This disclosure relates to the field of surface cleaning apparatus. In some aspects, this disclosure relates to a type of stick vacuum cleaner wherein a hand vacuum cleaner is removably mounted to a drive handle and provides motive power to draw dirty air into the surface cleaning head.
Various types of surface cleaning apparatus are known. These include upright vacuum cleaner, stick vacuum cleaners, hand vacuum cleaners and canister vacuum cleaners. Stick vacuum cleaners and hand vacuum cleaners are popular as they tend to be smaller and may be used to clean a small area or when a spill has to be cleaned up. Hand vacuum cleaners or handvacs are advantageous as they are lightweight and permit above floor cleaning and cleaning in hard to reach locations. However, they have a limited dirt collection capacity. Upright vacuum cleaners enable a user to clean a floor and may be have a pod that is removably attached for above floor cleaning. In such cases, the pod comprises, e.g., a cyclone, a dirt collection chamber and the suction motor for the upright vacuum cleaner. However, such the pods tend to be bulky since they comprise the total dirt collection capacity for the upright vacuum cleaner.
In accordance with one aspect of this disclosure, an air treatment assembly for a surface cleaning apparatus, such as a hand vacuum cleaner has an air treatment chamber (such as a cyclone chamber) and an external dirt collection chamber wherein dirt separated in the air treatment chamber travels to the dirt collection chamber via a dirt outlet of the air treatment chamber. A sidewall of the air treatment chamber separates the air treatment chamber and the dirt collection chamber. An end of the air treatment assembly is openable (e.g., the front end of the air treatment assembly if the air treatment assembly is part of a hand vacuum cleaner). When the openable end is moved to the open position, both the air treatment chamber and the dirt collection chamber are opened and at least a portion of the sidewall separating the air treatment chamber and the dirt collection chamber is moved as part of the openable end. Optionally, a portion of the sidewall that extends to the dirt outlet is opened such that the dirt outlet is also opened when the openable end is moved to the open position is openable. An advantage of this design is that the air treatment chamber and the dirt collection chamber may be more easily emptied and any debris that may bridge the dirt outlet, and thereby partially or fully block the dirt outlet, may be more easily removed. For example, elongated debris such as hair that may be extend through the dirt outlet and be difficult to dislodge from the dirt outlet may be more easily removed than if only the dirt collection chamber is opened.
In accordance with this aspect, there is provided a hand vacuum cleaner comprising:
In some embodiments, the dirt outlet may be provided in the sidewall.
In some embodiments, the cyclone air inlet may be provided at the cyclone chamber front end and the cyclone air outlet may be provided at the cyclone chamber rear end.
In some embodiments, the dirt outlet may be provided in the sidewall.
In some embodiments, the dirt outlet may comprise an opening in the sidewall that extends axially inwardly into the cyclone chamber from the cyclone chamber rear end wall.
In some embodiments, the hand vacuum cleaner may further comprise an inlet conduit, the dirty air inlet may be located at an inlet end of the inlet conduit and the inlet conduit may be part of the front end of the cyclone bin assembly.
In some embodiments, the dirt collection chamber front end may be positioned axially forwardly from the cyclone chamber front end whereby the cyclone axis of rotation extends through a portion of the dirt collection chamber that is located axially outwardly from the cyclone chamber front end.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted to a rear end of the cyclone bin assembly.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted at a location of the rear end wall of the cyclone chamber.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted to a rear end of the cyclone bin assembly at a location midway along an axial length of the cyclone bin assembly.
In accordance with this aspect, there is also provided a surface cleaning apparatus comprising:
In some embodiments, the dirt outlet may be provided in the sidewall.
In some embodiments, the cyclone air inlet may be provided at the cyclone chamber first end and the cyclone air outlet may be provided at the cyclone chamber second end.
In some embodiments, the dirt outlet may be provided in the sidewall.
In some embodiments, the dirt outlet may comprise an opening in the sidewall that extends axially inwardly into the cyclone chamber from the cyclone chamber second end wall.
In some embodiments, the surface cleaning apparatus may further comprise an inlet conduit, the dirty air inlet may be located at an inlet end of the inlet conduit and the inlet conduit may be part of the first end of the cyclone bin assembly.
In some embodiments, the dirt collection chamber first end may be positioned axially outwardly from the cyclone chamber first end whereby the cyclone axis of rotation extends through a portion of the dirt collection chamber that is located axially outwardly from the cyclone chamber first end.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted to a rear end of the cyclone bin assembly.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted at a location of the second end wall of the cyclone chamber.
In some embodiments, the front end of the cyclone bin assembly may be rotationally mounted to a rear end of the cyclone bin assembly at a location midway along an axial length of the cyclone bin assembly.
Numerous embodiments are described in this application, and are presented for illustrative purposes only. The described embodiments are not intended to be limiting in any sense. The invention is widely applicable to numerous embodiments, as is readily apparent from the disclosure herein. Those skilled in the art will recognize that the present invention may be practiced with modification and alteration without departing from the teachings disclosed herein. Although particular features of the present invention may be described with reference to one or more particular embodiments or figures, it should be understood that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described.
The terms “an embodiment,” “embodiment,” “embodiments,” “the embodiment,” “the embodiments,” “one or more embodiments,” “some embodiments,” and “one embodiment” mean “one or more (but not all) embodiments of the present invention(s),” unless expressly specified otherwise.
The terms “including,” “comprising” and variations thereof mean “including but not limited to,” unless expressly specified otherwise. A listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a,” “an” and “the” mean “one or more,” unless expressly specified otherwise.
As used herein and in the claims, two or more parts are said to be “coupled”, “connected”, “attached”, or “fastened” where the parts are joined or operate together either directly or indirectly (i.e., through one or more intermediate parts), so long as a link occurs. As used herein and in the claims, two or more parts are said to be “directly coupled”, “directly connected”, “directly attached”, or “directly fastened” where the parts are connected directly in physical contact with each other. As used herein, two or more parts are said to be “rigidly coupled”, “rigidly connected”, “rigidly attached”, or “rigidly fastened” where the parts are coupled so as to move as one while maintaining a constant orientation relative to each other. None of the terms “coupled”, “connected”, “attached”, and “fastened” distinguish the manner in which two or more parts are joined together.
General Overview
Referring to
Upright section 108 may be movably and drivingly connected to surface cleaning head 104. For example, upright section 108 may be permanently or removably connected to surface cleaning head 104 and moveably mounted thereto for movement from a storage position to an in use position, such as by a pivotable joint 116. Joint 116 may permit upright section 108 to pivot (i.e., rotate) with respect to surface cleaning head 104 about a horizontal axis. Accordingly, upright section 108 may be rotatable rearwardly so as to be positionable in a plurality of reclined floor cleaning positions (see for example
Upright section 108 may also be steeringly connected to surface cleaning head 104 for maneuvering surface cleaning head 104. For example, joint 116 may be a swivel joint.
Handvac 112 may be removably connected to upright section 108. When mounted to upright section 108, a user may grasp handvac 112 to manipulate upright section 108 to steer surface cleaning head 104 across a surface to be cleaned. Accordingly, when handvac 112 is mounted to upright section 108, handle 484 is the drive handle of surface cleaning apparatus 100
Surface cleaning apparatus 100 has at least one dirty air inlet, one clean air outlet, and an airflow path extending between the inlet and the outlet. In the illustrated example, lower end 120 of surface cleaning head 104 includes a dirty air inlet 124, and a rear end 128 of handvac 112 includes a clean air outlet 132. An airflow path extends from dirty air inlet 124 through surface cleaning head 104, upright section 108, and handvac 112 to clean air outlet 132. As exemplified in
As exemplified, at least one suction motor, and preferably the only suction motor, and one air treatment member, which may be the only air treatment member, is provided in the handvac 112 to permit handvac 112 to operate independently when disconnected from surface cleaning head 104 and optionally from upright section 108. It will be appreciated that while at least one suction motor and at least one air treatment member are positioned in the airflow path to separate dirt and other debris from the airflow, that when used with other aspects disclosed herein, each of the suction motor and the air treatment member may be provided in the surface cleaning head 104, the upright section 108, and/or the handvac 112.
The air treatment member may be any suitable air treatment member, including, for example, one or more cyclones, filters, and bags. The air treatment member may be an air treatment chamber wherein air is redirected to assist dirt being removed from an incoming air stream and is optionally a cyclone chamber. Preferably, at least one air treatment member is provided upstream of the suction motor to clean the dirty air before the air passes through the suction motor. In the illustrated embodiment, handvac 112 includes a cyclone bin assembly 136 including a cyclone chamber and a dirt collection region. In some embodiments, the dirt collection region may be a portion (e.g., a lower portion) of the cyclone chamber. In other embodiments, the dirt collection region may be a dirt collection chamber that is separated from the cyclone chamber by a dirt outlet of the cyclone chamber. The following description utilizes the exemplified embodiments set out in the drawings, which utilize a cyclone chamber. It will be appreciated that the aspects disclosed herein may be used with an air treatment member as discussed previously and, optionally, an air treatment chamber. It will also be appreciated that if the air treatment member is an air treatment chamber, then the cyclone bin assembly 136 may be referred to as an air treatment assembly.
Plurality of Dirt Collection Chambers
In accordance with one aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a stick surface cleaning apparatus may have more than one dirt collection chamber. For example, the handvac may include a first dirt collection chamber, and the upright section may include a second dirt collection chamber. The second dirt collection chamber provides the surface cleaning apparatus with an enlarged dirt collection capacity in comparison with the dirt collection capacity of the handvac alone. Accordingly, the surface cleaning apparatus may operate for longer intervals before one or more of the dirt collection chambers needs to be emptied.
In accordance with this aspect, and as exemplified in
As illustrated, up flow duct 144 (also referred to as a wand if removable for use, e.g., in an above floor cleaning mode as exemplified in
It will be appreciated that if up flow duct 144 is the member that supports handvac 112 when auxiliary dirt collection assembly 140 is removed, the up flow duct is designed to be load supporting and may be a rigid tube. Further if the up flow duct is removable to function as an above floor cleaning wand, then the up flow duct may also be a rigid tube. In other embodiments, e.g., the up flow duct is not a load supporting member, then all or a portion of up flow duct 144 may be flexible, such as a flexible hose.
As exemplified in
The dirt collection chamber of auxiliary dirt collection assembly 140 and handvac dirt collection chamber 188 may be of any suitable volumetric sizes. Preferably, the volumetric storage capacity of the dirt collection chamber of auxiliary dirt collection assembly 140 is at least equal to the volumetric storage capacity of handvac dirt collection chamber 188, and more preferably larger than the volumetric storage capacity of handvac dirt collection chamber 188. For example, the volumetric storage capacity of the dirt collection chamber of auxiliary dirt collection assembly 140 may be 1-20 times the volumetric storage capacity of handvac dirt collection chamber 188, more preferably 1.5-10 times, and most preferably 3-5 times. In alternative embodiments, the volumetric storage capacity of the dirt collection chamber of auxiliary dirt collection assembly 140 may be less than that of handvac dirt collection chamber 188.
As exemplified in
As exemplified in
Dirt collection chamber 188 may be defined by bottom wall 216, side walls 208, and interior wall 226. In some embodiments, bottom wall 216 may be openable for fluidly connecting handvac dirt collection chamber 188 to supplemental dirt collection assembly 140 of upright section 108. This may permit dirt separated by cyclone chamber 184 and discharged through dirt outlet 200 to move through opened bottom wall 216 and collect in supplemental dirt collection assembly 140.
