansen et al. | Jan 2002 | A1 |
20020011053 | Oh | Jan 2002 | A1 |
20020062531 | Oh | May 2002 | A1 |
20020088208 | Lukac et al. | Jul 2002 | A1 |
20020112315 | Conrad | Aug 2002 | A1 |
20020134059 | Oh | Sep 2002 | A1 |
20020178535 | Oh et al. | Dec 2002 | A1 |
20020178698 | Oh et al. | Dec 2002 | A1 |
20020178699 | Oh | Dec 2002 | A1 |
20030046910 | Lee | Mar 2003 | A1 |
20030066273 | Choi et al. | Apr 2003 | A1 |
20030106180 | Tsen | Jun 2003 | A1 |
20030159238 | Oh | Aug 2003 | A1 |
20030159411 | Hansen et al. | Aug 2003 | A1 |
20030200736 | Ni | Oct 2003 | A1 |
20040010885 | Hitzelberger et al. | Jan 2004 | A1 |
20040025285 | McCormick et al. | Feb 2004 | A1 |
20040216264 | Shaver et al. | Nov 2004 | A1 |
20050081321 | Milligan et al. | Apr 2005 | A1 |
20050115409 | Conrad | Jun 2005 | A1 |
20050132528 | Yau | Jun 2005 | A1 |
20050198769 | Lee et al. | Sep 2005 | A1 |
20050198770 | Jung et al. | Sep 2005 | A1 |
20050252179 | Oh et al. | Nov 2005 | A1 |
20050252180 | Oh et al. | Nov 2005 | A1 |
20060037172 | Choi | Feb 2006 | A1 |
20060042206 | Arnold et al. | Mar 2006 | A1 |
20060090290 | Lau | May 2006 | A1 |
20060123590 | Fester et al. | Jun 2006 | A1 |
20060137304 | Jeong et al. | Jun 2006 | A1 |
20060137306 | Jeong et al. | Jun 2006 | A1 |
20060137309 | Jeong et al. | Jun 2006 | A1 |
20060137314 | Conrad et al. | Jun 2006 | A1 |
20060156508 | Khalil | Jul 2006 | A1 |
20060162298 | Oh et al. | Jul 2006 | A1 |
20060162299 | North | Jul 2006 | A1 |
20060168922 | Oh | Aug 2006 | A1 |
20060168923 | Lee et al. | Aug 2006 | A1 |
20060207055 | Ivarsson et al. | Sep 2006 | A1 |
20060207231 | Arnold | Sep 2006 | A1 |
20060230715 | Oh et al. | Oct 2006 | A1 |
20060230723 | Kim et al. | Oct 2006 | A1 |
20060230724 | Han et al. | Oct 2006 | A1 |
20060236663 | Oh | Oct 2006 | A1 |
20060254226 | Jeon | Nov 2006 | A1 |
20060278081 | Han et al. | Dec 2006 | A1 |
20060288516 | Sawalski | Dec 2006 | A1 |
20070067944 | Kitamura | Mar 2007 | A1 |
20070077810 | Gogel | Apr 2007 | A1 |
20070079473 | Min | Apr 2007 | A1 |
20070079585 | Oh et al. | Apr 2007 | A1 |
20070095028 | Kim | May 2007 | A1 |
20070095029 | Min | May 2007 | A1 |
20070209334 | Conrad | Sep 2007 | A1 |
20070209335 | Conrad | Sep 2007 | A1 |
20070271724 | Hakan et al. | Nov 2007 | A1 |
20070289089 | Yacobi | Dec 2007 | A1 |
20070289266 | Oh | Dec 2007 | A1 |
20080040883 | Beskow et al. | Feb 2008 | A1 |
20080047091 | Nguyen | Feb 2008 | A1 |
20080134460 | Conrad | Jun 2008 | A1 |
20080134462 | Jansen et al. | Jun 2008 | A1 |
20080178416 | Conrad | Jul 2008 | A1 |
20080178420 | Conrad | Jul 2008 | A1 |
20080190080 | Oh et al. | Aug 2008 | A1 |
20080196194 | Conrad | Aug 2008 | A1 |
20080301903 | Cunningham et al. | Dec 2008 | A1 |
20090100633 | Bates et al. | Apr 2009 | A1 |
20090113659 | Jeon | May 2009 | A1 |
20090144932 | Yoo | Jun 2009 | A1 |
20090165431 | Oh | Jul 2009 | A1 |
20090205160 | Conrad | Aug 2009 | A1 |
20090205161 | Conrad | Aug 2009 | A1 |
20090205298 | Hyun et al. | Aug 2009 | A1 |
20090209666 | Hellberg et al. | Aug 2009 | A1 |
20090265877 | Dyson et al. | Oct 2009 | A1 |
20090282639 | Dyson et al. | Nov 2009 | A1 |
