Surface cleaning apparatus

Information

  • Patent Grant
  • 10327607
  • Patent Number
    10,327,607
  • Date Filed
    Tuesday, June 14, 2016
    8 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
A hand carriable surface cleaning apparatus can include a first cyclonic cleaning stage having an upper end, a bottom end spaced longitudinally below the upper end and a side wall extending therebetween. A second cyclonic cleaning stage may be positioned in the fluid flow path downstream from the first cyclonic cleaning stage and may be positioned above and overlie the upper end of the first cyclonic cleaning stage. The second cyclonic cleaning stage may be longitudinally translatable relative to the sidewall.
Description
FIELD

This specification relates to a surface cleaning apparatus comprising a base with a removable portable surface cleaning unit such as a pod or other hand carriable surface cleaning apparatus wherein the portable surface cleaning apparatus is usable when mounted on the base or when removed therefrom.


INTRODUCTION

The following is not an admission that anything discussed below is part of the prior art or part of the common general knowledge of a person skilled in the art.


Various types of surface cleaning apparatuses are known in the art. Such surface cleaning apparatuses include vacuum cleaners, including upright vacuum cleaners, hand carriable vacuum cleaners, canister type vacuum cleaners, and Shop-Vac™ type vacuum cleaners. Some such vacuum cleaners are provided with wheels. For example, typical upright vacuum cleaners are provided with a surface cleaning head that includes wheels mounted to a bottom surface thereof. Upright vacuum cleaners are easy for a consumer to use since the consumer does not have to carry the vacuum cleaner but merely push it over a surface. However, depending on the size of the surface cleaning head, an upright vacuum cleaner may not be useable in smaller or crowded areas. Canister vacuum cleaners have a flexibly hose extending between a surface cleaning head and the canister body, thereby improving mobility of the cleaning head. However, consumers must separately move a canister body, which can add an extra step during the cleaning process.


SUMMARY

This summary is intended to introduce the reader to the more detailed description that follows and not to limit or define any claimed or as yet unclaimed invention. One or more inventions may reside in any combination or sub-combination of the elements or process steps disclosed in any part of this document including its claims and figures.


According to one broad aspect of this invention, a surface cleaning apparatus comprises a portable cleaning unit, which may be carried by hand or a shoulder strap such as a pod, which is removably mounted on a wheeled base. The portable cleaning unit may be provided with a suction motor and an energy storage member (such as batteries). Accordingly, the suction motor of the portable cleaning unit may be operable on DC current. However, in accordance with this embodiment, the wheeled base may include a second suction motor (e.g. an AC powered suction motor). Accordingly, when the portable cleaning unit is provided on the wheeled base and the wheeled base is connected to a source of current, the suction motor in the wheeled base may be operated, e.g. on AC current, and used to draw air through an airflow path to the air treatment member in the portable cleaning unit. An advantage of this design is that the suction motor provided in the wheeled base may produce a higher airflow and therefore increase cleanability when the portable cleaning unit is provided on the wheeled base. However, when the portable cleaning unit is removed from the wheeled base, a smaller and lighter suction motor is utilized. While the velocity of the airflow through the portable cleaning unit when removed from the base may be decreased, the reduced weight of the suction motor may be beneficial. In addition, a smaller airflow path may be provided when the portable cleaning unit is removed from the base, and, accordingly, a smaller DC power suction motor may provide substantially similar airflow in the hand carriable mode.


The portable cleaning unit may comprise at least one cyclonic separation stage and a suction motor. Accordingly, the portable cleaning unit is useable, e.g., as a vacuum cleaner or the like, when removed from the wheeled base. The cyclonic separation stage comprises a cyclone chamber and a material collection chamber. The portable cleaning unit is configured such that the material collection chamber is removable for emptying when the portable cleaning unit is mounted on the wheeled base. For example, the material collection chamber may be removed by itself when the portable cleaning unit is mounted on the wheel base. Alternately, the material collection chamber and the cyclone chamber may be removable as a unit (e.g. a cyclone bin assembly). It will be appreciated that the material collection chamber, either by itself or in conjunction with the cyclone chamber and possibly other elements, may be removable from the portable cleaning unit when the portable cleaning unit has been removed from the wheeled base. An advantage of this design is that the usability of the surface cleaning apparatus is increased. In particular, when it is needed to empty the dirt collection chamber, all that is needed is to remove the dirt collection chamber either by itself, or, for example, together with the cyclone chamber for emptying. Accordingly, a user did not carry the weight of the motor when the user is emptying the dirt collection chamber.


Preferably, in accordance with this embodiment, the dirt collection chamber and, optionally, the cyclone chamber may be provided on an upper portion of the portable cleaning unit so as to be removable upwardly therefrom.


It will be appreciated by a skilled person in the art that any of the features of the configuration of a portable cleaning unit to permit a dirt collection chamber to be removed from the portable cleaning unit when the portable cleaning unit is mounted on the wheeled base as discussed herein may not be utilized with dual motor design disclosed herein, but may be used by itself or in combination with any other feature disclosed herein.


In accordance with another embodiment, the portable cleaning unit may be provided with a pod hose which is removable with the portable cleaning unit from the wheeled base. The pod hose may have a smaller diameter and, accordingly, may be used only when the portable cleaning unit has been removed from the wheeled base. Accordingly, when the portable cleaning unit is on a wheeled base, the pod hose does not form part of the fluid flow path. Accordingly, the smaller diameter of the pod hose does not restrict the airflow path when the portable cleaning unit is placed on a wheeled base. An advantage of this design is that the portable cleaning unit may carry a longer hose without increasing the volume taken by the pod hose. In addition, the pod hose, being a smaller diameter, may be more flexible and enhance the usability of the portable cleaning unit in a hand carriable mode. For example, the pod hose may have a greater stretch ratio, for example, of 4:1 to 7:1 or more.


In accordance with this embodiment, a valve may be provided on the portable cleaning unit whereby the pod hose is not in airflow communication with the suction motor when the portable cleaning unit is mounted on the wheeled base. However, when the portable cleaning unit is removed from the wheeled base, the valve may be actuated (e.g. automatically upon removal of the portable cleaning unit from the wheeled base, manually by the user or automatically when the hose is deployed for use) such that pod hose form part of the air flow path.


It will be appreciated by a person skilled in the art that any of the features of the pod hose which are discussed herein may not be utilized with the dual motor design disclosed herein, but may be used by itself or in combination with any other feature disclosed herein.


In accordance with another embodiment, the portable cleaning unit may be operable by AC power supplied to the base when the portable cleaning unit is mounted on the base and may be operable on DC power when the portable cleaning unit is removed from the base. Accordingly, the portable cleaning unit may include an energy storage member (e.g. one or more batteries) which may power the suction motor when the portable cleaning unit is removed from the base. Accordingly, the suction motor may be operable on DC current. When the pod is mounted on the wheeled base, and the wheeled base is connected to a source of current by an electrical cord, then the suction motor may be in electrical communication with the base so as to be powered by AC current supplied through the electrical cord. For example, the suction motor could have dual winding so as to be operable on both AC and DC current. Alternately, the base may include a power supply to convert the AC current to DC current which is then supplied to the suction motor when the portable cleaning unit is placed on the base. For example, the power supply may comprise an inverter.


In this particular embodiment, it will be appreciated that the batteries in the portable cleaning unit may be charged while the portable cleaning unit is mounted on the wheeled base and the wheeled base is plugged into an electrical outlet.


In a further alternate embodiment, instead of utilizing electricity from an electrical outlet, the wheeled base may include a fuel cell or an alcohol powered internal or external combustion engine. In such an embodiment, the wheeled base may produce AC current or DC current, which is then supplied to the suction motor when the portable cleaning unit is mounted on the wheeled base and actuated.


It will be appreciated by a person skilled in the art that any of the features of a portable cleaning unit which is operable on AC and DC current as disclosed herein may not be utilized with the dual motor design disclosed herein, but may be used by itself or in combination with any other feature disclosed herein.


In accordance with the further embodiment, the portable cleaning unit may comprise both an energy storage member and a power supply. Accordingly, when the portable cleaning unit is connected to a power source (e.g. a cord extends from the portable cleaning unit to an electrical outlet), AC power may be supplied to the power supply (e.g. an inverter) to convert the AC current to DC which is then utilized to power the suction motor. When a user is unable to or does not want to plug the portable cleaning unit into a wall outlet, the portable cleaning unit may be powered by the energy storage member (e.g. batteries), which provide DC current to a suction motor. Accordingly, the portable cleaning unit may be powered by both AC current from a wall outlet and DC current supplied by batteries as may be desired. In a further alternate embodiment, the suction motor may be provided with two windings. In such a case, the power supply is not required and the suction motor may be powered by both DC current from the batteries and AC current from a wall outlet.