Optionally, when the auxiliary dirt collection assembly is mounted to upright section 108, dirt separated in the cyclone chamber is collectable in the dirt collection chamber of the auxiliary dirt collection assembly. The auxiliary dirt collection assembly may be selectively connectable in communication with the dirt collection region of the hand vacuum cleaner by, e.g., an openable door 228 (also referred to as a dumping door). The door may be manually openable, such as by a handle, or automatically operated, such as when the auxiliary dirt collection assembly is mounted to upright section 108. In this case, dirt will collect in the handvac 112 and will remain there until door 228 is openable so as to allow the collected dirt to transfer to supplemental dirt collection assembly 140. In the latter case, supplemental dirt collection assembly 140 is automatically connected in communication with a dirt outlet of the cyclone chamber when the auxiliary dirt collection assembly is mounted to upright section 108. In this case, dirt will collect in the supplemental dirt collection assembly 140 when handvac 112 is mounted to the upright section 108.
In the illustrated example, bottom wall 216 includes a door 228, which may be a pivotally openable door 228. As shown, door 228 may be pivotally connected to dirt collection chamber 188 by a hinge 232 for rotation about a hinge axis 236. Door 228 may extend forwardly from a rear end 240 to a front end 244. Preferably, hinge 232 and hinge axis 236 are positioned at rear end 240 of door 228. In alternative embodiments, hinge 232 and hinge axis 236 may be positioned at front end 244 or intermediate front and rear ends 240 and 244.
Door 228 is preferably outwardly pivotal of dirt collection chamber 188. For example, door 228 may be movable between a closed position (
Hinge axis 236 may have any suitable orientation. In the illustrated example, hinge axis 236 extends laterally side-to-side of surface cleaning apparatus 100. Hinge axis 236 may be transverse to one or more of cyclone axis 248 of cyclone chamber 184, motor axis 252 of suction motor 204, or downstream direction 256 through air inlet 192. In the example shown, hinge axis 236 is perpendicular to cyclone axis 248, motor axis 252, and downstream direction 256. In alternative embodiments, hinge axis 236 may be substantially parallel to one or more of cyclone axis 248, motor axis 252, or downstream direction 256.
In some embodiments, door 228 may extend upwardly and forwardly between rear end 240 and front end 244. For example, front end 244 may be positioned closer to cyclone chamber 184 and cyclone axis 248 than rear end 240. When door 228 is opened (
Optionally, the dirt collection region (the dirt collection chamber) of the hand vacuum cleaner is positioned above the supplemental dirt collection assembly 140. Accordingly, dirt that is received in the dirt collection chamber of the hand vacuum cleaner may be transferred by due to gravity to the supplemental dirt collection assembly 140. Accordingly, for example, dirt outlet 200 may be positioned on a bottom end 268 of cyclone chamber 184 for discharging dirt toward bottom wall 216 and opening 260 to be delivered by gravity into supplemental dirt collection assembly 140 of upright section 108.
Reference is now made to
Preferably, opening 260 and inlet 272 of upper portion 276 of dirt collection assembly 140 are sized and positioned to receive at least a portion of door 228 when door 228 is in the open position. This may permit door 228 to open outwardly into the open position as shown in
If door 228 is moveable from the closed position to the open position automatically upon connecting handvac 112 to upright section 108, then handvac 112 may include an actuator drivingly connected to door 228 to move door 228 (e.g., pivot door 228 about hinge axis 236) to the open position when handvac 112 is connected to upright section 108. In the illustrated embodiment, door 228 includes an arm 280 pivotally connected at hinge 232. As shown, arm 280 may include a lever portion 284 which extends rearwardly of hinge 232, and which may be depressed to pivot door 228 to the open position. Further, dirt collection assembly 140 is shown including an engaging member 288 positioned to align with lever portion 284 of arm 280. In use, engaging member 288 may depress lever portion 284 of arm 280 upon connecting handvac 112 to upright section 108 to automatically pivot door 228 into the open position, whereby opening 260 may be fluidly connected to inlet 272 of supplemental dirt collection assembly 140. In one aspect, this may permit a user, who has used handvac 112 when disconnected from upright section 108, to automatically empty handvac dirt collection chamber 188 by connecting handvac 112 to upright section 108. Afterwards, handvac 112 may be disconnected from upright section 108 with an empty dirt collection chamber 188.
If door 228 is manually moveable from the closed position to the open position then, as exemplified in
As exemplified in
Removable Supplemental Dirt Collection Assembly
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a surface cleaning apparatus has two or more dirt collection chambers wherein one of the dirt collection chambers is optionally removable, and the surface cleaning apparatus is operable when the removable dirt collection chamber has been removed. Accordingly, as discussed with respect to the previous embodiment, a supplemental dirt collection chamber may be provided on the up flow duct or wand of a stick vacuum cleaner and may be the main dirt collection chamber (e.g., it may collect most or all of the separated dirt when the stick vacuum cleaner is operated with the supplemental dirt collection chamber in position). This may be referred to as a large dirt capacity upright mode or a second upright mode of operation.
The supplemental dirt collection chamber may be removable for emptying and to reconfigure the vacuum to a light weight upright mode or a first upright mode of operation. Once removed, the vacuum cleaner may be operable to separate dirt and collect the separated dirt in another dirt collection chamber (e.g., the handvac dirt collection chamber). An advantage of the light weight upright mode is that the size and weight of the vacuum cleaner may be reduced by removal of the supplemental dirt collection chamber. This may be of assistance when the vacuum cleaner is used to clean around and under furniture, and when the vacuum cleaner is to be carried upstairs.
As exemplified in
Dirt collection assembly 140 may be removably mounted to wand 144 in any suitable fashion. In the illustrated embodiment, a lower end 292 of dirt collection assembly 140 may be toed onto a lower end 296 of wand 144, and then dirt collection assembly 140 may be pivoted about lower end 292 toward wand 144 and held in position by a suitable releasable fastening mechanism.
In the illustrated embodiment, handvac 112 may remain in fluid communication with wand 144 and surface cleaning head 104 while supplemental dirt collection assembly 140 is disconnected from wand 144 and removed altogether from apparatus 100. This may permit dirt collection assembly 140 to be removed (e.g., for emptying or to operate apparatus 100 in a light weight upright mode) without disrupting the operation of apparatus 100.
Upstream Air Treatment Member
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, an upstream air treatment member may be provided. The upstream air treatment member may be removably connectable upstream of the handvac. For example, the supplemental dirt collection assembly may have one or more cyclone chambers associated therewith. Accordingly, when the supplemental dirt collection assembly is positioned on upright section 108 (e.g., up flow duct 144), a supplemental cyclone chamber assembly 160 may be connected in series or parallel with the cyclone chamber of the handvac. Accordingly, when operated as an upright vacuum, the surface cleaning apparatus may be a dual cyclonic stage surface cleaning apparatus. When used in an above floor cleaning mode, the handvac may be a single cyclonic stage surface cleaning apparatus. Typically, the surface cleaning apparatus may be used as an upright vacuum cleaner (i.e., with the supplemental cyclonic bin assembly attached) for cleaning floors. This may represent the majority of area that is to be cleaned. Therefore, for a majority of the use of the surface cleaning apparatus, it may be used as a dual stage cyclonic surface cleaning apparatus.
In accordance with this aspect, the upright section may include a first air treatment member for separating at least large dirt particles from the airflow, and the air treatment member of the handvac may be positioned downstream of the first air treatment member for separating small dirt particles (“fines”) from the airflow. In this case, the greatest volume of separated dirt may be collected in the dirt collection chamber of the upright section, and a lesser volume of fines may be collected in the dirt collection chamber of the handvac. This may reduce the rate at which the handvac dirt collection chamber may be filled, and reduce the frequency at which the handvac dirt collection chamber must be emptied. It will be appreciated that each cyclonic stage may be of any design and may be designed to remove any type of dirt.
It will be appreciated that, in some embodiments, dirt separated by the handvac may be collected in the supplemental dirt collection assembly. In such a case, the dirt collection region of the handvac may be in communication (automatically or manually selectively) with a dirt collection region in the supplemental dirt collection assembly, which region may be isolated from the dirt collection chamber for the cyclonic stage of the supplemental cyclone chamber assembly.
It will be appreciated that, if air travels through up flow duct 144 to handvac 112, when cyclone bin assembly 160 is connected to wand 144, air travelling through wand 144 may be diverted into cyclone bin assembly 160 and returned to wand 144 from cyclone bin assembly 160 downstream of the diversion. Optionally, in accordance with another aspect with is discussed in more detail subsequently, and which is exemplified in the embodiment of
As exemplified in the embodiment of
From cyclone bin assembly 160, the airflow may flow downstream to handvac 112. Accordingly, handvac cyclone bin assembly 136 is positioned downstream of and in series with supplemental cyclone bin assembly 160. The air may be received in handvac cyclone bin assembly 136 where additional particulate matter may be further separated from the airflow and deposited into dirt collection chamber 188. In many cases, the additional particulate matter separated by cyclone bin assembly 136 may constitute less than 30% of the total volume of dirt separated from apparatus 100, and may constitute all or a majority of the fines that are separated. Accordingly, dirt collection chamber 188 may be filled at a lower volumetric rate than supplemental dirt collection chamber 141. This may help to maintain dirt collection capacity in handvac 112.
In operation, air exiting air outlet 320 of cyclone bin assembly 160 may enter handvac 112 for a second stage of cleaning by cyclone bin assembly 136. As illustrated, handvac 112 may include a nozzle 412 having an upstream end 416 and a downstream end 420. When handvac 112 is connected to upright section 108, upstream end 416 may be fluidly connected with air outlet 320 of upright section 108, and downstream end 420 may be fluidly connected with inlet 192 of handvac cyclone chamber 184.
In operation, air may be drawn into dirty air inlet 124 and enter upstream wand portion 440. Diversion member 428 may redirect the air traveling through upstream wand portion 440 to enter air inlet 316 of cyclone chamber 308. Air may travel through air inlet 316 tangentially to sidewall 376 and spiral downwardly toward lower end wall 368, whereby dirt may be separated from the airflow and pass through dirt outlet 324 to accumulate in dirt collection chamber 141. The airflow may then travel downstream into vortex finder 400 and exit cyclone chamber 308 at air outlet 320 at downstream end 404 of vortex finder 400, into an outlet passage 476. Outlet passage 476 may have a downstream end fluidly connected to downstream wand portion 444. The air may travel through downstream wand portion 444 to downstream wand end 364 into handvac 112. In handvac 112, additional dirt may be separated from the airflow by cyclone bin assembly 136 before the air is discharged through clean air outlet 132.
It will be appreciated that, in accordance with this aspect, cyclone bin assembly 160 may be any suitable cyclone bin assembly. In the example shown in
Dirt outlet 324 may be formed as an opening in sidewall 376 for directing separated dirt into dirt collection chamber 141. In some embodiments, at least a portion of sidewall 376 of cyclone chamber 308 may form a common dividing wall between cyclone chamber 308 and dirt collection chamber 141. In this case, dirt outlet 324 may be formed as an opening in the common portion of sidewall 376.
Dirt outlet 324 may be formed at any suitable position on sidewall 376. In the illustrated example, dirt outlet 324 is positioned at an upper end of cyclone chamber 308 proximate upper end wall 372. More particularly, the illustrated embodiment includes a dirt outlet 324 defined by a slot 380 in sidewall 376 bordered by upper end wall 372. This may increase the capacity of dirt collection chamber 141. More specifically, dirt may accumulate by gravity from the bottom of dirt collection chamber 141 upwardly. Thus, the capacity of the dirt collection chamber 141 may be defined at least in part by the position of dirt outlet 324. Dirt collection chamber 141 is full when the level of dirt in dirt collection chamber 141 rises to dirt outlet 324. Accordingly, the capacity of dirt collection chamber 141 is the volume of the dirt collection chamber 141 below dirt outlet 324. Thus, the capacity of dirt collection chamber 141 may be increased by positioning dirt outlet 324 in an uppermost position, such as proximate the upper end wall 372 of cyclone chamber 308 as shown.