20090300874 | Tran et al. | Dec 2009 | A1 |
20090300875 | Inge et al. | Dec 2009 | A1 |
20090307564 | Vedantham et al. | Dec 2009 | A1 |
20090307863 | Milne et al. | Dec 2009 | A1 |
20090307864 | Dyson | Dec 2009 | A1 |
20090308254 | Oakham | Dec 2009 | A1 |
20090313958 | Gomiciaga-Pereda et al. | Dec 2009 | A1 |
20090313959 | Gomiciaga-Pereda et al. | Dec 2009 | A1 |
20100083459 | Beskow et al. | Apr 2010 | A1 |
20100132319 | Ashbee | Jun 2010 | A1 |
20100154150 | McLeod | Jun 2010 | A1 |
20100175217 | Conrad | Jul 2010 | A1 |
20100212104 | Conrad | Aug 2010 | A1 |
20100224073 | Oh et al. | Sep 2010 | A1 |
20100229321 | Dyson et al. | Sep 2010 | A1 |
20100229328 | Conrad | Sep 2010 | A1 |
20100242210 | Conrad | Sep 2010 | A1 |
20100243158 | Conrad | Sep 2010 | A1 |
20100293745 | Coburn | Nov 2010 | A1 |
20100299865 | Conrad | Dec 2010 | A1 |
20100299866 | Conrad | Dec 2010 | A1 |
20110023261 | Proffitt, II | Feb 2011 | A1 |
20110146024 | Conrad | Jun 2011 | A1 |
20110168332 | Bowe et al. | Jul 2011 | A1 |
20110289719 | Han | Dec 2011 | A1 |
20120060322 | Simonelli et al. | Mar 2012 | A1 |
20120216361 | Millington et al. | Aug 2012 | A1 |
20120222245 | Conrad | Sep 2012 | A1 |
20120222260 | Conrad et al. | Sep 2012 | A1 |
20120222262 | Conrad | Sep 2012 | A1 |
20130091815 | Smith | Apr 2013 | A1 |
20130185892 | Walker | Jul 2013 | A1 |
20140137362 | Smith | May 2014 | A1 |
20140137363 | Wilson | May 2014 | A1 |
20140137364 | Stickney et al. | May 2014 | A1 |
20140182080 | Lee et al. | Jul 2014 | A1 |
20140208538 | Visel et al. | Jul 2014 | A1 |
20160015227 | Conrad et al. | Jan 2016 | A1 |
20160174789 | Han et al. | Jun 2016 | A1 |
20190343356 | Kim | Nov 2019 | A1 |
20200129025 | Zhong | Apr 2020 | A1 |
20200138254 | Lee | May 2020 | A1 |
Number | Date | Country |
---|---|---|
112778 | Apr 1940 | AU |
1077412 | May 1980 | CA |
1218962 | Mar 1987 | CA |
2484587 | Apr 2005 | CA |
2593950 | Jun 2008 | CA |
2438079 | Aug 2009 | CA |
2659212 | Sep 2010 | CA |
1493244 | May 2004 | CN |
1887437 | Jan 2007 | CN |
202932850 | May 2013 | CN |
109893027 | Jun 2019 | CN |
110051268 | Jul 2019 | CN |
211609590 | Oct 2020 | CN |
875134 | Apr 1953 | DE |
9216071.9 | Feb 1993 | DE |
4232382 | Mar 1994 | DE |
0489498 | Jun 1992 | EP |
493950 | Jul 1992 | EP |
1200196 | Jun 2005 | EP |
1779761 | May 2007 | EP |
1594386 | Apr 2009 | EP |
1676516 | Jan 2010 | EP |
2308360 | Apr 2011 | EP |
1629758 | Oct 2013 | EP |
2389849 | Sep 2016 | EP |
2812531 | Nov 2004 | FR |
700791 | Dec 1953 | GB |
1111074 | Apr 1968 | GB |
2163703 | Jan 1988 | GB |
2268875 | Jan 1994 | GB |
2282979 | Oct 1997 | GB |
2365324 | Jul 2002 | GB |
2441962 | Mar 2011 | GB |
2466290 | Oct 2012 | GB |
2508035 | May 2014 | GB |
61131720 | Jun 1986 | JP |
2000140533 | May 2000 | JP |
2010178773 | Aug 2010 | JP |
2010220632 | Oct 2010 | JP |
2011189132 | Sep 2011 | JP |
2011189133 | Sep 2011 | JP |
2019069298 | May 2019 | JP |
2020110472 | Jul 2020 | JP |
1980002561 | Nov 1980 | WO |
9627446 | Sep 1996 | WO |
9809121 | Mar 1998 | WO |
9843721 | Oct 1998 | WO |
0107168 | Feb 2001 | WO |