It will be appreciated by a person skilled in the art that any of the features of a pod operable with both AC and DC current as discussed herein may not be utilized with dual motor design disclosed herein, but may be used by itself or in combination with any other feature disclosed herein.


In one embodiment, there is provided a surface cleaning apparatus comprising


(a) a wheeled base comprising an AC suction motor;


(b) a portable cleaning unit removably mounted on the wheeled base and comprising at least one cyclonic separation stage, a first energy storage member and a portable cleaning unit suction motor that is operable on DC power; and,


(c) a fluid flow path extending from a first dirty fluid inlet to a clean air outlet of the surface cleaning apparatus,


wherein the AC suction motor provides motive power to move fluid through the fluid flow path when the surface cleaning unit is switched on and when the portable cleaning unit is mounted on the wheeled base, and


wherein the portable cleaning unit suction motor provides motive power to move fluid through the fluid flow path when the portable cleaning unit is switched on and when the portable cleaning unit is removed from the wheeled base


In some embodiments, the wheeled base may further comprise or is connectable to a power cord and the portable cleaning unit is powered solely by the first energy storage member when the portable cleaning unit is removed from the wheeled base.


In some embodiments, the wheeled base may further comprise or is connectable to a power cord, the first energy storage member comprises batteries and the batteries are charged when the portable cleaning unit is mounted on the wheeled base.


In some embodiments, the suction motor in the portable cleaning unit may not be used to provide motive power to move fluid through the fluid flow path when the surface cleaning unit is switched on and when the portable cleaning unit is mounted on the wheeled base.


In some embodiments, the fluid flow path may comprise an upstream portion that extends from the first dirty fluid inlet to the portable cleaning unit and the AC suction motor is in the fluid flow path.


In some embodiments, the fluid flow path may comprise a downstream fluid flow path extending through the portable cleaning unit to the clean air outlet and the portable cleaning unit suction motor is in the downstream fluid flow path.


In some embodiments, the portable cleaning unit may comprise a flexible hose having a second dirty fluid inlet and the flexible hose is part of the downstream fluid flow path when the portable cleaning unit is removed from the wheeled base.


In some embodiments, the flexible hose may be an electrified flexible hose.


In some embodiments, the wheeled base may further comprise a second energy storage member.


In some embodiments, the second energy storage member may charge the first energy storage member when the portable cleaning unit is mounted on the wheeled base.


In some embodiments, the portable cleaning unit suction motor may be a DC motor.


In one embodiment, there is provided a surface cleaning apparatus comprising


(a) a wheeled based connectable to a source of current;


(b) a portable cleaning unit removably mounted on the wheeled base and comprising at least one cyclonic separation stage, a first energy storage member and a portable cleaning unit suction motor that is operable on DC power; and,


(c) a fluid flow path extending from a first dirty fluid inlet to a clean air outlet of the surface cleaning apparatus,


wherein the portable cleaning unit suction motor is operable on DC power when removed from the wheeled base and is operable on power provided by the wheeled base when mounted on the wheeled base.


In some embodiments, the portable cleaning unit suction motor may be a DC motor.


In some embodiments, the wheeled base may further comprise or is connectable to a power cord and the portable cleaning unit is powered solely by the first energy storage member when the portable cleaning unit is removed from the wheeled base.


In some embodiments, the wheeled base may further comprise or is connectable to a power cord, the first energy storage member comprises batteries and the batteries are charged when the portable cleaning unit is mounted on the wheeled base.


In some embodiments, the wheeled base may further comprise or is connectable to a power cord, the wheeled base further comprises a circuit that receives AC current and outputs DC current and the portable cleaning unit is powered the DC current when the portable cleaning unit is mounted on the wheeled base.


In some embodiments the portable cleaning unit suction motor may operate at a first power level when removed from the wheeled base and at a second power level when is mounted on the wheeled base.


In some embodiments the first power level may be less than the second power.


In accordance with another aspect, a surface cleaning apparatus, preferably a canister or Shop-Vac™ style vacuum cleaner is provided which comprises a portable cleaning unit and a wheeled base. Preferably, the cleaning unit is removably mounted to the wheeled base. Alternately, or in addition, the wheeled base has wheels mounted outward of the wheeled base, and which are preferably of a larger diameter (e.g., 1-3 inches in diameter, preferably 1.5-2.5 inches in diameter).


According to this aspect, the surface cleaning apparatus may comprise a member having a dirty fluid inlet. A fluid flow path extends from the dirty fluid inlet to a clean air outlet of the surface cleaning apparatus. The surface cleaning apparatus further comprises a wheeled based. A portable cleaning unit is removably mounted on the wheeled base and comprising at least one cyclonic separation stage and a suction motor positioned in the fluid flow path.


Embodiments in accordance with this broad aspect may be advantageous because the surface cleaning apparatus may have increased maneuverability. That is, the surface cleaning apparatus may be used as a wheel mounted surface cleaning apparatus when convenient for a user since the user need not carry the surface cleaning apparatus, or as a hand or strap carriable surface cleaning apparatus, such as when a stairs or a smaller or crowded area is to be cleaned, according to the user's preference.


In some embodiments, the at least one cyclonic separation stage may comprise a cyclone chamber having at least one material outlet, a divider plate associated with the material outlet and an associated material collection chamber in flow communication with the material outlet.


In some embodiments, the material collection chamber may be positioned below the material outlet. In a further embodiment, the divider plate may be positioned in the material outlet.


In some embodiments, the material collection chamber may be moveable relative to the cyclone chamber. In a further embodiment the material collection chamber may be removable from the at least one cyclone chamber.


In some embodiments, the material collection chamber may have a portion that is openable. In a further embodiment, the portion that is openable may be a bottom wall. Such embodiments may be advantageous because the wheeled base may prevent accidental opening of the material collection chamber.


In some embodiments, the suction motor may be positioned laterally spaced from the at least one cyclonic separation stage. Accordingly, the surface cleaning apparatus may have a relatively wide stance and low center of mass, and therefore may have increased stability.


In some embodiments, the cleaning unit has a front end having the dirty fluid inlet and the front end of the cleaning unit is positioned at a front end of the wheeled base and the suction motor is positioned rearward of the at least one cyclonic separation stage.


In some embodiments, the wheeled base may have a length greater than its width. In further embodiments, the wheeled base may be generally polygonal, and preferably generally triangular in shape. Such embodiments may be advantageous because the surface cleaning apparatus may have both increased maneuverability and increased stability.


In some embodiments, the wheeled base may have at least one front wheel and at least two rear wheels, the rear wheels may have a larger diameter then the at least one front wheel and the at least one front wheel may be steerable. Such embodiments may be advantageous because the larger rear wheels may provide the wheeled base with increased stability, and the steerable front wheel may provide the wheeled base with increased maneuverability. Alternately, the front wheels may have a larger diameter or essentially the same diameter as the rear wheels.


In some embodiments, the wheeled base may have at least one front wheel and at least two rear wheels and the rear wheels may have a larger diameter then the at least one front wheel.


In some embodiments, the wheeled base may have at least one front wheel and at least two rear wheels and the rear wheels may have a smaller diameter then the at least one front wheel.


In some embodiments, the at least one front wheel may be steerable.


In some embodiments, the wheeled base may have rear wheels that are positioned outwardly of an area occupied by the cleaning unit when the cleaning unit is mounted on the wheeled base. Alternately, or in addition, the wheeled base may have front wheels that are positioned outwardly of an area occupied by the cleaning unit when the cleaning unit is mounted on the wheeled base. Such embodiments may be advantageous because the wheeled base may have a relatively wide stance, thereby providing greater stability to the surface cleaning apparatus. Additionally, the surface cleaning apparatus may be relatively close to the ground, and may therefore have a lower center of mass and increased stability.


In some embodiments, the cleaning unit may have a front end having a fluid inlet downstream from the dirty fluid inlet and the front end of the cleaning unit is positioned at a front end of the wheeled base.


In some embodiments, the cleaning unit may be lockably receivable on the wheeled base.


In some embodiments, the wheeled base may have at least one front wheel having a diameter of 1 to 3 inches and at least two rear wheels having a diameter of 1 to 3 inches.


In some embodiments, the cleaning unit may have a carry handle and/or a shoulder strap.


In some embodiments, the wheeled base may have at least one front wheel and at least two rear wheels, and the cleaning unit is receivable on an open platform.


In some embodiments, the wheeled base may have an absence of operating components.


It will be appreciated by a person skilled in the art that a surface cleaning apparatus may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way.