Alternately, in some embodiments as exemplified in
In accordance with another aspect which is discussed in more detail subsequently, as exemplified, cyclone chamber 308 may include an inlet passage 384 for redirecting axially-directed inlet air to flow tangentially to promote cyclonic action in cyclone chamber 308. An upstream end 388 of inlet passage 384 may face axially (i.e., substantially parallel to cyclone axis 392), and a downstream end (not shown) of inlet passage 384 may face tangentially to cyclone chamber 308. Air entering upstream end 388 of inlet passage 384 from air inlet 316 may travel along inlet passage 384 and exit downstream end (not shown) in a tangential direction. After spiraling upwardly around vortex finder 400 of cyclone chamber 308, the airflow may enter vortex finder 400 and exit cyclone chamber 308 through air outlet 320 at a downstream end 404 of vortex finder 400.
Handvac cyclone chamber 184 may be any suitable cyclone chamber. In some embodiments, cyclone chamber 184 is substantially similar to cyclone chamber 308. For example, cyclone chamber 184 may include an air inlet 192, an inlet passage 420, a dirt outlet 200, a vortex finder 424, a dirt outlet 200, an air outlet 196, and a cyclone axis 248. Air from upright section 108 may axially enter air inlet 192, be redirected to a tangential direction by inlet passage 420, spiral upwardly around vortex finder 424, deposit dirt into dirt outlet 200, and then exit cyclone chamber 184 through air outlet 196 at a downstream end of vortex finder 424.
Modes of Operation
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the surface cleaning apparatus is reconfigurable to operate in a plurality of different modes of operation. For example, the surface cleaning apparatus may be operable in two or more of a handvac mode, a stair-cleaning mode, an above-floor cleaning mode, a large dirt capacity upright mode, a lightweight upright mode, or a dual motor upright mode. In some cases, the surface cleaning apparatus may be reconfigurable between different modes of operation with a single act of connection or disconnection. This may permit the surface cleaning apparatus to be quickly reconfigured with minimal interruption.
Referring to
As exemplified in
The large dirt capacity upright cleaning mode as shown may be particularly effective for cleaning large surface areas (e.g., the floor of one or more rooms). The user may grasp handvac handle 484 to steer surface cleaning head 104 across the surface to be cleaned (i.e., handle 484 may be a drive handle of the surface cleaning apparatus). The tall height 492 of apparatus 100, 152, and 168 provided in part by the interposition of wand 144 between surface cleaning head 104 and handvac 112 may permit apparatus 100 to be operated by a user standing upright. The large dirt capacity of dirt collection chamber 141 of upright section 108 may permit extended usage of apparatus 100 before the dirt collection chamber 141 becomes full and must be emptied.
As exemplified in
Preferably, reconfiguring the apparatus from the large dirt capacity upright mode to the light weight upright mode may require only a single user action (e.g., disconnecting the dirt collection assembly 140 or cyclone bin assembly 160 from the upright section 108 may automatically close a dumping door of the handvac if the dumping door is open and may also automatically close a diversion member if the vacuum cleaner includes a supplemental cyclone bin assembly 160).
As exemplified in apparatus 100, door 228 which may have been open in the large dirt capacity upright mode for connecting dirt collection chambers 188 and 141, may close automatically (i.e., without any further user interaction) upon disconnecting dirt collection chamber 141, to seal bottom wall 216 of dirt collection chamber 141. Exemplary mechanisms include a biasing member, such as a spring and a mechanical or electrical drive member drivingly connected to the door to close the door as supplemental assembly 140, 160 is removed.
As exemplified in apparatus 168, disconnecting cyclone bin assembly 160 from wand 144 may automatically reroute the airflow path to extend directly from upstream wand end 360 to downstream wand end 364 without the intermediary diversion to cyclone bin assembly 160. Therefore, the airflow path between surface cleaning head 104 and handvac 112 is automatically reconfigured by disconnection of cyclone bin assembly 160 to reconfigure apparatus 168 to the light weight upright mode. Accordingly, apparatus 168 may be continually operated while being reconfigured.
In alternative embodiments, door 228 of apparatus 100 may be manually closed as another step before, during or after dirt collection assembly 140 is disconnected from upright section 108 to complete the reconfiguration to the light weight upright mode. For example, a user may manually close the door. In other embodiments, as described in more detail below, a diversion valve of apparatus 168 may require manual closure as another step after cyclone bin assembly 160 is disconnected from wand 144 to complete the reconfiguration to the light weight upright mode. Alternately, a single actuator may be manually operated to close the door and the diversion valve.
As exemplified in
In some cases, reconfiguring apparatus 100, 152, or 168 from the large dirt capacity upright mode to the lightweight upright mode may provide a reduction in weight (i.e., by the removal of dirt collection assembly 140 or cyclone bin assembly 160), and a more slender profile. Thus, the lightweight upright mode may make apparatus 100, 152, or 168 easier to lift (e.g., carry upstairs), and easier to maneuver under and around furniture and the like. However, in this mode, all of the dirt separated by cyclone bin assembly 136 in the lightweight upright mode is collected in dirt collection chamber 188. Thus, apparatus 100, 152, or 168 may have less dirt collection capacity in the lightweight upright mode as compared with the large dirt capacity upright mode.
Referring now to
Referring to
In the above-floor cleaning mode, the upstream end 496 of wand 144 may provide the dirty air inlet of apparatus 100, 152, or 168. The above-floor cleaning mode may be well suited to cleaning surfaces above the floor, or more generally surfaces that are not substantially horizontal, and for cleaning in crevices which surface cleaning head 104 might be unable to access. The wand 144 may provide extended reach for distant cleaning surfaces (e.g., curtains, and ceilings). An auxiliary cleaning tool such as a crevice tool, brush or the like may be attached to the inlet end of the wand.
Preferably, apparatus 100, 152, or 168 may be reconfigured from the lightweight upright mode to the above-floor cleaning mode by a single user action—disconnection of surface cleaning head 104 from the upstream end 496 of wand 144. This may permit the apparatus to be quickly reconfigured with little or no disruption. For example, the apparatus may operate continuously before, during, and after reconfiguration from the lightweight upright mode to the above-floor cleaning mode. This may permit a user to conveniently reconfigure the apparatus to the above-floor cleaning mode to clean a surface inaccessible in the lightweight upright mode, and afterward reconfigure the apparatus to the lightweight upright mode to continue cleaning, e.g., the floor.
In some embodiments, the above-floor cleaning mode may further include dirt collection assembly 140. For example, a user may reconfigure apparatus 100, 152, or 168 from the large dirt capacity upright mode (
Referring to
The handvac mode of apparatus 100 may be lighter, smaller, and more agile than the other modes of operation. However, the handvac mode may have a smaller dirt collection capacity than the large dirt capacity upright mode (
In some cases, a user may wish to momentarily disconnect handvac 112 for use in the handvac mode (e.g., to clean a surface that is more accessible in the handvac mode), and then return the apparatus to the previous mode. For example, apparatus 100, 152, or 168 may be momentarily reconfigured from the large dirt capacity upright mode (
It may be beneficial for the dirt collection chamber 188 of handvac 112 to have capacity available for use in the handvac mode upon disconnecting handvac 112 from upright section 108. Further, it may be beneficial for dirt collection chamber 188 of handvac 112 to reclaim capacity after reconnecting handvac 112 to upright section 108. This may be achieved by having dirt collection chamber 188 empty into assembly 140, 160 continually while handvac 112 is attached to the assembly, manually before removal of the handvac or upon removal of the handvac. The dirt capacity may be reclaimed by having dirt collection chamber 188 empty into assembly 140, 160 upon replacing handvac 112 to the assembly (either manually or automatically upon replacement).
An example of such a reconfiguration is discussed with respect to the embodiment of
Apparatus 100 may be reconfigured from the handvac mode to the large dirt capacity upright mode by reconnecting handvac 112 to upright section 108. Preferably, reconnecting handvac 112 to upright section 108 automatically opens handvac dirt collection chamber 188 to dirt collection chamber 141 for transferring at least a portion of the dirt, collected while in the handvac mode, to dirt collection chamber 141 thereby emptying dirt collection chamber 188 so that dirt collection chamber 188 is not full when the handvac is once again used in the handvac mode.
In some embodiments, handvac dirt collection chamber 188 does not empty into assembly 140, 160 when attached to the assembly, manually or automatically. For example,
Turning now to
Referring now to
Second stage cyclone chamber(s) 184b may have any suitable orientation relative to first stage cyclone chamber(s) 184a. For example, each of second stage cyclone chamber(s) 184b may have an air inlet 192b and an air outlet 196b both positioned proximate a rear end 648 of the second cyclonic cleaning stage 644 (rearward with respect to the inlet of the handvac), or both positioned proximate a front end 652 of the second cyclonic cleaning stage 644. Alternatively, each of second stage cyclone chamber(s) 184b may have an air inlet 192 positioned proximate one of the front and rear ends 648 and 652, and an air outlet 196b positioned proximate the other of the front and rear ends 648 and 652. In the illustrated example, second stage cyclone chambers 184b are shown including air inlets 192b at front end 648 and air outlets at rear end 652. This may reduce directional changes in the airflow which may reduce backpressure developed through second stage cyclone chambers 184b for enhanced airflow efficiency. As shown, axes 248b of second stage cyclone chamber 184b may be parallel to axis 248a of first stage cyclone chamber 184a.
Handvac cyclone bin assembly 136 may include one or more dirt collection regions 188. For example, cyclone chambers 184 of first and second cyclonic cleaning stages 640 and 644 may separate dirt into one common dirt collection region 188, or each cyclonic cleaning stage 640 and 644 may include a separate dirt collection region 188. In the latter case, all first stage cyclone chamber(s) 184a may discharge dirt into the first stage dirt collection region 188a, and all second stage cyclone chamber(s) 184b may discharge dirt into the second stage dirt collection region 188b. In the illustrated embodiment, handvac cyclone bin assembly 136 includes one first stage dirt collection region 188a, and a plurality of second stage dirt collection regions 188b, where each second sage dirt collection region 188b receives dirt discharged by a respective second stage cyclone chamber 184b.
Reference is now made to
The stair-cleaning mode of operation may be especially suitable for cleaning stairs and the like, where frequent lifting is required to clean the desired surface areas.
Handvac Center of Gravity in the Upright Modes
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, when the apparatus is in an upright mode and, in particular in a large dirt capacity upright mode, the center of gravity of the handvac may be located directly above the cyclone bin assembly (or dirt collection chamber) of the upright section.
As exemplified in
Alternately, or in addition, as exemplified, center of gravity 524 is positioned between cyclone bin assembly 136 and suction motor 204, inside premotor filter chamber 556 of handvac 112.
Configuration of the Auxiliary Assembly
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a surface cleaning apparatus may have an upright section with an auxiliary dirt collection assembly 140 or auxiliary cyclone bin assembly 160 sized, shaped, and positioned according any one of a plurality of different configurations relative to the wand of the upright section and the handvac.