200217766 | Mar 2002 | WO |
2004069021 | Aug 2004 | WO |
2006026414 | Aug 2007 | WO |
2008009883 | Jan 2008 | WO |
2008009888 | Jan 2008 | WO |
2008009890 | Jan 2008 | WO |
2008009891 | Jan 2008 | WO |
2008088278 | Jul 2008 | WO |
2009026709 | Mar 2009 | WO |
2010102396 | Sep 2010 | WO |
2010142968 | Dec 2010 | WO |
2010142969 | Dec 2010 | WO |
2010142970 | Dec 2010 | WO |
2010142971 | Dec 2010 | WO |
2011054106 | May 2011 | WO |
2012042240 | Apr 2012 | WO |
2012117231 | Sep 2012 | WO |
2014195711 | Dec 2014 | WO |
2019031719 | Feb 2019 | WO |
2020015250 | Jan 2020 | WO |
Entry |
---|
User Manual SS80N80/SS75N80; Samsung; Mar. 8, 2018 (Mar. 8, 2018) p. 20,Fig. 1; p. 21; Fig. 6. |
Samsung PowerStick PRO; https://www.youtube.com/watch?v=JzMlXi90n0M&t=160s; Sep. 15, 2018 (Sep. 15, 2018) see minute 2:40 pf video. |
International Search Report and Written Opinion, received in connection to co-pending international patent application No. PCT/CA2021/050352, dated Jun. 17, 2021. |
English machine translation of JP2020110472, published on Jul. 27, 2020. |
English machine translation of JP2019069298, published on May 9, 2019. |
English machine translation of CN211609590; published on Oct. 2, 2020. |
English machine translation of WO2019/031719, published on Feb. 14, 2019. |
Handbook of Air Pollution Prevention and Control, pp. 397-404, 2002. |
Euro-Pro Shark Cordless Hand Vac Owner's Manual, published in 2002. |
Centerline, (n.d.). 1 page; Retrieved Apr. 19, 2016, from http://www.merriam-webster.com/dictionary/centerline. |
Centerline. Oxford Dictionaries. Oxford University Press, n.d. Web. 1 Page; Retrieved Apr. 19, 2016. <https://www.oxforddictionaries.com/us/definition/english/centre-line. |
Weisstein, Eric W. “Projection.” from MathWorld—A Wolfram Web Resource. Web. 2 pages; Retrieved Apr. 20, 2016 <http://mathworld.wolfram.com/Projection.html>. |
“Projection”. Encyclopedia Britannica. Encycloperdia Britannica Online. Encyclopedia Britannica Inc., 2016. Web. 1 page, Retrieved Apr. 20, 2016 <http://britannica.com/topic/projection-geometry>. |
English machine translation of CN202932850, published on May 15, 2013. |
Makita Cordless Cleaner, Handy Vac II, Model 4071, Instruction Manual, dated at least as early and Oct. 1993. |
English machine translation of JP2011189133, published on Sep. 29, 2011. |
English machine translation of JP2010220632, published on Oct. 7, 2010. |
English machine translation of JP2010178773, published on Aug. 19, 2010. |
English machine translation of JP61131720, published on Jun. 19, 1986. |
English machine translation of DE4232382, published on Mar. 24, 1994. |
English machine translation of FR2812531, published on Nov. 5, 2004. |
English machine translation of DE875134, published on Apr. 30, 1953. |
English machine translation of DE9216071.9, published on Feb. 25, 1993. |
English machine translation of CN 1493244, published on May 5, 2004. |
English machine translation of CN 1887437, publishe on Jan. 3, 2007. |
English machine translation of JP2011189132, published on Sep. 29, 2011. |
Number | Date | Country | |
---|---|---|---|
20210290018 A1 | Sep 2021 | US |