In the drawings:



FIG. 1 is a perspective view of an embodiment of a surface cleaning apparatus of the present invention;



FIG. 2 is a front view of the embodiment of FIG. 1;



FIG. 3 is a side view of the embodiment of FIG. 1;



FIG. 4 is a top view of the embodiment of FIG. 1;



FIG. 5 is a perspective view of the embodiment of FIG. 1, showing a surface cleaning unit removed from a wheeled base;



FIG. 6 is a side view of the embodiment of FIG. 1, showing a surface cleaning unit removed from a wheeled base;



FIGS. 7-9 are cross-sections taken along line 7-7 in FIG. 1, showing alternate configurations of a cleaning unit;



FIG. 9a is a partially-exploded perspective illustration of the cleaning unit of FIG. 9;



FIG. 10 is a perspective illustration of an alternate embodiment of a surface cleaning apparatus of the present invention, showing a lid in an open position;



FIG. 11 is a perspective view of another embodiment of a surface cleaning apparatus;



FIG. 12 is another perspective view of the surface cleaning apparatus of FIG. 11;



FIG. 13 is a perspective view of the surface cleaning apparatus of FIG. 11 with a surface cleaning unit detached;



FIG. 14 is another perspective view of the surface cleaning apparatus of FIG. 11 with a surface cleaning unit detached;



FIG. 15 is a schematic representation of another embodiment of a surface cleaning apparatus;



FIG. 16 is a schematic representation of the surface cleaning apparatus of FIG. 15 with a surface cleaning unit detached;



FIG. 17 is a schematic representation of another embodiment of a surface cleaning apparatus;



FIG. 18 is a perspective view of another embodiment of a surface cleaning apparatus;



FIG. 19 is another perspective view of the surface cleaning apparatus of FIG. 18 with a cyclone bin assembly removed;



FIG. 20 is a perspective view of the surface cleaning apparatus of FIG. 18 with a surface cleaning unit detached and a cyclone bin assembly removed from the surface cleaning unit; and,



FIG. 21 is a bottom perspective view of the cyclone bin assembly of the surface cleaning apparatus of FIG. 18 in the open position.





DESCRIPTION OF VARIOUS EMBODIMENTS

Various apparatuses or processes will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover processes or apparatuses that differ from those described below. The claimed inventions are not limited to apparatuses or processes having all of the features of any one apparatus or process described below or to features common to multiple or all of the apparatuses described below. It is possible that an apparatus or process described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or process described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.


Portable Cleaning Unit Construction


The following is a description of portable cleaning unit constructions that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


Referring to FIGS. 1-4, an embodiment of a surface cleaning apparatus 10 of the present invention is shown. Surface cleaning apparatus 10 may be a canister type vacuum cleaner, a Shop-Vac™ type vacuum cleaner, or another type of vacuum cleaner that may be mounted to a wheeled base. Surface cleaning apparatus 10 comprises a dirty fluid inlet 12, a clean air outlet 14, and a fluid flow path extending therebetween. A portable cleaning unit 16 is provided in the fluid flow path. Cleaning unit 16 comprises at least one cyclonic separation stage 18 for removing dirt from air, or for removing liquid from air or to pick up liquid. Cleaning unit 16 further comprises a suction motor 20 for drawing fluid from the dirty fluid inlet 12 to the clean air outlet 14.


Dirty fluid inlet 12 is provided in a member 34. In the embodiment shown in FIGS. 1-6, member 34 is a hose. In the embodiment shown in FIGS. 7-10, member 34 is a nozzle. In other embodiment, member 34 may be, for example, a surface cleaning head. It will be appreciated that a flexible hose, a rigid wand or other attachment may be affixed or removably affixed to portable cleaning unit 16.


Referring to the exemplified embodiments of FIGS. 7-9, from dirty fluid inlet 12, fluid is directed to cleaning unit 16. Cleaning unit 16 may be of a variety of configurations. In the embodiment of FIGS. 7 and 8, cleaning unit 16 comprises a single cyclonic cleaning stage 18 preferably comprising a single cyclone housed in a first housing 44, and a filter assembly 38 and motor 20 housed in a second housing 46 adjacent the first housing. Accordingly, in this embodiment, the suction motor 20 is positioned laterally adjacent and laterally spaced from the cyclonic cleaning stage 18. In the embodiment of FIG. 9, cleaning unit 16 comprises first 18 and second 48 cleaning stages housed in first housing 44, and filter assembly 38 and motor 20 housed in second housing 46 laterally adjacent the first housing. In this embodiment, motor 20 is positioned laterally spaced from and laterally adjacent both of first 18 and second 48 cleaning stages. It will be appreciated that portable cleaning unit may utilize one or more cyclonic cleaning stages, each of which may comprise a single cyclone or a plurality of cyclones in parallel. In any embodiment, one or more additional cleaning stages may be used such as one or more filters.


For example, in the embodiments exemplified, cyclonic cleaning stage 18 includes a single cyclone chamber 22. Cyclone chamber 22 comprises a dirty air inlet 24, a separated or dirty material outlet 26, and a clean air outlet 28. A dirty or separated material collection chamber 30 is mounted below dirty material outlet 26, for collecting material removed from the air in cyclone chamber 22. In the embodiment shown, a divider plate 32 is associated with dirty material outlet 26. Divider plate 32 is positioned below the dirty material outlet 26, within the material collection chamber 30. It will be appreciated that a divider plate may be used any one or more of the cyclones and it may be of any configuration and located at any position known in the art. Alternately, a divider plate may not be used and the cyclone chambers may be of any design.


Material collection chamber 30 may be of any configuration and may be emptied by a user in any manner known in the art. In the embodiment shown in FIGS. 7 and 8, material collection chamber 30 has a bottom 31 that is openable by pivoting about a pivot pin 33. In this embodiment, material collection chamber further comprises a latch 35, for locking bottom 31 in place, and a button 37 for releasing the latch. In other embodiments, material collection chamber 30 may be emptied in another manner. For example, material collection chamber 30 may be movable or removable from surface cleaning apparatus 10, such that it may be emptied, or may have another portion that opens. It may be removable from portable cleaning unit with the associated cyclone or cyclones as a sealed unit. See for example the embodiments of FIGS. 14 and 19.


In some embodiments, a filter or a screen may be associated with clean air outlet 28. For example, as shown in FIG. 8, a cylindrical housing 53 may be mounted on clean air outlet 28 and may have a plurality of openings 55 which are provided with a screen (e.g. a wire mesh). Any such screen or filter known in the art may be used. Alternatively, as shown in FIGS. 9 and 9a, a screen 43 may be positioned on top of the cyclone chamber 22 at the clean air outlet 28.


In the embodiment of FIGS. 7 and 8, air is directed from cyclone chamber 22 out of clean air outlet 28, and into an airflow passage 36, which extends between first housing 44 and second housing 46. From airflow passage 36, air is directed through a filter assembly 38, which, in the embodiments exemplified, comprises a pre-motor foam filter 40, and a screen filter 42. From filter assembly 38, air is drawn past motor 20, and out of clean air outlet 14.


In the exemplified embodiment of FIGS. 9 and 9a, from cyclone chamber 22, air is directed out of clean air outlet 28 and into second cyclonic cleaning stage 48. Second cyclonic cleaning stage 48 comprises a plurality of second stage cyclones 50 in parallel. Each second stage cyclone comprises an inlet (not shown) in fluid communication with clean air outlet 28, and an outlet 52 in fluid communication with airflow passage 36. Each second stage cyclone comprises a cyclonic cleaning region 54, and a dirt collection region 56. From outlets 28, air is directed into airflow passage 36, and into filter assembly 38. From filter assembly 38, air is drawn past motor 20, and out of clean air outlet 14.


In this embodiment, the first housing 44 that includes the second cyclonic cleaning stage 48. The second stage may be removably mounted in first housing 44 and may optionally be provided with a handle(not shown) on the top thereof. Accordingly, the second stage may be removed for emptying or optionally replacement when it is full. Alternately, the second cyclonic stage maybe emptyable with the first cyclonic separation stage 18, as is known in the vacuum cleaner art.


In other embodiments, cleaning unit 16 may be otherwise configured. For example, cleaning unit 16 may not comprise a filter assembly, or may comprise a plurality of filter assemblies. Additionally, cleaning unit 16 may comprise additional cleaning stages, which may be positioned laterally adjacent each other or above each other.


In the embodiments shown, the first 44 and second 46 housings are integrally molded. In other embodiments, the first 44 and second 46 housings may be separately manufactured and then secured together, such as by a common base or by gluing, welding or mechanically securing the two housings together. In some embodiments, first 44 and/or second 46 housing may be provided with an openable lid 45, as shown in FIG. 10. When a user opens lid 45, the user may have access to components housed in first 44 and/or second housing 46. For example, as shown in FIG. 10, lid 45 may be provided with a plurality of flanges 47, which are mounted on flanges 49 provided on housings 44 and/or 46. Flanges 47 are pivotally connected together by pivot pins 51. Accordingly, lid 45 may be pivoted from the closed position, as shown in FIGS. 1-9, to the opened position, as shown in FIG. 10.