In some embodiments, a surface cleaning apparatus is provided having an upright mode wherein the auxiliary assembly 140, 160 and the handvac are positioned on the same side of the wand. As exemplified in
In some embodiments, a surface cleaning apparatus is provided having an upright mode wherein the auxiliary assembly 140, 160 and the handvac are positioned on opposite sides of the wand. As exemplified in
In some embodiments, a surface cleaning apparatus is provided having an upright mode where the auxiliary assembly 140, 160 and handvac are positioned on opposite left and right sides of the wand. For example, in apparatus 168, cyclone bin assembly 160 may be mounted to one of the left or right sides of upright section 108, and handvac 112 may be oriented relative to the upright section 108 such that dirt collection chamber 188 extends to the other of the left or right sides of upright section 108.
In some embodiments, the auxiliary assembly 140, 160 of the upright section surrounds at least a portion of the wand. Referring to
As exemplified, dirt collection assembly 140 includes left and right portions 600 and 604 on opposite left and right sides of channel 584. In the upright mode of apparatus 100, wand 144 may be at least partially received in channel 584, whereby left and right portions 600 and 604 are positioned to the left and right sides of wand 144. As shown, a front end 532 of dirt collection assembly 140 may extend forwardly of wand 144, such that at least a portion of wand 144 is positioned between the front and rear ends 532 and 536 of dirt collection assembly 140.
In the illustrated embodiment, dirt collection assembly 140 may also surround at least a portion of handvac 112 in the upright mode of apparatus 100. In the illustrated embodiment, an outlet end 608 of wand 144 may be received in channel 584 of dirt collection assembly 140. Accordingly, a front portion of handvac 112 may extend into channel 584 for connection with outlet end 608 of wand 144. In the illustrated embodiment, nozzle 412 and inlet passage 420 of handvac 112 may be positioned inside channel 584 of dirt collection assembly 140 in the upright mode of apparatus 100.
Upright Section with a Plurality of Cyclones
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the supplemental cyclone bin assembly 160 may have a plurality of cyclones positioned in series and/or in parallel in the airflow path. The cyclones may be positioned to the same side of the upright section (e.g., front or back, left or right), or on different sides of the upright section (e.g., one front and one back or one on the right side and one on the left side). In one embodiment, the upright section may use two cyclones and the wand may be positioned between the two cyclones.
As exemplified in
Each cyclone chamber 308 may be any suitable cyclone chamber and may be the same or different. As shown, each cyclone chamber 308 may include a tangential air inlet 344 proximate upper end 374, and an axial air outlet 320 at a downstream end of vortex finder 400.
Cyclone bin assemblies 161 may be positioned in parallel in the airflow path between surface cleaning head 104 and handvac 112. As exemplified, the airflow path may extend from surface cleaning head 104 through an upstream wand portion 440, diverge into the inlets 316 of cyclone chambers 308 through cyclone chambers 308 to their respective air outlets 320. Each cyclone bin assembly 161 may include an outlet passage 476 connecting air outlets 320 to downstream portion 444 of wand 144 where the airflow path converges. From downstream portion 444 of wand 144, the airflow path may extend through handvac 112 and exit out clean air outlet 132.
As exemplified, upstream and downstream portions 440 and 444 of wand 144 may be divided by a diversion member 712, which is described subsequently with respect to a further alternate aspect. Air traveling downstream through upstream portion 440 may contact diversion member 712 and be redirected laterally into air inlets 316 of cyclone chambers 308. Outlet passages 476 of cyclone bin assemblies 161 may converge to form a single airflow path in downstream portion 444 of wand 144 above diversion member 712.
Diversion Valve
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a diversion valve is provided which diverts air travelling through upright section 108 (e.g., the wand 144) into the auxiliary assembly 160 (e.g., supplemental cyclone or cyclones 308). Preferably, the diversion valve operates automatically upon the auxiliary assembly 160 being disconnected from and/or connected to the surface cleaning apparatus.
As exemplified in
In some embodiments, wand 144 may include a diversion outlet 704 and a diversion inlet 708 positioned between the upstream and downstream ends 360 and 364 of wand 144. The diversion outlet 704 and diversion inlet 708 may be selectively opened when connecting cyclone bin assembly 160 to upright section 108 to reconfigure the airflow path to divert into the cyclone bin assembly 160 at diversion outlet 704, and to return to the wand 144 from cyclone bin assembly 160 at diversion inlet 708. Upright section 108 may include a diversion valve for opening and closing diversion outlet 704 and inlet 708.
A diversion valve 712 according to a first embodiment is exemplified in
Sleeve 716 may be a conduit for fluidly coupling upstream and downstream wand portions 440 and 444 in the closed position of diversion valve 712 (see
Sleeve 716 may be movable axially along wand 114 between the closed position (
As exemplified, pedal 720 and sleeve 716 may be movably mounted to wand 144 for axial movement between the open and closed position. As shown, pedal 720 and sleeve 716 may move downwardly from the closed position (
In an alternative embodiment, sleeve 716 may have one or more openings which align with diversion outlet and inlet 704 and 708 in the open position of valve 712. In the closed position, the openings in sleeve 716 may be closed by alignment with solid wall portions of wand 144, and diversion outlet and inlet 704 and 708 may be closed by alignment with solid wall portions of sleeve 716. In this case, sleeve 716 may be positioned inside the upstream and downstream wand portions 440 and 444 in both the open and closed positions of valve 712.
Preferably, sleeve 716 is biased to the closed position. For example, valve 712 may include a biasing member which acts on sleeve 716 to bias sleeve 716 to the closed position. In the illustrated example, valve 712 includes a spring 732 which acts on pedal 720 to urge pedal 720 and sleeve 716 upwardly to the closed position. In alternative embodiments, sleeve 716 may not be biased to the closed position. For example, sleeve 716 may include an actuator, such as a switch or lever, which must be manually activated to move sleeve 716 to the closed position or is moved by assembly 160 when assembly 160 is removed.
Still referring to
Cyclone bin assembly 160 may be toed onto pedal 720 (see e.g.,
Cyclone bin assembly 160 may include a diversion member 428 for dividing wand 144 into upstream and downstream wand portions 440 and 444, and for diverting flow from the upstream wand portion 440 into cyclone bin assembly inlet 316. Diversion member 428 may take any suitable form. In the illustrated embodiment, diversion member 428 is a substantially flat plate which extends outboard of sidewall 376 for protruding into wand 144 through one of diversion outlet 704, diversion inlet 708, or another opening into wand 144. Alternatively, diversion member 428 may be curved to provide a less abrupt change in airflow direction, which may reduce the pressure drop across the diversion member 428. Optionally, diversion member 428 may include or interface with a sealing member (e.g., a deformable elastomeric seal) to form an airtight barrier between upstream and downstream wand portions 440 and 444. Alternately, the diversion member may be a separate member that is installed as a separate step when (i.e., before, during, and/or after) connecting cyclone bin assembly 160 to the wand 144.
As exemplified, when cyclone bin assembly 160 is mounted to wand 144, as shown in
Cyclone bin assembly 160 may be removably mounted to wand 144 by any suitable mechanism. In the illustrated embodiment, cyclone bin assembly 160 includes a latch 744 on handle 616 for engaging a tab 746 which extends outwardly of wand 144. Latch 744 may be user-operable by a user grasping handle 616 to release latch 744 from tab 746 for disconnecting cyclone bin assembly 160 from wand 144. Preferably, biasing member 732 of valve 712 automatically and immediately moves sleeve 716 to the closed position upon disconnection of cyclone bin assembly 160 to reconfigure the airflow pathway by closing diversion inlet and outlet 704 and 708.
A diversion valve 712 according to a second embodiment is exemplified in
As exemplified, diversion valve 712 includes a collapsible sleeve 716 positioned inside of wand 144, and a pedal 720 for moving hose 716 been an open position and a closed position.
Sleeve 716 may be a collapsible conduit for fluidly coupling upstream and downstream wand portions 440 and 444 in the closed position of diversion valve 712 (see
In the illustrated embodiment, sleeve 716 has a fixed-position upstream end 756 sealed to upstream wand portion 440, and a downstream end 760 axially movable inside wand 144. Downstream end 760 may be movable toward upstream end 756 to the open position (
As exemplified, pedal 720 may be drivingly coupled to downstream end 760 of sleeve 716. Pedal 720 may be depressed (e.g. by the weight of cyclone bin assembly 160) to move downstream end 760 into the upstream wand portion 440, collapsing sleeve 716 into the open position of
A diversion valve 712 according to a third embodiment is exemplified in
In the illustrated embodiment, doors 772 and 776 are pivotally mounted to wand 144 for movement between a closed position (see
Preferably, doors 772 and 776 open automatically by connecting cyclone bin assembly 160 to wand 144. In the illustrated example, cyclone bin assembly 160 includes an inlet nose 784 for pushing open diversion outlet door 772, and an outlet nose 788 for pushing open diversion inlet door 776. As shown, noses 784 and 788 may extend outwardly of sidewall 376 for projecting through diversion outlet and inlet 704 and 708 respectively upon connecting cyclone bin assembly 160 to wand 144.
Preferably, when cyclone bin assembly 160 is connected to wand 144, an airflow path is formed between diversion outlet 704 and air inlet 316, and between diversion inlet 708 and air outlet 320, such that the airflow path from upstream wand portion 440 to downstream wand portion 444 is reconfigured to extend through cyclone bin assembly 160. In the illustrated example, connecting cyclone bin assembly 160 to wand 144 may include pushing noses 784 and 788 into diversion outlet and inlet 704 and 708 respectively to open doors 772 and 776.
Noses 784 and 788 may take any suitable form. As exemplified, nose 784 may be formed as a diversion member including an inlet passage having an upstream end 792 and a downstream end 796. Upstream end 792 may extend into wand 144 and form a seal with upstream wand portion 440 to redirect the airflow in upstream wand portion 440 to enter nose 784 toward downstream end 796. In the illustrated embodiment, upstream wand portion 440 includes a sealing ring 800 adjacent an upstream side 804 of diversion outlet door 772 onto which downstream end 796 may be seated for forming an airtight seal between upstream wand portion 440 and downstream end 796. Alternatively, or in addition, upstream side 804 may include a sealing member. Downstream end 796 of nose 784 may be integrally formed or otherwise connected with air inlet 316.
In the illustrated example, nose 788 is formed as a triangular plate which projects outwardly from air outlet 320. In other embodiments, nose 788 may have another suitable form for pushing diversion inlet door 776, such as a circular or rectangular plate or a rod for example. As shown, when cyclone bin assembly 160 is connected to wand 144, nose 788 projects into diversion inlet 708 pushing open diversion inlet door 776. This may permit air outlet 320 to sealingly abut diversion inlet 708 for forming an airflow path between air outlet 320 and downstream wand portion 444. Optionally, a seal 808 may be provided at the interface between air outlet 320 and diversion inlet 708 for enhancing the airtightness of the connection.
It will be appreciated that in alternative embodiments, nose 788 may be formed as an outlet passage, which may be curved similar to nose 784. This may make the change in airflow direction across nose 788 less abrupt, which may reduce pressure losses.
Preferably, when cyclone bin assembly 160 is disconnected from wand 144, doors 772 and 776 automatically close to reconfigure the airflow passage to extend directly from upstream wand portion 440 to downstream wand portion 444 without diversion through diversion outlet 704 or inlet 708. For example, doors 772 and 776 may be biased to the closed position by a biasing member, such as a spring. In the illustrated embodiment, diversion valve 712 includes a torsional spring 812. Spring 812 may be positioned to bias both of doors 772 and 776 to the closed position. In the illustrated embodiment, spring 812 is held in a spring housing 816 mounted to an inside face 820 of diversion outlet door 772. As shown, spring 812 may have an arm 824 connected to diversion inlet door 776, effectively biasing doors 772 and 776 away from each other to their respective closed positions. In alternative embodiments, each of doors 772 and 776 may have a separate biasing member.