Referring to FIG. 11, another embodiment of a surface cleaning apparatus 110 is shown. Surface cleaning apparatus 110 is generally similar to surface cleaning apparatus 10, and analogous features are identified using like reference characters indexed by 100.


Surface cleaning apparatus 110 comprises a dirty fluid inlet 112, a clean air outlet 114, and a fluid flow path extending therebetween. A portable cleaning unit 116 is provided in the fluid flow path. Cleaning unit 116 comprises at least one cyclonic separation stage 118 for removing dirt from air, or for removing liquid from air or to pick up liquid. Cleaning unit 116 further comprises a suction motor 120 for drawing fluid from the dirty fluid inlet 112 to the clean air outlet 114. Dirty fluid inlet 112 is provided in a member 134, which in this embodiment is a surface cleaning head.


In this embodiment the cleaning unit 116 is mounted to a wheeled base 158. Wheeled base 158 comprises a plurality of wheels 160, and a cradle 162, which receives cleaning unit 116. The portable cleaning unit 116 can be operated while seated in the cradle 162 (FIGS. 11 and 12) and can be lifted out of the cradle 162 and used as a hand carriable apparatus (FIG. 13).


Referring to FIG. 14, in this embodiment the cyclone cleaning stage 118 includes a cyclone chamber 122. Cyclone chamber 122 comprises a dirty air inlet 124, a separated or dirty material outlet 126, and a clean air outlet 128 (FIG. 14). A dirty or separated material collection chamber 130 is beside the cyclone chamber 122 and in communication with the dirty material outlet 126, for collecting material removed from the air in cyclone chamber 122.


Material collection chamber 130 may be of any configuration and may be emptied by a user in any manner known in the art. In the embodiment shown in FIG. 14, material collection chamber 130 has a bottom 131 that is openable by pivoting about a pivot pin 133. In this embodiment, material collection chamber further comprises a latch 135, for locking bottom 131 in place, and a button 137 for releasing the latch. In this embodiment the material collection chamber 130 may be movable or removable from surface cleaning apparatus 110 and from the portable cleaning unit 116, such that it may be emptied, and is removable from portable cleaning unit 116 with the associated cyclone 118 or cyclones as a sealed unit.


Referring to FIGS. 18-21, another embodiment of a surface cleaning apparatus 510 is shown. Apparatus 510 is generally similar to surface cleaning apparatus 10, and analogous features are identified using like reference characters indexed by 500.


Referring to FIG. 18, surface cleaning apparatus 510 comprises a dirty fluid inlet 512, a clean air outlet 514, and a fluid flow path extending therebetween. A portable cleaning unit 516 is provided in the fluid flow path. Cleaning unit 516 comprises at least one cyclonic separation stage 518 (FIG. 21) for removing dirt from air, or for removing liquid from air or to pick up liquid. Cleaning unit 516 further comprises a suction motor 520 (FIG. 20) for drawing fluid from the dirty fluid inlet 512 to the clean air outlet 514. Dirty fluid inlet 512 is provided in a member 534, which in this embodiment is a surface cleaning head.


In this embodiment the cleaning unit 516 is mounted to a wheeled base 558. Wheeled base 558 comprises a plurality of wheels 560, and a cradle 562 (FIG. 20), which receives cleaning unit 516. The portable cleaning unit 516 can be operated while seated in the cradle 562 (FIG. 18) and can be lifted out of the cradle 562 and used as a hand carriable apparatus (FIG. 20).


Referring to FIG. 21, in this embodiment the cyclone cleaning stage 518 includes a cyclone chamber 522. Cyclone chamber 522 comprises a dirty air inlet 524 (FIG. 19), a separated or dirty material outlet 526, and a clean air outlet 528. A dirty or separated material collection chamber 530 is beside the cyclone chamber 522 and in communication with the dirty material outlet 526, for collecting material removed from the air in cyclone chamber 522.


Material collection chamber 530 may be of any configuration and may be emptied by a user in any manner known in the art. In the embodiment shown in FIG. 21, material collection chamber 530 has a bottom 531 that is openable by pivoting about a pivot pin 533. In this embodiment, material collection chamber further comprises a latch 535, for locking bottom 531 in place, and a button 537 for releasing the latch.


Wheeled Base Construction


The following is a description of a wheeled base construction that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


Referring again to FIGS. 1-4, portable cleaning unit 16 is mounted to a wheeled base 58. Wheeled base 58 comprises a plurality of wheels 60, and a cradle 62, which receives cleaning unit 16.


In some embodiments, cleaning unit 16 may be permanently mounted to wheeled base 58, for example via one or more bolts. In other embodiments, cleaning unit 16 may be removably mounted to wheeled base 58. For example, a user may remove cleaning unit 16 from wheeled base in order to maneuver cleaning unit 16, or to empty material collection chamber 30. In such embodiments, cleaning unit 16 is portable. For example, as shown in FIGS. 5 and 6, cleaning unit 16 may be removed from wheeled base 58 by lifting cleaning unit 16 off of wheeled base 58.


In any embodiment, surface cleaning apparatus 10 may comprise a handle 64, and/or a shoulder strap 65 (shown in FIG. 8) for maneuvering cleaning unit 16 when it is removed from wheeled base 58. In some embodiments, handle 64 may be integrally formed with one or both of first 44 and second 46 housings.


Surface cleaning apparatus 10 may further comprise a locking member (not shown), such that cleaning unit 16 may be lockably received on wheeled base 58. The locking member may comprise any suitable locking member known in the art, such as, for example, a quick release latch, a friction or snap fit, a set screw, a tie down strap (e.g., a strap which may be wrapped around cleaning unit 16) or the like. The lock may be actuatable by a foot pedal. Alternately wheeled base 58 may have side wall extending up around cradle 62 within which portable cleaning unit 16 is received. It will be appreciated that cradle 64 may be any member on which portable cleaning unit 16 may be received or secured, such as a flat base with or without side walls.


In the embodiments exemplified, wheeled base 58 comprises a front wheel 66, and two rear wheels 68a, 68b. Accordingly, cradle 62 is a platform that is generally polygonal and, preferably, generally triangular in configuration. This configuration may provide increased maneuverability to surface cleaning apparatus 10. In other embodiments, wheeled base 58 may comprise another number of wheels. For example, in some embodiments, wheeled base 58 may comprise two front wheels and two rear wheels. It will be appreciated that, as exemplified, housings 44, 46 may be oriented on cradle 62 with the suction motor at the rearward end of portable cleaning unit 16 and the inlet to portable cleaning unit 16 at the forward end of the front housing. In alternate configurations, housings 44, 46 may be positioned side by side. Further, if more than two housings 44, 46 are provided, then the housings may be arranged linearly, in a triangular configuration or any other desired configuration.


In some embodiments, front wheel 66 is rotatably mounted about a vertical axis to cradle 62 (e.g., is a caster wheel), and rear wheels are non-rotatably mounted about a vertical axis. Accordingly, front wheel 66 may be steerable. In other embodiments, all of front wheel 66 and rear wheels 68 may be caster wheels, or may be non-rotatably mounted wheels.


In some embodiments, wheeled base 58 has a length greater than its width. That is, the distance L between front wheel 66 and axis 67 extending between rear wheels 68a, 68b, is greater than the distance W between rear wheels 68a, 68b, along axis 67. In other embodiments, wheeled base 58 may have a width W greater than its length L, or may have width W equal to its length L.


In the embodiments shown, front wheel 66 is of a smaller diameter than rear wheels 68a, 68b. Alternately, rear wheels 68a, 68b may be smaller than front wheel 66. Preferably, both the front and rear wheels are each relatively large. For example, in some embodiments, front wheel(s) may have a diameter of between about 0.5-4 inches, preferably 1-3 inches and more preferably 1.5-2.5 inches. In some embodiments, rear wheels may have a diameter of between about 0.5-4 inches, preferably 1-3 inches and more preferably 1.5-2.5 inches. In one particular embodiment, both front wheel(s) 66 and rear wheels 68a, 68b have a diameter in the same range. Such embodiments may be advantageous to provide surface cleaning apparatus 10 with increased maneuverability and with increased stability.


In the embodiments shown, wheeled base 58 is configured such that, when cleaning unit 16 is mounted on cradle 62, rear wheels 58 are positioned outwardly of cleaning unit 16. That is, rear wheels 58 are separated by a distance W that is greater than the width W′ of cleaning unit 16. Such embodiments may provide surface cleaning apparatus 10 with a wider stance, and accordingly with increased stability. Additionally, because rear wheels 68 are positioned outwardly of cleaning unit 16, rear wheels 68 may be provided with an increased diameter, as previously mentioned, without increasing the distance between cleaning unit 16 and a surface such as a floor. Accordingly, the center of mass of cleaning unit 16 may remain low, which further increases the stability of surface cleaning apparatus 10.


In some embodiments, wheeled base 58 may comprise operating components of surface cleaning apparatus 10, such as a suction motor (see FIG. 17). For example, wheeled base may comprise a portion that is provided in the fluid flow path, and includes a filter assembly (not shown). In other embodiments, as exemplified, wheeled base 58 may not comprise any operating components (i.e. wheeled base has an absence of operating components).


In the embodiments shown, cleaning unit 16 is oriented such that dirty fluid inlet 12 is provided at a front end 70 of surface cleaning apparatus 10, adjacent front wheel 66, and suction motor 20 is provided at a rear end 72 of surface cleaning apparatus 10, adjacent rear wheels 68. In other embodiments, cleaning unit 16 may be otherwise oriented. For example, suction motor 20 may be provided at front end 70, and dirty fluid inlet 12 may be provided at rear end 72. Alternatively, cleaning unit 16 may be oriented such that suction motor 20 and dirty fluid inlet 12 are equally spaced from front wheel 66 and rear wheels 68. That is, cleaning unit 16 may be positioned substantially sideways in wheeled base 58.


In some embodiments, portable cleaning unit 16 may be connected to a remote surface cleaning head by connected in air flow communication with the wheeled base, wherein the remote surface cleaning head may be connected or removably connected in air flow communication with the wheeled base. Accordingly, when portable cleaning unit 16 is placed on the wheeled base, it may be automatically connected in air flow communication with the wheeled base (see for example FIGS. 15, 17 and 19) or the user may have to connect portable cleaning unit 16 in air flow communication with the wheeled base, such as by connecting a hose of portable cleaning unit 16 in air flow communication with an air outlet of the wheeled base (see for example FIGS. 5 and 6).


As exemplified in FIGS. 5 and 6, wheeled base 62 may comprise a floor cleaning mount 82 coupled to cradle 62. A first end 84 of mount 82 is configured for receiving member 34, which, in the embodiments exemplified in FIGS. 1-6, is a hose. A second end 86 of mount 82 is configured for receiving another member, for example a remote surface cleaning head that is preferably at the distal end of a wand and a flexible hose extends between the wand and mount 82 (not shown). It will be appreciated that portable cleaning unit 16 may be designed such that the inlet of the portable cleaning unit automatically is connected in flow communication with mount 82 when portable cleaning unit 16 is positioned on wheeled base 58, such as by use of an inlet port aligned with first end 84 or a rigid pipe that is fittable thereon. Alternately, as exemplified, a flexible hose 34 that is manually insertable may be used. An advantage of this design is that the attachment member for a wand or the like is provided on the platform and not the portable cleaning unit. Therefore, the wand may be used to pull wheeled base 58 without risk of pulling portable cleaning unit 16 off of wheeled base 58. Further, preferably the attachment point is close to the floor, preferably at the level of cradle 62, thereby lowering the point at which wheeled base 58 may be pulled and increasing the stability of wheeled base 58 when it is being pulled.


It will be appreciated that in the portable mode, a wand or flexible hose and wand, or other member known in the art may be attached to hose 34 or hose 34 may be removed and the wand or flexible hose and wand, or other member known in the art may be attached directly to the inlet to housing 44.


In some embodiments, one or more accessories, such as cleaning brush 74 and wand extension 76 may be secured to the upper surface of lid 45, such as by means of mounts 78. Accordingly, extension 76 may be configured to function as a handle (e.g. central section 76 may be arcuate in shape or be spaced from lid 45), to define an opening 80 between the upper surface of lid 34 such that extension 76 of brush 74 may be a carry handle 64 for the vacuum cleaner. Alternately, extension 76 may be configured to seat on handle 64 and permit handle 64 to be used when brush 74 is mounted on portable cleaning unit 16. In other embodiments, one or more accessories may be provided in a recess in the lower surface of portable cleaning unit 16 or in an upper surface of wheeled base 58.


Removable Dirt Chamber


The following is a description of a portable cleaning unit having a removable dirt chamber that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


As exemplified in FIG. 14, the cyclone chamber 118 and material collection chamber 130 may be constructed as a one piece assembly and are referred to collectively as a cyclone bin assembly 188. In accordance with this aspect, cyclone bin assembly 188 may be removed from the portable surface cleaning unit 116 when the portable surface cleaning unit 116 is seated on the base 158 (FIGS. 14 and 19) and when the portable surface cleaning unit 116 is separated from the base 158 (FIG. 13). This may allow a user to remove only the cyclone bin assembly 188, for example for emptying, regardless of whether the surface cleaning unit 116 is docked on the base 158.


As exemplified in FIGS. 18-21, the material collection chamber 530 may be movable or removable from surface cleaning apparatus 510 and from the portable cleaning unit 516, such that it may be emptied, and is removable from portable cleaning unit 516 with the associated cyclone 518 or cyclones as a sealed unit.


In the illustrated embodiment, the cyclone chamber 518 and material collection chamber 530, referred to collectively as a cyclone bin assembly 588, can be removed from the portable surface cleaning unit 516 when the portable surface cleaning unit 516 is seated on the base 558 (FIG. 19) and when the portable surface cleaning unit 516 is separated from the base 558 (FIG. 20). This may allow a user to remove only the cyclone bin assembly 588, for example for emptying, regardless of whether the surface cleaning unit 516 is docked on the base 558.


Referring to FIG. 18, in the illustrated embodiment, when the surface cleaning unit 516 is mounted on the base 558 the air flow path between the surface cleaning head 534 and the suction motor in the surface cleaning unit 516 includes a rigid conduit 589, a flexible hose 590a.


In this embodiment, the first hose 190a is connected to the surface cleaning unit 516 and extends between a downstream end 592a (with reference to the direction of airflow through the hose 590a) that is connected to the surface cleaning unit 516 and the rigid conduit 589. In this configuration, when the surface cleaning unit 516 is removed from the base 558 the hose 590a comes with the surface cleaning unit 516 (FIG. 20).


It will be appreciated that, in alternate embodiments, material collection chamber 130 may be a separate unit and may be removable without the cyclone chamber. Alternately, or in addition, material collection chamber 130 may be removed with the handle of the portable cleaning unit. An advantage of this design is that the handle of the portable cleaning unit may be useable to manipulate the material collection chamber 130 or cyclone bin assembly when removed for emptying.


Automatic Portable Cleaning Unit Hose Connection


The following is a description of automatically connecting a hose of the portable cleaning unit in air flow communication with the base when the portable cleaning unit is placed on the base that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


Referring to FIG. 12, in the illustrated embodiment, when the surface cleaning unit 116 is mounted on the base 158, the air flow path between the remote surface cleaning head 134 and the suction motor in the surface cleaning unit 116 includes a rigid conduit or wand 189, a first flexible hose 190a and a second flexible hose 190b (see also FIG. 14) positioned downstream from the first hose 190a.


The first hose 190a extends from its upstream that is connected to rigid conduit 189 to its downstream end 192a (with reference to the direction of airflow through the hose 190a) that is connected to the base 158. The first hose 190a has a diameter 191a. While the first hose 190a may be removably connectable to the base 158, first hose 109a remains attached to the base 158 regardless of the position of the surface cleaning unit 116 (FIGS. 12 and 14).


Referring to FIG. 13, the second hose 190b is attached to and is removable with the surface cleaning unit 116. A downstream end 192b of the hose 190b is attached to the air inlet 124 of the cyclone chamber 118 and the upstream end 193b is removably connectable in air flow communication with the air outlet of the base 158 (e.g., opening 195 of coupling 194). When the surface cleaning unit 116 is removed from the base 158, the upstream or inlet end 193b of the hose 190b can be used as a second or auxiliary dirty air inlet for drawing fluid and debris into the air flow path. Optionally, auxiliary cleaning tools may be attached to the inlet end 193b of the hose 190b. In this configuration, the first hose 190a does not form part of the airflow path to the surface cleaning unit 116.


The second hose 190b is shown in a wrapped or storage position in FIG. 13 in which it is wrapped around part of the surface cleaning unit 116. When the surface cleaning unit 116 is in use as a portable cleaning unit the second hose 190b can be unwound and extended. Preferably, the second hose 190b is extensible to increase its cleaning range. The second hose 190b has a diameter 191b, which optionally may be smaller than diameter 191a. This may help reduce the overall size of the surface cleaning unit 116 and may help it nest on the base 158. However, it is preferred that they have the same or similar diameters so as to provide an air flow path that has a generally constant diameter. The hoses 190a and 190b may be generally similar. Alternatively, they may have different properties. For example, the first hose 190a may be non-extensible and relatively stiff (to allow a user to pull the hose 190a to advance the base 158 across the surface) and the second hose 190b may be extensible and less stiff.