A diversion valve 712 according to a fourth embodiment is exemplified in
In the illustrated embodiment, diversion valve 712 includes a door 772. Door 772 may be movable between a closed position (
As shown, door 772 may be pivotally mounted to wand 144 in any suitable manner for movement between the open and closed positions. For example, door 772 may be pivotally mounted outside of wand 144 by a hinge 780. In the illustrated example, door 772 may pivot outwardly about hinge 780 away from wand 144 to the open position, and may pivot inwardly about hinge 780 toward wand 144 to the closed position. Preferably, door 772 is manually openable, whereby a user may grasp door 772 and manually move door 772 from the closed position to the open position. For example, door 772 may have a lever 840, a handle, or another gripping member for a user to grasp for manipulating the position of door 772.
Once door 772 is opened, as shown in
When cyclone bin assembly 160 is disconnected from wand 144, door 772 may be moved back into the closed position for reconfiguring the airflow path in wand 144 to extend directly from upstream portion 440 to downstream portion 444 without diversion. For example, door 772 may be manually moved from the open position to the closed position by hand, or door 772 may move automatically to the closed position by the bias of a biasing member (e.g., a spring).
In some embodiments, door 772 may be held in the closed position by the bias of a biasing member, or by a releasable locking mechanism (e.g., a latch). This may permit door 772 to form a tight seal against diversion outlet 704 and inlet 708.
In some embodiments, pedal 720 may be foot operable and may be located close to or on the surface cleaning head.
Angular Surface of Upright Section
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a surface cleaning apparatus is provided having an upright section with a dirt collection chamber or cyclone bin assembly having a side profile that tapers or narrows from top to bottom. For example, the rear wall of the supplemental dirt collection chamber or supplemental cyclone bin assembly may extend upwardly at an acute angle relative to the wand axis such that the rear wall is farther from the wand axis at the top end than at the bottom end of the dirt collection chamber or cyclone bin assembly. An advantage of this design is that the surface cleaning apparatus may extend under furniture while providing a large dirt collection capacity.
As exemplified in
Handvac with Angled Bottom Wall
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a handvac may be provided having a bottom, such as a flat bottom wall, for supporting the handvac on a horizontal surface, and which extends at an acute angle (e.g., between 20 and 40 degrees) away from the inlet nozzle axis, and optionally at about the in-use orientation of the hand vac. This may provide the handvac with a resting orientation that is closer to or essentially at the in-use orientation of the handvac. For example, the in-use orientation of the handvac may normally have the inlet nozzle axis extending at a downward angle relative to a horizontal surface to be cleaned. Thus, a user may not have to substantially reorient the handvac upon grasping the handvac in the resting orientation to reposition the handvac into the in-use orientation.
Reference is now made
As exemplified, bottom wall 216 of handvac 112 may extend at an angle 880 to inlet nozzle axis 884 of nozzle 412. Bottom wall 216 may be planar, and the plane of bottom wall 216 may intersect with nozzle axis 884 at angle 880. Bottom wall 216 may provide a flat planar surface for making broad contiguous contact with horizontal surface 876, or bottom wall 216 may include a plurality of discrete contact points or surfaces which collectively contact the horizontal surface 876 to support the handvac 112 (e.g., as in the feet of a tripod, or the wheels of a car). Preferably, handvac center of gravity 524 is preferably aligned vertically above bottom wall 216 when handvac 112 is supported on horizontal surface 876 by bottom wall 216. This may permit handvac 112 to rest stably (i.e., statically without tipping over) on horizontal surface 876 while supported solely by bottom wall 216.
Handvac 112 may have an in-use orientation relative to horizontal surface 876 at which a user may comfortably operate handvac 112 during cleaning. Typically, handvac 112 is most comfortably operated in an orientation that does not require an application of torque by the user's hands when the handvac 112 is held by handle 484. This may be the case where the center of gravity 524 of the handvac 112 is aligned vertically below the user's hand. Accordingly, the center of gravity 524 may be vertically aligned below handle 484 in comfortable in-use orientations of handvac 112.
Preferably, center of gravity 524 is aligned vertically below handle 484 when handvac 112 is supported on horizontal surface 876. In the illustrated embodiment, center of gravity 524 is aligned vertically below handle 484 when bottom wall 216 is horizontal and supporting handvac 112 on a horizontal surface 876. Thus, the resting orientation of handvac 112 supported by bottom wall 216 on a horizontal surface 876 may be substantially the same as the in-use orientation of handvac 112. Accordingly, when a user grasps handvac 112 by handle 484 and lifts handvac 112, handvac 112 may already be in a balanced in-use position with the center of gravity 524 aligned below the user's hands.
In many cases, handvac 112 may be stored on a surface below a user's elbows. A user may angle their forearm downwardly to grasp handle 484 of handvac 112. In this case, the user's fingers and palm may be naturally aligned for grasping a handle which is angled forwardly of vertical. For example, to grasp a vertically oriented handle that is positioned below a user's elbow, a user may need to contort their wrist to conform to the orientation of the handle.
In the illustrated embodiment, handle axis 888 of handle 484 extends at a (non-zero) forward angle 892 to the vertical (e.g., e.g., when bottom wall 216 is horizontal). This may provide a comfortable handle alignment for grasping by a user when picking up handvac 112, and when using handvac 112 for cleaning surfaces below the user's elbows. Preferably, angle 892 is an acute angle of between 10 and 80 degrees, more preferably between 20 and 70 degrees and most preferably between 30 and 60 degrees.
Bottom wall 216 may be a wall of any component of handvac 112. In the illustrated embodiment, bottom wall 216 is a wall of cyclone bin assembly 136. Preferably, bottom wall 216 is a wall of dirt collection chamber 188. In the example shown, bottom wall 216 is an openable wall of dirt collection chamber 188.
Referring to
Handle Position
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a floor cleaning apparatus is provided having a handvac with a handle, and an upright section with a cyclone bin assembly or dirt collection chamber with a handle. Preferably, the handles are centrally aligned with a plane of symmetry of the apparatus. This may permit the handles to be grasped for a balanced control of the apparatus. For example, the handles may be parallel to the same plane of symmetry.
Alternately, as exemplified in
Returning to
Handles 484 and 1064 may be positioned on opposite sides of surface cleaning apparatus 100. For example, handle 484 is shown extending from an upper end 1052 proximate the front surface of apparatus 100, and handle 1064 is shown extending flush with a rear surface of apparatus 100.
Apparatus 100 may include one or more actuator controls (e.g., buttons, levers, or switches) for controlling various functionality such as opening or disconnected elements, or connecting power to elements. Preferably, at least some of the actuator controls are positioned on or within finger reach of a handle to permit the control to be activated while grasping the handle. This may permit single handed operation of the function provided by the control.
Referring to
Referring now to
In the illustrated embodiment, handvac 112 includes a power switch 1084 located on upper end 1052 of handvac 112 which is bisected by plane 1044. Handle 616 of cyclone bin assembly 160 is also shown including a button 1100 for releasing latch 744 to disconnect cyclone bin assembly 160 from wand 144. As illustrated, button 1100 may be positioned laterally centrally between left and right sides of apparatus 168 such that button 1100 is bisected by plane 1096.
Handvac Axial Alignment
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a plurality of airflow path segments in the handvac may extend in parallel. In some cases, this may reduce the number of bends in the airflow path through the handvac, which may reduce the pressure drop across the airflow path.
As exemplified in
In some embodiments, two or more of nozzle axis 884, cyclone axis 248, and motor axis 252 may be parallel. For example, in the illustrated embodiment, nozzle axis 884, cyclone axis 248, and motor axis 252 are parallel. In some embodiments, two or more of nozzle axis 884, cyclone axis 248, and motor axis 252 may be co-axial. For example, in the illustrated embodiment, nozzle axis 884 and cyclone axis 248 are co-axial. In other embodiments, nozzle axis 884, cyclone axis 248, and motor axis 252 may all be co-axial.
In the illustrated embodiment, handvac 112 may include an electrical connector 1116 for providing power to an upstream attachment (e.g., a surface cleaning head). As shown, connector 1116 may extend from a front connector end 1120 along a connector axis 1124 to a rear connector end 1128. In some embodiments, connector axis 1124 may be parallel to one or more of nozzle axis 884, cyclone axis 248, and motor axis 252. In the illustrated embodiment, connector axis 1124 is parallel to nozzle axis 884, cyclone axis 248, and motor axis 252.
In some embodiments, handvac 112 may include one or more electrical cables 1132 which extend from electrical connector 1116 rearwardly to electrically couple electrical connector 1116 with a source of power (not shown). In the illustrated embodiment, electrical cables 1132 extend from electrical connector 1116 rearwardly along vortex finder 1136 of cyclone chamber 184 toward motor housing 1138. As shown, at least the portion of electrical cables 1132 which along vortex finder 1136 across cyclone chamber 184 is parallel to cyclone axis 248.
Axial Cyclone Inlet
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a handvac may be provided having a cyclone chamber with an axial inlet. That is, the inlet axis may be parallel to the cyclone axis, and more preferably co-axial with the cyclone axis. In some cases, this may reduce the bends in the airflow path through the cyclone, which may reduce the pressure drop across the cyclone for better pneumatic efficiency. Preferably, the cyclone is a uniflow cyclone wherein the air outlet is at the opposite end from the air inlet. Alternately, or in addition, the axial inlet includes a portion that converts the axial flow to a tangential flow wherein the portion is provided within the diameter of the cyclone chamber. Optionally, the axial inlet is parallel to and may be co-axial with the handvac air inlet.
As exemplified in
Preferably, inlet 192 is in fluid communication with an upstream end 388 of an inlet passage 384. Inlet passage 384 may redirect the axial flow through inlet 192 to a tangential flow for developing a cyclonic motion inside cyclone chamber 184. Referring to
Returning to
Vortex finder 1136 may define an outlet passage to air outlet 196 of cyclone chamber 184. As shown, vortex finder 1136 may be substantially cylindrical having a diameter 1160. In the illustrated embodiment, the cross-sectional area of vortex finder 1136 may be approximately equal to the cross-sectional area of inlet nozzle 412. For example, diameter 1160 may be approximately equal to diameter 1164 of inlet nozzle 412. Preferably, the cross-sectional area of vortex finder 1136 is between 80%-125% of the cross-sectional area of the inlet nozzle 412, more preferably 90%-120%, and most preferably 100%-115%.
Uniflow Cyclone
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a handvac may be provided having a cyclone chamber wherein the air outlet is at the opposite end from the air inlet. In some cases, this may reduce the bends in the airflow path through the cyclone, which may reduce the pressure drop across the cyclone for better pneumatic efficiency. Optionally, the cyclone inlet is at the front or inlet end of the handvac and may be parallel to or co-axial with the handvac air inlet.
As exemplified in
Optionally, the suction motor axis may be parallel to or co-axial with axis 1140, 1168. Accordingly, air may travel in a generally uniform direction through the components of the handvac.
Handvac Cyclone Dirt Collection Chamber
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the dirt collection chamber of the handvac may have a dirt inlet which is located at the upper end of the dirt collection chamber when the hand vac is oriented for cleaning a floor (see e.g.,
As exemplified in
In the illustrated embodiment, handvac 112 may be supportable on a horizontal surface 876 by contact between dirt collection chamber 188 and the horizontal surface 876. For example, dirt collection chamber 188 may include a bottom wall 216 for supporting handvac 112 on horizontal surface 876. Preferably, as discussed previously, handvac 112 is inclined with nozzle 412 facing downwardly when handvac 112 is supported on horizontal surface 876 by bottom wall 216. In the illustrated embodiment, bottom wall 216 is angled downwardly between front end 220 and rear end 224 for orienting nozzle axis 884 downwardly to horizontal when handvac 112 is supported on horizontal surface 876. As shown, this may provide dirt collection chamber 188 with a wedge-like shape having a height 1172 measured between upper and lower dirt collection chamber walls 226 and 216 which increases from the front end 220 to the rear end 224.
Pre-Motor Filter Housing
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, a pre-motor filter housing may be provided in the airflow path between the cyclone bin assembly and the suction motor for directing the airflow through one or more pre-motor filters contained therein.
As exemplified in
In the illustrated example, pre-motor filter chamber 556 extends in height 1184 between an upper end 1188 to a lower end 1192 in the direction of pre-motor filter axis 560, and extends in depth 1216 between front wall 1220 and rear wall 1224. In some embodiments, cyclone axis 248 and motor axis 252 may be parallel and vertically offset as shown. For example, each of cyclone axis 248 and motor axis 252 may intersect pre-motor filter chamber 556 as shown. In some embodiments, outlet axis 1168 of cyclone chamber outlet 196 and, motor inlet axis 1196 of motor inlet 1108 may be parallel and vertically offset. For example, each of outlet axis 1168 and motor inlet axis 1196 may intersect pre-motor filter chamber 556 as shown.
In some embodiments, cyclone chamber outlet 196 discharges air from cyclone chamber 184 into pre-motor filter chamber 556, and pre-motor filter chamber 556 discharges air into motor inlet 1108. For example, cyclone chamber outlet 196 may be positioned at the threshold between cyclone chamber 184 and pre-motor filter chamber 556, and motor inlet 1108 may be positioned at the threshold between pre-motor filter chamber 556 and suction motor housing 1138. In alternative embodiments, one or more conduits (not shown) may separate pre-motor filter chamber 556 from cyclone chamber outlet 196 and/or motor inlet 1108.
In the illustrated embodiment, pre-motor filter chamber 556 extends in length between a front end 1200 and a rear end 1204. As shown, pre-motor filter chamber 556 may hold pre-motor filters 1176 and 1180 in the airflow path between cyclone chamber outlet 196 and motor inlet 1108 for filtering residual dirt particles remaining in the airflow. In some embodiments, pre-motor filter chamber 556 may hold pre-motor filters 1176 and 1180 in spaced apart relation to front and rear ends 1200 and 1204. An upstream plenum 1208 may be provided in the space between upstream pre-motor filter 1176 and front end 1200. A downstream plenum 1212 may be provided in the space between downstream pre-motor filter 1176 and rear end 1204. Air entering upstream plenum 1208 from cyclone bin assembly 136 may distribute across the surface area of pre-motor filter 1176 for traversing filters 1176 and 1180 to downstream plenum 1212.
In the illustrated embodiment, cyclone chamber outlet 196 may direct air into an upper portion of upstream plenum 1208. For example, cyclone chamber outlet 196 may be connected to pre-motor filter chamber 556 proximate upper end 1188. In the illustrated embodiment, motor inlet 1108 may receive air from a lower portion of downstream plenum 1212. For example, motor inlet 1108 may be connected to pre-motor filter chamber 556 proximate lower end 1192. Accordingly, pre-motor filter chamber 556 may be used to redirect the air from transversely to the cyclone and motor axis without requiring conduits having bends therein.
Battery Power
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the surface cleaning head or upright section of the surface cleaning apparatus may include one or more batteries for powering the handvac when the handvac is connected to the surface cleaning head or upright section. The handvac may also include handvac batteries which may power the handvac when connected to or disconnected from the upright section and surface cleaning head (e.g., in an above-floor cleaning mode or handvac mode). When the handvac is electrically connected to the surface cleaning head, the batteries in the surface cleaning head may supplement the batteries in the handvac or be the sole power source.
As exemplified in
As used herein, the plural term “batteries” means one or more batteries. For example, supplemental batteries 1272 may be one battery or a plurality of batteries. Similarly, handvac batteries 1268 may be one battery or a plurality of batteries. Batteries 1272 and 1268 may be any suitable form of battery such as NiCad, NiMH, or lithium batteries, for example. Preferably, batteries 1272 and 1268 are rechargeable, however, in alternative embodiments, one or both of batteries 1272 and 1268 may be non-rechargeable single-use batteries.
In the illustrated embodiment, when handvac 112 is connected to upright section 108, an electrical connection may be formed between supplemental batteries 1272 and handvac 112, e.g., for powering suction motor 204.
In some embodiments, supplemental batteries 1272 may provide handvac 112 with enhanced power for generating greater suction with suction motor 204. For example, suction motor 204 may operate in a high power consumption mode, drawing power from supplemental batteries 1272, or supplemental batteries 1272 and handvac batteries 1268 simultaneously.
In some embodiments, supplemental batteries 1272 may provide the handvac 112 with extra energy for prolonged cleaning time between charges. For example, supplemental batteries 1272 may have a greater energy capacity (e.g., measured in Watt-hours) than handvac batteries 1268, such that handvac 112 may be sustained by supplemental batteries 1272 for a longer operating time. In some embodiments, handvac 112 may draw power from both of supplemental batteries 1272 and handvac batteries 1268, which have a greater combined energy storage capacity than handvac batteries 1268 alone.
In some embodiments, supplemental batteries 1272 may supply power to the handvac in preference to the handvac batteries 1268 to delay or avoid draining the handvac batteries 1268. For example, handvac 112 may draw power from supplemental batteries 1272 until substantially depleted before drawing power from handvac batteries 1268. This may conserve power in handvac batteries 1268 for use when handvac 112 is disconnected from supplemental batteries 1272 (e.g., in an above-floor cleaning mode, or handvac mode of apparatus 100). In some embodiments, handvac 112 may never draw power from handvac batteries 1268 when handvac 112 is electrically connected to supplemental batteries 1272.
In some embodiments, handvac 112 may draw power from supplemental batteries 1272 to recharge handvac batteries 1268. This may help to ensure that handvac batteries 1268 are not depleted when handvac 112 is disconnected from supplemental batteries 1272 (e.g., for use in an above-floor cleaning mode, or handvac mode of apparatus 100). In some cases, supplemental batteries 1272 may recharge handvac batteries 1268 only when apparatus 100 is not turned on.
In some embodiments, supplemental batteries 1272 may be recharged whenever the surface cleaning apparatus is connected to an external power outlet. In some cases, handvac batteries 1268 may be recharged when handvac 112 is electrically connected to an external power outlet (e.g., when surface cleaning head 104 or upright section 108 is connected to a power outlet by an electrical cord (not shown), and handvac 112 is connected to the surface cleaning head 104 or upright section 108).
In some embodiments, one or more of supplemental batteries 1272 and handvac batteries 1268 may be positioned in the airflow path. This may provide cooling for the batteries so positioned, which may help to prevent the batteries from overheating and may improve the performance of the batteries. In the illustrated example, handvac batteries 1268 are positioned in the airflow path inside motor housing 1138. For example, handvac batteries 1268 may be positioned inside motor housing 1138 between suction motor 204 and clean air outlet 132. The air passing over the handvac batteries 1268 may help to keep the batteries 1268 cool.
Supplemental batteries 1272 may be positioned in the airflow path to promote cooling of the batteries 1272. In the illustrated example, supplemental batteries 1272 are shown positioned inside surface cleaning head 104 in the airflow path between dirty air inlet 124 and downstream end 1240. The air passing over batteries 1272 may help to keep batteries 1272 cool.
In alternative embodiments, one or both of supplemental batteries 1272 and handvac batteries 1268 may be positioned outside of the airflow path (e.g., to be cooled passively).
Handvac Wheels
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the handvac may be provided with one or more sets of wheels, and a handle which may articulate to facilitate different cleaning postures.
As exemplified in
Handvac 112 may include an air treatment member positioned in the airflow path between inlet nozzle 412 for separating dirt from the airflow. In the illustrated example, handvac 112 includes a cyclone bin assembly 136 including a cyclone chamber 184, and a dirt collection chamber 188. Optionally, a bottom wall 216 of dirt collection chamber 188 may be pivotally openable for emptying dirt collection chamber 188.
As exemplified, apparatus 1292 may be movable between an upright storage position (
In the illustrated example, apparatus 1292 may include a handle 1340. Handle 1340 may be connected to wand 144 by an arm assembly 1344. As shown, arm assembly 1344 may include a first arm 1348 joined to a second arm 1352 by an articulating joint 1356. First arm 1348 may be connected to wand 144 and joint 1356, and second arm 1352 may be connected to handle 1340. Alternately, joint 1356 may be used to connect second arm 1352 to wand 144.
As shown, first arm 1348 may be rigidly connected to wand 144, and extend transversely to wand 144. For example, first arm 1348 may extend perpendicularly to wand 144. Second arm 1352 may be rotatable about joint 1356 between at least two positions. In the first position (
The first position (
In some embodiments, handvac 112 may include one or more front wheels 1364. Front wheel 1364 may be positioned to make rolling contact with a horizontal surface when wand 144 is lowered sufficiently. Thus, front wheel 1364 may assist with supporting the weight of handvac 112 and permit handvac 112 to roll across the horizontal surface. In the illustrated example, a front end 1360 of bottom wall 216 is provided with one or more front wheels 1364.
It will be appreciated that if rear end of assembly 140, 160 is tapered as discussed previously, then assembly 140, 160 is configured to permit the vacuum cleaner to extend further under furniture than if the assembly 140, 160 had the depth (front to back when in an upright storage position) as the upper end of the assembly 140, 160.
Openable Handvac Cyclone Bin Assembly
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the cyclone bin assembly of the handvac may be opened to empty the cyclone chamber and/or the dirt collection chamber, to access the pre-motor filter or access a door to open the cyclone chamber and/or the dirt collection chamber by moving part or all of the cyclone bin assembly relative to a main body of the handvac which include the suction motor while the parts remain connected together. For example, the parts may be pivotally mounted to each other.
Referring to
Front portion 1372 may be pivotally connected to rear portion 1376 in any suitable fashion. In the illustrated embodiment, front portion 1372 is pivotally connected to rear portion 1376 by a hinge 1380 for rotation about a hinge axis 1384 between the open and closed positions.
The openable portion (e.g., front portion 1372) may be mounted to (e.g., rotationally mounted) or removable from the remaining portion (e.g., rear portion 1376) at any suitable location. As illustrated in
In the illustrated embodiment of
Referring to
Openable Dirt Collection Chamber
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the supplemental assembly may have a top and/or bottom openable portion.
As exemplified in
Upper portion 276 may be retained in the closed position in any suitable fashion. In the illustrated example, dirt collection chamber 140 includes a latch 1400 for securing upper portion 276 in the closed position. Latch 1400 may be user operable for selectively releasing upper portion 276 for movement to the open position.
As exemplified in
Upper portion 1408 may be pivotally connected to lower portion 1412 in any suitable manner. In the illustrated embodiment, lower portion 1412 is pivotally connected to lower portion 1412 by a hinge 1416 for rotation about a hinge axis 1420 between the closed and open positions.
Upper portion 1408 may be retained in the closed position in any suitable manner. For example, upper portion 108 may include a releasable catch for selectively securing upper portion 1408 to lower portion 1412 in the closed position.