Referring to FIG. 12, when the surface cleaning unit 116 is seated on the base 158, the inlet end 193b of the second hose 190b is connected in air flow communication with the downstream end 192a of the first hose 190a, using coupling 194, thereby re-establishing air flow communication between the cleaning head 134 and the surface cleaning unit 116.


Referring to FIG. 13, the coupling 194 may be any suitable connector, and in the example illustrated, is an elbow-type connector with a downstream opening 195 surrounded by a sealing face 196. The surface cleaning unit 116 may be configured such that the upstream end 193b of the second hose 190b is aligned with the opening 195 and seals against seal face 196 to establish the air flow path when the surface cleaning unit 116 is placed on base 158. Accordingly, sealing face 196 is sealed by the inlet end 193b automatically when the surface cleaning unit 116 is inserted vertically onto the base 158.


In order to provide a seal, one or both of base 158 and surface cleaning unit 116 may be configured to provide sufficient abutment therebetween so that an air tight seal is created. As exemplified in FIG. 13, the rear face of coupling 194 is angled and a mating angled surface may be provided on portable cleaning unit 116. Accordingly, when portable cleaning unit is placed on base 158, portable cleaning unit is urged rearwardly and the rear end of portable cleaning unit 116 may abut the rear wall of base 158 thereby pressing the upstream end 193b of the second hose 190b against the opening 195 and optionally compressing a gasket or the like to create an air tight seal.


If the cyclone bin assembly is removable, then the remaining body of portable cleaning unit 116 may also or alternately be angled to press the cyclone inlet 524 against opening 195 (see for example FIG. 19).


Valve to Switch Between Hoses


The following is a description of alternate air flow paths that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


In accordance with this aspect, the portable cleaning unit may incorporate a hose which is different to first hose 190a. For example, it may have a smaller diameter. Accordingly, it may be preferred not to use such a hose in the air flow path when portable cleaning unit 116 is mounted on the base since the smaller diameter hose would reduce air flow and increase the back pressure. However, the smaller diameter hose may be lighter and easier to use in a portable mode (i.e., when surface cleaning unit 116 is removed from base 158). In such a case, a valve may be provided to selective connect the cyclone air inlet with the different hoses or air flow paths. The valve may be manually operable or automatically operable. For example, the valve may be actuated automatically when the surface cleaning unit 116 is removed from the base or when the smaller diameter hose is deployed from a storage position for use.


Accordingly, if second hose 190b has a smaller diameter into the air flow path when the surface cleaning unit 116 is docked, a user may optionally detach the downstream end 192b of the second hose 190a from the air inlet 124 (thereby removing the second hose 190b from the air flow circuit) and can reposition the downstream end 192a of the hose 190a to be connected directly to the inlet 124. Alternately, inlet 124 could be automatically connected in air flow communication with opening 195 when surface cleaning unit 116 is placed on base 158.


Optionally, instead requiring a user to reconfigure a hose, the surface cleaning apparatus may include a valve positioned in the air flow path that allows the air flow to be switched between the first and second hoses. In this configuration, both hoses can remain attached to their respective components, and the air flow path to the surface cleaning unit 116 can include either of the first and second hoses. Optionally, one of the hoses may be detachable and connectable to the other of the hoses, such that one large hose is created and forms the air flow path to the surface cleaning unit.


Referring to FIGS. 15 and 16, a schematic representation of another embodiment of a surface cleaning apparatus 210 is illustrated. Surface cleaning apparatus 210 is generally similar to apparatus 10, and analogous features are identified using like reference characters indexed by 200.


In this embodiment, the surface cleaning unit 216 includes a valve 297 provided in the air flow path, upstream from the air inlet of the cyclone chamber 218. The valve is connected to the downstream end 292b of the second hose 290b, and the valve 297 and second hose 290b are removable with the surface cleaning unit 216 (FIG. 16). When the surface cleaning unit 216 is seated on base 258, the valve can connect to coupling 294 automatically or manually. An actuating lever 298 allows a user to change to position of the valve 297 so that, when the surface cleaning unit 216 is docked, the first hose 290a is connected in air flow communication with the surface cleaning unit 216 and the second hose 290b is sealed (but remains attached and does not require re-configuration). Optionally, the valve 297 can be automatically actuated when the surface cleaning unit 216 is placed on or removed from the base 258 to adjust the air flow path accordingly.


Use of Dual Suction Motors


The following is a description of the use of dual suction motors that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


Optionally, the base of the surface cleaning apparatus may include some operating components of the surface cleaning apparatus, including, for example a suction motor, the power cord and a cord reel. Providing components in the base may help reduce the weight and/or overall size of the portable surface cleaning unit.


Referring to FIG. 17, a schematic representation of another embodiment of a surface cleaning apparatus 310 is shown. The surface cleaning apparatus 310 is generally similar to surface cleaning apparatus 10, and analogous features are identified using like reference characters indexed by 300.


In the illustrated embodiment, the surface cleaning apparatus 310 includes a base 358 and a surface cleaning unit 316 that can be mounted on the base 358 (as illustrated), and can be detached to be used separately from the base 358.


The surface cleaning unit 316 includes a cyclone bin assembly 388 that has a cyclone chamber 318 and a dirt collection chamber 330. The cyclone chamber 318 has an air inlet 324 and an air outlet 328. A dirt outlet in the form of a slot 326 provides communication between the cyclone chamber 318 and the dirt collection chamber 330.


A first suction motor 320a is provided in the surface cleaning unit 316. An air flow conduit 400 provides an air flow path between the air outlet of the pre-motor filter housing and the suction motor 320a. Accordingly, a pre-motor filter 338 is provided in the air flow path between the air outlet 328 of the cyclone chamber 318 and the motor 320a.


In the illustrated embodiment the electrical cord 401 is wound around a cord reel 402 that is provided in the base 358. In addition, a second suction motor 320b is provided in the base 358 and is in electrical communication with the power cord 401 such that the second suction motor 358 can be powered by an external power supply (e.g. a wall socket). A base conduit 403 provides air flow communication between the second suction motor 320b and a port 404 on the upper surface of the base 358.


When the surface cleaning unit 316 is mounted on the base 358, a mating port 406 on the surface cleaning unit 316 may connect to and seal the port 404. Preferably, a valve 407 (e.g. any suitable valve such as a two position valve and a ball valve) is provided, e.g., in the air flow path between the filter 338 and the motor 320a. The valve 407 is also in air flow communication with the port 406, and is operable to selectively connect either port 406 or conduit 400 in airflow communication with the cyclone bin assembly 388. When conduit 400 is connected, suction motor 320a may be used draw air through the surface cleaning unit 316 (and preferably motor 320b is not). When port 406 is connected, suction motor 320b may be used to draw air through the surface cleaning unit 316 (and preferably motor 320a is not). Preferably, the valve 407 is configured (for example via a biasing member or linkage member) so that when the surface cleaning unit 316 is lifted off the base 358 the valve 407 automatically seals port 406 and connects conduit 400.


It will be appreciated that valve may be actuatable by other means, such as a member that is drivingly connected to the valve and the member is operable as the surface cleaning unit is paced and or removed from base 358. It will be appreciated that motor 320b may be connected in air flow communication at an alternate location. For example, it could be downstream of motor 320a. Alternately, it could be a dirty air motor and located upstream of cyclone chamber 318.


Because the electrical cord 401 is provided in the base 358, when the surface cleaning unit 316 is detached from the base 358, it may no longer be connected to the external power source (e.g. wall socket). To provide power to the surface cleaning unit 316 when it is detached, the surface cleaning unit 316 includes an on-board energy storage member, e.g., one or more batteries 405. Alternatively, any other suitable energy storage member or power source can be used (fuel cell, combustion engine, solar cells, etc.). In the illustrated example, the batteries 405 provide DC power. In this configuration, when the surface cleaning unit 316 is detached from base 358, the suction motor 320a may operate using DC power, and may operate solely on the power supplied by batteries 405.


Optionally, when the surface cleaning unit 316 is re-attached to the base 358, power from the base 358 can be transferred to the surface cleaning unit 316, for example via detachable electrical connector 408. Preferably, if an electrical connector 408 is provided the power received from the base 358 can be used to charge the batteries 405 to help ensure the batteries 405 are charged when the surface cleaning unit 316 is removed.


Alternatively, there need not be an electrical connection between the base 358 and the surface cleaning unit 316. In such a configuration the batteries 405 may be charged via an alternate power source, or may be replaced with fresh batteries as needed. For example, the surface cleaning unit 116 may be provided with its own power cord, or the power cord 401 may be removable from base 358 and may be plugged into surface cleaning unit 116.