Openable Dirt Outlet and/or Connecting the Cyclone and Dirt Collection Chamber Volumes
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the dirt outlet from the cyclone chamber may be openable. For example, the dirt collection chamber may be an opening in a wall, e.g., a wall separating an air treatment chamber and a dirt collection chamber. The opening has an outer perimeter defined by the wall in which the dirt outlet is provided or the walls which abut the dirt outlet. During use, dirt may get trapped in the dirt outlet or bridge the dirt outlet. During an emptying operation, a wall or walls defining a first part of the perimeter of the dirt outlet may be moved relative to a wall or walls defining a second part of the dirt outlet thereby opening the dirt outlet.
The dirt outlet may be provided in a common wall dividing cyclone chamber 184 from dirt collection chamber 188. During an emptying operation, part of the common wall 226 may be moved. As a result, the portion of the cyclone chamber and the portion of the dirt collection chamber that are separated by the common wall 226 become a contiguous volume defined by the volume of the portion of the cyclone chamber and the volume of the portion of the dirt collection chamber that are separated by the common wall. If the part of the common wall 226 that is moved comprises part of the perimeter of the dirt outlet, then the dirt outlet is also opened when the openable portion of the cyclone bin assembly is opened.
It will be appreciated that the openable portion may comprise a part of (e.g., a front part or wall of) the cyclone chamber, and/or an end or portion of the surface cleaning apparatus or air treatment assembly and/or dirt collection chamber. Accordingly, the dirt outlet may be openable and/or part of the common wall 226 may be moveable when the cyclone chamber and/or an end or portion of the surface cleaning apparatus or air treatment assembly and/or dirt collection chamber is opened. For example, the sidewall 226 may be moved as part of opening the cyclone chamber and/or an end or portion of the surface cleaning apparatus or air treatment assembly and/or dirt collection chamber (e.g., to clean or empty debris from the cyclone chamber or another part of the surface cleaning apparatus).
Opening the dirt outlet may allow any debris (e.g., elongated debris such as hair) that is caught in the outlet (e.g., bridging the outlet) to come free or be more easily freed. Opening the dirt outlet when opening the cyclone chamber, opening an end or portion of the surface cleaning apparatus or air treatment assembly, and/or opening the dirt collection chamber may allow a user to more easily remove debris from the device.
As exemplified in
The dirt outlet 200 may be opened when a portion or end, (e.g., front end 1402, a rear end 1404) of the surface cleaning apparatus (e.g., handvac 112) is opened. In the illustrated example, the dirt outlet 200 is opened when a front end 1372 of the cyclone bin assembly 136 is opened, although it will be understood that in other examples another end or portion of a surface cleaning apparatus may be opened (e.g., a rear portion). As in the illustrated example, the first end or portion of the handvac 112 may be a first end or portion of the cyclone assembly 136 (e.g., a front end and/or an end comprising an inlet conduit and/or dirty air inlet).
The dirt outlet 200 may be between the openable first end or portion 1372 and the remaining end or portion 1376 of the surface cleaning apparatus. Opening the first end or portion 1372 (e.g., removing the first end or rotating the first end) may open the dirt outlet by moving a wall or a portion of a wall defining an edge or part of the perimeter of the dirt outlet 200 (e.g., a wall in which the dirt outlet 200 is formed or a wall that extends up to an edge of the dirt outlet 200).
The dirt outlet 200 may be at any position in the walls of the cyclone chamber 184. As exemplified, the dirt outlet 200 may be provided in a common wall that divides the cyclone chamber 184 from the dirt collection chamber 188. As in the illustrated example, at least a portion of the dirt collection chamber 188 may be spaced from the cyclone chamber 184 in a direction transverse to the cyclone axis of rotation 1371. The at least a portion of the dirt collection chamber 188 may face towards the cyclone chamber 184 and be separated from the cyclone chamber by a sidewall 226. As exemplified, the dirt outlet 200 may be in the sidewall 226.
The dirt outlet 200 may be at one end of the chamber 184 (e.g., at or adjacent an end wall) and/or adjacent the air inlet and/or air outlet of the chamber 184 (e.g., separated from the air inlet and/or air outlet by less than half the length of the chamber or less than a quarter of the length of the chamber). In the illustrated example, the dirt outlet 200 comprises an opening in the sidewall 226 that extends axially inwardly into the cyclone chamber 184 from the cyclone chamber second end wall 224.
At least a portion of the sidewall 226 is included in the openable first (e.g., front) end 1372, and moving the first end 1372 (e.g., including at least a portion of the cyclone chamber 184 and/or at least a portion of the dirt collection chamber 188) from a closed or cleaning position as exemplified in
Extended Dirt Collection Chamber
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, all or a portion of the dirt collection chamber may be positioned forward and/or rearward of the cyclone chamber. The dirt collection chamber may include at least a portion that is spaced from the cyclone chamber in a direction transverse to the cyclone axis of rotation and another portion that is forward and/or rearward of the cyclone chamber, e.g., that is intersected by the cyclone axis of rotation or through which a projection of the cyclone chamber extends.
Extending the dirt collection chamber to include a portion that is forward or rearward of the cyclone chamber may provide an additional volume in which to collect debris and/or allow the diameter of the dirt collection chamber, in a direction transverse to the cyclone axis of rotation, to be reduced. Accordingly, the volume of the dirt collection chamber may be increased without increasing the height of the surface cleaning apparatus in a direction transverse the cyclone axis of rotation. For example, if the cyclone chamber is a horizontally extending cyclone chamber, then extending the dirt collection chamber to include a portion that is forward or rearward of the cyclone chamber may allow a larger dirt collection volume without increasing the height of the handvac and/or allow for a similar sized dirt collection chamber while decreasing the height of the collection chamber and cyclone chamber.
As exemplified in
In the exemplified embodiment, second portion 1422 is located between a first (e.g., front) end 1390 having a first (e.g., front) end wall 1394, which is spaced axially forward of the cyclone chamber first end 220, and cyclone chamber first end 220. As exemplified, the lower end of second portion 1422 may be radially spaced from the cyclone axis of rotation by at least the same distance as the lower end of first portion 1420 is radially spaced from the cyclone axis or rotation. Accordingly, as exemplified in
Second portion 1420 has an axially spaced apart second (e.g., rear) end 1396 having a second (e.g., rear) end wall 1398. Accordingly, as exemplified, second portion 1420 may extend to the rear end of the cyclone chamber and may communicate with a dirt outlet 200 provided at the rear end of common wall 226. Accordingly, as exemplified in
It will be appreciated that, as in
It will be appreciated that the height H3 of second portion in a direction transverse to the cyclone axis of rotation may be the same as the height of the rest of the cyclone bin assembly. The height H3 may be such that the cyclone axis of rotation 1371 extends through first portion 1422. In an alternate embodiment, the cyclone axis of rotation 1371 may not extend through first portion 1422 but a projection of a portion of the cyclone chamber may extend through second portion 1422. In a further alternate embodiment, the height H3 may be such that a projection of all of the cyclone chamber may extend through second portion 1422.
Handvac Cyclone Bin Assembly Bypass
In accordance with another aspect of this disclosure, which may be used by itself or in combination with any one or more other aspects of this disclosure, the cyclonic air treatment member of the handvac may be bypassed when a supplemental cyclonic bin assembly is provided. This may prevent accumulation of dirt in the handvac so that the handvac may have more or all of its dirt collection capacity available when disconnected from the upright section. Alternately or in addition, a pre-motor filter of handvac 112 may be bypassed when a supplemental cyclonic bin assembly is provided. For example, the supplemental cyclonic bin assembly may be provided with a pre-motor filter. The pre-motor filter may have a larger surface area than the pre-motor filter of handvac 112. Accordingly, by bypassing the pre-motor filter of handvac 112, the pre-motor filter of handvac 112 may only be used in an above floor cleaning mode thereby extending the useable time of the pre-motor filter of handvac 112 before cleaning or replacement may be needed.
Referring to
In the illustrated embodiment, bypass airflow path 1232 is formed in part by a bypass passage 1236. Bypass passage 1236 may have an upstream end 1238 in airflow communication with handvac inlet 416, and a downstream end 1240 in airflow communication with motor inlet 1108. As exemplified by the embodiment illustrated in
As exemplified, apparatus 168 may include a bypass valve 1240 for selectively opening and closing primary and bypass airflow paths 1228 and 1232. Bypass valve 1240 may be positioned in any one or more of handvac 112, wand 144, and supplemental cyclone bin assembly 160, and may take any suitable form. For example, in some embodiments bypass valve 1240 may include components parts positioned in two or more of handvac 112, wand 144, and supplemental cyclone bin assembly 108 which cooperate and interact to open and close primary and bypass airflow paths 1228 and 1232.
In the illustrated embodiment bypass valve 1240 is positioned in inlet nozzle 412 of handvac 112. Bypass valve 1240 may be movable between a first position (
As exemplified in
As exemplified, actuator 1246 may include an upper end 1248 connected to wheel 1242 radially outboard of the center of wheel 1242. Actuator 1246 may be movable vertically between a lowered position (
In some embodiments, actuator 1246 may be biased to the lowered position (
Actuator 1246 may have a lower end 1252 which extends outside of the airflow path. Lower end 1252 may be acted upon to move actuator 1246 vertically from the lowered position to the raised position for opening bypass airflow path 1232 and closing primary airflow path 1228. As shown, when handvac 112 is disconnected from wand 144 (
As shown in
In the illustrated example, lower end 1252 is sloped. This may permit supplemental bin assembly 160 to be toed into wand 144 and then rotated horizontally towards wand 144 to complete the connection with wand 144, whereby the upper end 1254 of supplemental bin assembly 160 may ride the slope of lower end 1252 to push actuator 1246 upwardly.
Accordingly, bypass valve 1240 may be actuated to reconfigure the airflow path through handvac 112 automatically upon connecting and disconnecting supplemental bin assembly 160 from airflow communication with handvac 112. For example, bypass valve 1240 may be biased to close bypass airflow path 1232 whenever handvac 112 is not in airflow communication with supplemental bin assembly 160 so that the air treatment member of handvac 112 may separate dirt from the airflow. Similarly, bypass valve 1240 may be configured to open bypass airflow path 1232 and close primary airflow path 1228 whenever handvac 112 is in airflow communication with supplemental bin assembly 160 so that the air treatment member of handvac 112 does not separate and store dirt from the airflow.
The following is a description of numerous embodiments of surface cleaning apparatus 168. In the figures associated with some embodiments, a bypass valve 1232 and/or a diversion valve 712 may be represented schematically. It will be appreciated that the embodiments may be practiced using the bypass valves 1232 and/or diversion valves 712 described above, or other suitable valves.
Referring to
In some embodiments, pre-motor filter 1256 may separate fine dirt particles from the airflow in substitution for the pre-motor filters 1176 and 1180 of handvac 112. As shown, bypass valve 1232 may divert air from supplemental cyclone bin assembly 160 into a bypass airflow path which bypasses handvac cyclone bin assembly 136 and pre-motor filters 1176 and 1180. For example, downstream end of 1239 of bypass passage 1236 may direct the bypass airflow path 1232 to downstream plenum 1212 for bypassing pre-motor filters 1176 and 1180.
It will be appreciated that a pre-motor filter will have a certain filtering capacity of fine particles at which point the filter should be cleaned or replaced. By incorporating a pre-motor filter into the supplemental cyclone bin assembly 160, and using this filter whenever the supplemental cyclone bin assembly 160 is connected to the handvac, the filtering capacity of the handvac pre-motor filters may be preserved. This may permit extended use of the handvac pre-motor filters before they require cleaning or replacement.