Optionally, the suction motor 320a may be smaller and/or less powerful than the suction motor 320b. Making the suction motor 320a smaller and lighter than suction motor 320b may help reduce the overall size and weight of the surface cleaning unit 316. For example, the suction motor 320b may be a 1000 watt motor, and the suction motor 320a may be a 600 watt motor. Reducing the power consumption of the suction motor 320a may also help prolong the amount of cleaning time that can be achieved using the batteries 405, before they need to be replaced and/or recharged.


In the illustrated embodiment, because suction motor 320b is in the base 358 with the electrical cord, it may be an AC motor that can run on AC power received from a wall socket. Motor 320a may be operated on DC power supplied by the batteries 405.


In this configuration, a user may be able to select which suction motor 320a or 320b is to be used when the surface cleaning unit 316 is docked. For example, if performing a small job or if it is desirable to keep the noise level low a user may activate the smaller suction motor 320a. Alternatively, if performing a large job a user may select to use the suction motor 320b by activating the motor 320b and positioning the valve 407 as appropriate.


Dual Operational Mode for a Portable Surface Cleaning Unit


The following is a description of the use of a dual operational mode for a portable surface cleaning unit that may be used by itself in any surface cleaning apparatus or in any combination or sub-combination with any other feature or features disclosed herein.


Alternately, or in addition to providing a motor 320b in the base 358, the suction motor 320a in the surface cleaning unit may be operable on current supplied by an on board energy storage member (e.g., batteries 405) when removed from base 358 and may be operable on current supplied from base 358 when mounted thereon.


Accordingly, when removed from the base 358, motor 320a may be operable on DC current supplied from batteries 405. However, when mounted on the base 358 and electrical code 401 is plugged into an electrical outlet, current may be supplied from base 358 to motor 320a. The current may be AC, in which case, motor 320a may be operable on both AC and DC current (e.g., it has dual windings) or the AC current may be converted to DC current (such as by providing a power supply in one or both of the base 358 and the surface cleaning unit 116).


Accordingly, for example, as shown in FIG. 17, an electrical connector 408 may be used to power the suction motor 320a when the surface cleaning apparatus is docked on the base 358. In this configuration the suction motor 320a may be configured to also run on AC power or a power supply or converter module 409 may be provided to convert the incoming AC power to DC power. Optionally, the convertor module 409 may be in the base 358 so that the connector 408 is provided with DC power.


It will be appreciated that the suction motor of the portable cleaning unit may be operable on different power levels. It may be operable on a first or higher power level when mounted to the base and operable on power supplied from the base (which may be AC or DC). It may be operable on a lower power level when removed from the base.


It will be appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments or separate aspects, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment or aspect, may also be provided separately or in any suitable sub-combination.


What has been described above has been intended to be illustrative of the invention and non-limiting and it will be understood by persons skilled in the art that other variants and modifications may be made without departing from the scope of the invention as defined in the claims appended hereto. The scope of the claims should not be limited by the preferred embodiments and examples, but should be given the broadest interpretation consistent with the description as a whole.

Claims
  • 1. A hand carriable surface cleaning apparatus comprising: a) a fluid flow path extending between a dirty air inlet and a clean air outlet;b) a first cyclonic cleaning stage positioned in the fluid flow path downstream from the dirty air inlet, the first cyclonic cleaning stage comprising an upper end, a bottom end spaced longitudinally below the upper end and a side wall extending therebetween, the first cyclonic cleaning stage having a dirt collection region with a bottom door that is openable to empty the dirt collection region;c) a second cyclonic cleaning stage positioned in the fluid flow path downstream from the first cyclonic cleaning stage, the second cyclonic cleaning stage having an upper end which is positioned above the upper end of the first cyclonic cleaning stage, the second cyclonic cleaning stage is longitudinally moveable relative to all of the sidewall of the first cyclonic cleaning stage;d) a suction motor positioned in the fluid flow path downstream from the second cyclonic cleaning stage; and,e) a handle;wherein the second cyclonic cleaning stage comprises a plurality of second cyclones connected fluidly in parallel with each other,wherein the second cyclones are positioned around a central longitudinal axis that extends through the first cyclonic cleaning stage and the openable bottom door, andwherein the plurality of second cyclones includes a first set of second cyclones arranged in an inner ring and a second set of second cyclones arranged in an outer ring laterally surrounding the inner ring.
  • 2. The hand carriable surface cleaning apparatus of claim 1, further comprising a housing containing the suction motor and the clean air outlet, wherein the bottom door is openable while the sidewall of the first cyclonic cleaning stage is connected to the housing.
  • 3. The hand carriable surface cleaning apparatus of claim 1, wherein the upper end of the second cyclonic cleaning stage overlies the entire upper end of the first cyclonic cleaning stage.
  • 4. The hand carriable surface cleaning apparatus of claim 1, wherein the second cyclonic cleaning stage is moveable relative to the sidewall while the bottom door is open.
  • 5. The hand carriable surface cleaning apparatus of claim 1, further comprising a pre-motor filter chamber positioned in the fluid flow path between the second cyclonic cleaning stage and the suction motor, and wherein each second cyclone has a respective air outlet that is in fluid communication with the pre-motor filter chamber.
  • 6. The hand carriable surface cleaning apparatus of claim 1, wherein each second cyclone comprises a respective cyclone axis about which air circulates within the second cyclone, wherein the cyclone axes are generally longitudinal.
  • 7. The hand carriable surface cleaning apparatus of claim 1, wherein the dirty air inlet comprises a conduit extending forwardly from the first cyclonic cleaning stage, and wherein the second cyclonic cleaning stage is longitudinally moveable relative to the conduit.
  • 8. The hand carriable surface cleaning apparatus of claim 7, wherein the dirty air inlet is located at a front end of the hand carriable surface cleaning apparatus and the upper end of the second cyclonic cleaning stage is located above the dirty air inlet.
  • 9. The hand carriable surface cleaning apparatus of claim 7, wherein the conduit defines an axis that intersects the first cyclonic cleaning stage.
  • 10. The hand carriable surface cleaning apparatus of claim 1, further comprising an openable lid that is moveable between a closed position, in which the lid overlies the second cyclonic cleaning stage, and an open position in which the second cyclonic cleaning stage is accessible.
  • 11. The hand carriable surface cleaning apparatus of claim 1, wherein the second cyclonic cleaning stage is removable from the first cyclonic cleaning stage.
  • 12. A hand carriable surface cleaning apparatus comprising: a) a fluid flow path extending between a dirty air inlet and a clean air outlet;b) a first cyclonic cleaning stage positioned in the fluid flow path downstream from the dirty air inlet, the first cyclonic cleaning stage comprising an upper end, a bottom end spaced longitudinally below the upper end and a side wall extending therebetween, the first cyclonic cleaning stage having a dirt collection region with a bottom door that is openable to empty the dirt collection region;c) a second cyclonic cleaning stage positioned in the fluid flow path downstream from the first cyclonic cleaning stage, the second cyclonic cleaning stage having an upper end which is positioned above the upper end of the first cyclonic cleaning stage, the second cyclonic cleaning stage is longitudinally moveable relative to all of the sidewall of the first cyclonic cleaning stage;d) a suction motor positioned in the fluid flow path downstream from the second cyclonic cleaning stage; and,e) a handle;wherein the first cyclonic cleaning stage has a first stage air inlet, each cyclone of the second cyclonic cleaning stage has a second stage air inlet downstream from the first stage air inlet and the hand carriable surface cleaning apparatus further comprises a screen positioned in the fluid flow path between the first stage air inlet and the second stage air inlet, wherein the screen is longitudinally moveable relative to the sidewall.
  • 13. A hand carriable surface cleaning apparatus comprising: a) a fluid flow path extending between a dirty air inlet and a clean air outlet;b) a first cyclonic cleaning stage positioned in the fluid flow path downstream from the dirty air inlet, the first cyclonic cleaning stage comprising an upper end, a bottom end spaced longitudinally below the upper end and a side wall extending therebetween, the first cyclonic cleaning stage having a dirt collection region with a bottom door that is openable to empty the dirt collection region;c) a second cyclonic cleaning stage positioned in the fluid flow path downstream from the first cyclonic cleaning stage, the second cyclonic cleaning stage having an upper end which is positioned above the upper end of the first cyclonic cleaning stage, the second cyclonic cleaning stage is longitudinally moveable relative to all of the sidewall of the first cyclonic cleaning stage;d) a suction motor positioned in the fluid flow path downstream from the second cyclonic cleaning stage; and,e) a handle;wherein the second cyclonic cleaning stage further comprises a second stage handle.
  • 14. A hand carriable surface cleaning apparatus comprising: a) a fluid flow path extending between a dirty air inlet and a clean air outlet;b) a first cyclonic cleaning stage positioned in the fluid flow path downstream from the dirty air inlet, the first cyclonic cleaning stage comprising an upper end, a bottom end spaced longitudinally below the upper end and a side wall extending therebetween, the first cyclonic cleaning stage having a dirt collection region with a bottom door that is openable to empty the dirt collection region;c) a second cyclonic cleaning stage positioned in the fluid flow path downstream from the first cyclonic cleaning stage, the second cyclonic cleaning stage having an upper end which is positioned above the upper end of the first cyclonic cleaning stage, the second cyclonic cleaning stage is longitudinally moveable relative to all of the sidewall of the first cyclonic cleaning stage;d) a suction motor positioned in the fluid flow path downstream from the second cyclonic cleaning stage; and,e) a handle;wherein the first cyclonic cleaning stage comprises a first cyclone chamber and a first dirt collection chamber that comprises the dirt collection region and is external to the first cyclone chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 USC 120 as a continuation application of co-pending U.S. patent application Ser. No. 14/875,381 which was filed on Oct. 5, 2015, which Itself is a continuation of U.S. patent application Ser. No. 13/782,217, filed on Mar. 1, 2013, which issued as U.S. Pat. No. 9,192,269 on Nov. 24, 2015, which itself is a continuation in part of U.S. patent application Ser. No. 13/720,754, filed on Dec. 19, 2012, which issued as U.S. Pat. No. 8,752,239 on Jun. 17, 2014, which itself is a divisional application of U.S. patent application Ser. No. 11/954,331, filed on Dec. 12, 2007, which issued as U.S. Pat. No. 8,359,705 on Jan. 29, 2013, which itself claims priority from U.S. Provisional Patent application 60/870,175 (filed on Dec. 15, 2006), and 60/884,767 (filed on Jan. 12, 2007), all of which are incorporated herein by reference in their entirety.

US Referenced Citations (41)
Number Name Date Kind
3425192 Davis Feb 1969 A
6228260 Conrad May 2001 B1
6334234 Conrad et al. Jan 2002 B1
6406505 Oh et al. Jun 2002 B1
6782585 Conrad et al. Aug 2004 B1
7113847 Chmura et al. Sep 2006 B2
7294159 Oh Nov 2007 B2
7377007 Best May 2008 B2
7488362 Jeong et al. Feb 2009 B2
7587878 Kim Sep 2009 B2
7645309 Jeong et al. Jan 2010 B2
7803207 Conrad Sep 2010 B2
7815702 Hyun Oct 2010 B2
7867308 Conrad Jan 2011 B2
7887612 Conrad May 2011 B2
8100999 Ashbee et al. Jan 2012 B2
8146201 Conrad Apr 2012 B2
8156609 Milne et al. Apr 2012 B2
8302250 Dyson et al. Nov 2012 B2
8347455 Dyson et al. Jan 2013 B2
8444731 Gomiciaga-Pereda et al. May 2013 B2
20060137304 Jeong et al. Jun 2006 A1
20060137309 Jeong Jun 2006 A1
20060254226 Jeon Nov 2006 A1
20070143953 Hwang et al. Jun 2007 A1
20070271724 Haekan et al. Nov 2007 A1
20070289267 Makarov et al. Dec 2007 A1
20080178416 Conrad Jul 2008 A1
20080256744 David et al. Oct 2008 A1
20090113663 Follows et al. May 2009 A1
20090282639 James et al. Nov 2009 A1
20090307864 Dyson Dec 2009 A1
20100045215 Hawker et al. Feb 2010 A1
20110219570 Conrad Sep 2011 A1
20130091660 Smith Apr 2013 A1
20130091661 Smith Apr 2013 A1
20130091812 Smith Apr 2013 A1
20130091813 Smith Apr 2013 A1
20140237768 Conrad Aug 2014 A1
20150359394 Peace Dec 2015 A1
20160367094 Conrad Dec 2016 A1
Foreign Referenced Citations (40)
Number Date Country
1336154 Feb 2002 CN
1875846 Dec 2006 CN
1875855 Dec 2006 CN
1969739 May 2007 CN
1981688 Jun 2007 CN
101061932 Oct 2007 CN
101108081 Jan 2008 CN
101108106 Jan 2008 CN
101108110 Jan 2008 CN
101448447 Jun 2009 CN
101489453 Jul 2009 CN
101489455 Jul 2009 CN
101489457 Jul 2009 CN
101489461 Jul 2009 CN
101657133 Feb 2010 CN
102188208 Sep 2011 CN
102256523 Nov 2011 CN
202173358 Mar 2012 CN
202277306 Jun 2012 CN
103040412 Apr 2013 CN
103040413 Apr 2013 CN
103169420 Jun 2013 CN
112007003039 Oct 2009 DE
112007003052 Jan 2010 DE
20050091824 Sep 2005 KR
20050091826 Sep 2005 KR
20050091829 Sep 2005 KR
20050091830 Sep 2005 KR
20050091833 Sep 2005 KR
20050091834 Sep 2005 KR
20050091835 Sep 2005 KR
20050091836 Sep 2005 KR
20050091837 Sep 2005 KR
20050091838 Sep 2005 KR
20050103343 Oct 2005 KR
20050104613 Nov 2005 KR
20050104614 Nov 2005 KR
20060018004 Feb 2006 KR
2005084511 Sep 2005 WO
2008035032 Mar 2008 WO
Non-Patent Literature Citations (44)
Entry
English machine translation of CN1336154A published as of Feb. 20, 2002.
English machine translation of CN1875846A published as of Dec. 13, 2006.
English machine translation of CN1875855A published as of Dec. 13, 2006.
English machine translation of CN1969739A published as of May 30, 2007.
English machine translation of CN1981688A published as of Jun. 20, 2007.
English machine translation of CN101061932A published as of Oct. 31, 2007.
English machine translation of CN101108081A published as of Jan. 23, 2008.
English machine translation of CN101108106A published as of Jan. 23, 2008.
English machine translation of CN101108110A published as of Jan. 23, 2008.
English machine translation of CN101448447A published as of Jun. 3, 2009.
English machine translation of CN101489453A published as of Jul. 22, 2009.
English machine translation of CN101489455A published as of Jul. 22, 2009.
English machine translation of CN101489457A published as of Jul. 22, 2009.
English machine translation of CN101489461A published as of Jul. 22, 2009.
English machine translation of CN101657133A published as of Feb. 24, 2010.
English machine translation of CN102188208A published as of Sep. 21, 2011.
English machine translation of CN102256523A published as of Nov. 23, 2011.
English machine translation of CN103040412A published as of Apr. 17, 2013.
English machine translation of CN103040413A published as of Apr. 17, 2013.
English machine translation of CN103169420A published as of Jun. 26, 2013.
English machine translation of CN202173358U published as of Mar. 28, 2012.
English machine translation of CN202277306U published as of Jun. 20, 2012.
English machine translation of DE112007003039T5 published as of Oct. 29, 2009.
English machine translation of DE112007003052T5 published as of Jan. 14, 2010.
English machine translation of KR1020050091824A published as of Sep. 15, 2005.
English machine translation of KR1020050091826A published as of Sep. 15, 2005.
English machine translation of KR1020050091829A published as of Sep. 15, 2005.
English machine translation of KR1020050091830A published as of Sep. 15, 2005.
English machine translation of KR1020050091833A published as of Sep. 15, 2005.
English machine translation of KR102000091834A published as of Sep. 15, 2005.
English machine translation of KR1020050091835A published as of Sep. 15, 2005.
English machine translation of KR1020050091836A published as of Sep. 15, 2005.
English machine translation of KR1020050091837A published as of Sep. 15, 2005.
English machine translation of KR1020050091838A published as of Sep. 15, 2005.
English machine translation of KR1020050103343A published as of Oct. 31, 2005.
English machine translation of KR1020050104613A published as of Nov. 3, 2005.
English machine translation of KR1020050104614A published as of Nov. 3, 2005.
English machine translation of KR1020060018004A published as of Feb. 28, 2006.
U.S. Appl. No. 13/720,754, now U.S. Pat. No. 8,752,239.
U.S. Appl. No. 13/782,039, now U.S. Pat. No. 9,119,513.
U.S. Appl. No. 13/782,217, now U.S. Pat. No. 9,192,269.
U.S. Appl. No. 14/875,381, now U.S. Pat. No. 9,545,181.
U.S. Appl. No. 15/076,959.
U.S. Appl. No. 15/446,587.
Related Publications (1)
Number Date Country
20160287041 A1 Oct 2016 US
Provisional Applications (2)
Number Date Country
60884767 Jan 2007 US
60870175 Dec 2006 US
Divisions (1)
Number Date Country
Parent 11954331 Dec 2007 US
Child 13720754 US
Continuations (2)
Number Date Country
Parent 14875381 Oct 2015 US
Child 15181537 US
Parent 13782217 Mar 2013 US
Child 14875381 US
Continuation in Parts (1)
Number Date Country
Parent 13720754 Dec 2012 US
Child 13782217 US