It will also be appreciated that there will be a measurable pressure drop across a pre-motor filter placed in an airflow path. If positioned in series, too many filters may produce a pressure drop that materially reduces air flow at the dirty air inlet. By filtering the airflow alternately by the supplemental pre-motor filter 1256 and by the handvac pre-motor filter when the handvac is used without assembly 140, 160 attached the operational life of the handvac pre-motor filter may be extended.
As exemplified in the alternate embodiment of
As shown, when supplemental cyclone bin assembly 160 is in airflow communication with handvac 112, the airflow path extends through the air treatment member(s) of supplemental cyclone bin assembly 160 (e.g., cyclone chamber 308 and pre-motor filter 1256) and then divides into two parallel air flow paths 1232 and 1260. Bypass airflow path 1232 directs one portion of the airflow to the handvac suction motor 204 bypassing handvac cyclone chamber 184 (and optionally bypassing handvac pre-motor filters 1176 and 1180), and second airflow path 1260 directs a second portion of the airflow path to the second suction motor 1258 in head 104.
It will be appreciated that suction motors 1258 and 204 operating in parallel may generate greater suction at surface cleaning head 104 than any one of suction motors 1258 and 204 may generate operating alone. This may also permit supplemental cyclone bin 160 to include a pre-motor filter 1256 having greater surface area than the pre-motor filter of the handvac, where the additional pressure drop due to the use of two pre-motor filters may be compensated for by the enhanced suction generation of the parallel motors 1258 and 204.
As exemplified in the alternate embodiment of
As shown, when supplemental cyclone bin assembly 160 is in airflow communication with handvac 112, the airflow path extends through the air treatment member(s) of supplemental cyclone bin assembly 160 (e.g., cyclone chamber 308 and pre-motor filter 1256) and then divides into two parallel air flow paths 1232 and 1260. Bypass airflow path 1232 directs one portion of the airflow to the handvac suction motor 204 bypassing handvac cyclone chamber 184 (and optionally bypassing handvac pre-motor filters 1176 and 1180), and second airflow path 1260 directs a second portion of the airflow path to the second suction motor 1258.
As shown, second suction motor 1258 may be positioned below dirt collection chamber 140 and cyclone chamber 308 of supplemental cyclone bin assembly 160, and second suction motor 1258 may be vertically aligned above surface cleaning head 104. This may help to lower the center of gravity of the apparatus 168 for enhanced stability against tipping.
In some embodiments, a pre-motor filter may be positioned in each of bypass airflow path 1232 and second airflow path 1260, as shown. For example, a pre-motor filter 1256 may be positioned in the second airflow path 1260 between outlet passage 478 and second suction motor 1258, and bypass airflow path 1232 may direct the airflow through handvac pre-motor filters 1176 and 1180. In the illustrated embodiment, pre-motor filter 1256 is shown positioned below dirt collection chamber 140 of supplemental cyclone bin assembly 160.
In alternative embodiments, air exiting cyclone chamber 308 may pass through a common pre-motor filter before dividing between the second airflow path 1260 and bypass airflow path 1232. For example, in
As exemplified in
As exemplified in
In the illustrated example, wand 144 may define two airflow paths. A first airflow path 1428 may be formed by a first division of wand 144 and may direct airflow moving therein to supplemental cyclone bin assembly 160 for cleaning, and then from supplemental cyclone bin assembly 160 to bypass airflow path 1232 of handvac 112. A second airflow path 1432 may be formed by a second division of wand 144 and may direct airflow moving therein to primary airflow path 1228 of handvac 112 for cleaning by cyclone bin assembly 136.
As exemplified, dirty air entering dirty air inlet 124 may divide into two airflows at wand upstream end 360 and then travel through the first and second airflow paths 1428 and 1432. Dirt may be separated from each airflow stream by a different one of supplementary cyclone bin assembly 160 and handvac 112. In the illustrated embodiment, the two airflows may recombine in pre-motor filter chamber 556. For example, the two airflows may recombine at the upstream plenum 1208 so that both airflows pass through pre-motor filters 1176 and 1180 before exiting through suction motor 204. In alternative embodiments, the two airflows may recombine at the downstream plenum 1212. For example, supplemental cyclone bin assembly 160 may have its own pre-motor filter for filtering the air of the first airflow path 1428.
In some embodiments, surface cleaning apparatus 168 may include two or more suction motors operating in series. In one aspect, this may enhance the suction at dirty air inlet 124 and/or compensate for suction loss from additional or higher efficiency air treatment members.
Referring to
Referring to
Referring to
In some embodiments, when handvac is connected with supplement cyclone bin assembly 160, handvac 112 may not be positioned in the airflow path through the surface cleaning apparatus. For example, air entering the dirty air inlet 124 of the surface cleaning head may be cleaned by the supplementary cyclone bin assembly 160 and discharged without ever passing through handvac 112. In this way, handvac 112 may act as a handgrip for manipulating and steering surface cleaning apparatus 168 in the upright mode but not as an air cleaning implement.
In some embodiment, as exemplified in
Still referring to
While the above description provides examples of the embodiments, it will be appreciated that some features and/or functions of the described embodiments are susceptible to modification without departing from the spirit and principles of operation of the described embodiments. Accordingly, what has been described above has been intended to be illustrative of the invention and non-limiting and it will be understood by persons skilled in the art that other variants and modifications may be made without departing from the scope of the invention as defined in the claims appended hereto. The scope of the claims should not be limited by the preferred embodiments and examples, but should be given the broadest interpretation consistent with the description as a whole.
This application is a continuation of U.S. patent application Ser. No. 17/351,943, filed on Jun. 18, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/590,972 filed on Oct. 2, 2019, which is a divisional of U.S. patent application Ser. No. 16/156,006 filed on Oct. 10, 2018, now issued as U.S. Pat. No. 10,478,030, which is a continuation of U.S. patent application Ser. No. 15/088,876 filed on Apr. 1, 2016, now issued as U.S. Pat. No. 10,219,662, which is a continuation of U.S. patent application Ser. No. 14/822,211, filed Aug. 10, 2015, now issued as U.S. Pat. No. 9,888,817, which claimed priority from U.S. Provisional Patent Application No. 62/093,189, filed Dec. 17, 2014, the entirety of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1600762 | Charles | Sep 1926 | A |
1797812 | Waring | Mar 1931 | A |
1898608 | Alexander | Feb 1933 | A |
1937765 | Leathers | Dec 1933 | A |
2152114 | Van Tongeren | Mar 1939 | A |
2542634 | Davis et al. | Feb 1951 | A |
2678110 | Madsen | May 1954 | A |
2731102 | James | Jan 1956 | A |
2811219 | Wenzl | Oct 1957 | A |
2846024 | Bremi | Aug 1958 | A |
2913111 | Rogers | Nov 1959 | A |
2917131 | Evans | Dec 1959 | A |
2937713 | Stephenson et al. | May 1960 | A |
2942691 | Dillon | Jun 1960 | A |
2942692 | Benz | Jun 1960 | A |
2946451 | Culleton | Jul 1960 | A |
2952330 | Winslow | Sep 1960 | A |
2981369 | Yellott et al. | Apr 1961 | A |
3032954 | Racklyeft | May 1962 | A |
3085221 | Joseph | Apr 1963 | A |
3130157 | Kelsall et al. | Apr 1964 | A |
3200568 | Mcneil | Aug 1965 | A |
3204772 | Ruxton | Sep 1965 | A |
3217469 | Eckert | Nov 1965 | A |
3269097 | German | Aug 1966 | A |
3320727 | Farley et al. | May 1967 | A |
3372532 | Langdon | Mar 1968 | A |
3426513 | Bauer | Feb 1969 | A |
3518815 | Mcfarland et al. | Jul 1970 | A |
3530649 | Porsch et al. | Sep 1970 | A |
3543325 | Hamrick | Dec 1970 | A |
3561824 | Homan | Feb 1971 | A |
3582616 | Wrob | Jun 1971 | A |
3675401 | Cordes | Jul 1972 | A |
3684093 | Kono et al. | Aug 1972 | A |
3822533 | Oranje | Jul 1974 | A |
3898068 | Mcneil | Aug 1975 | A |
3933450 | Percevaut | Jan 1976 | A |
3988132 | Oranje | Oct 1976 | A |
3988133 | Schady | Oct 1976 | A |
4097381 | Ritzler | Jun 1978 | A |
4187088 | Hodgson | Feb 1980 | A |
4218805 | Brazier | Aug 1980 | A |
4236903 | Malmsten | Dec 1980 | A |
4307485 | Dessig, III | Dec 1981 | A |
4373228 | Dyson | Feb 1983 | A |
4382804 | Mellor | May 1983 | A |
4409008 | Solymes | Oct 1983 | A |
4486207 | Baillie | Dec 1984 | A |
4494270 | Ritzau et al. | Jan 1985 | A |
4523936 | Disanza, Jr. | Jun 1985 | A |
4678588 | Shortt | Jul 1987 | A |
4700429 | Martin et al. | Oct 1987 | A |
4744958 | Pircon | May 1988 | A |
4778494 | Patterson | Oct 1988 | A |
4803753 | Palmer | Feb 1989 | A |
4826515 | Dyson | May 1989 | A |
D303173 | Miyamoto et al. | Aug 1989 | S |
4853008 | Dyson | Aug 1989 | A |
4853011 | Dyson | Aug 1989 | A |
4853111 | Macarthur et al. | Aug 1989 | A |
4905342 | Ataka | Mar 1990 | A |
4944780 | Usmani | Jul 1990 | A |
4980945 | Bewley | Jan 1991 | A |
5054157 | Werner et al. | Oct 1991 | A |
5078761 | Dyson | Jan 1992 | A |
5080697 | Finke | Jan 1992 | A |
5090976 | Dyson | Feb 1992 | A |
5129125 | Gamou et al. | Jul 1992 | A |
5224238 | Bartlett | Jul 1993 | A |
5230722 | Yonkers | Jul 1993 | A |
5254019 | Noschese | Oct 1993 | A |
5267371 | Soler et al. | Dec 1993 | A |
5287591 | Rench et al. | Feb 1994 | A |
5307538 | Rench et al. | May 1994 | A |
5309600 | Weaver et al. | May 1994 | A |
5309601 | Hampton et al. | May 1994 | A |
5347679 | Saunders et al. | Sep 1994 | A |
5363535 | Rench et al. | Nov 1994 | A |
5481780 | Daneshvar | Jan 1996 | A |
5515573 | Frey | May 1996 | A |
5599365 | Alday et al. | Feb 1997 | A |
D380033 | Theiss et al. | Jun 1997 | S |
5709007 | Chiang | Jan 1998 | A |
5755096 | Holleyman | May 1998 | A |
5815878 | Murakami et al. | Oct 1998 | A |
5815881 | Sjoegreen | Oct 1998 | A |
5858038 | Dyson et al. | Jan 1999 | A |
5858043 | Geise | Jan 1999 | A |
5893938 | Dyson et al. | Apr 1999 | A |
5935279 | Lars | Aug 1999 | A |
5950274 | Lars | Sep 1999 | A |
5970572 | Thomas | Oct 1999 | A |
6071095 | Verkaart | Jun 2000 | A |
6071321 | Trapp et al. | Jun 2000 | A |
6080022 | Shaberman et al. | Jun 2000 | A |
6122796 | Downham et al. | Sep 2000 | A |
6210469 | Tokar | Apr 2001 | B1 |
6221134 | Conrad et al. | Apr 2001 | B1 |
6228260 | Conrad et al. | May 2001 | B1 |
6231645 | Conrad et al. | May 2001 | B1 |
6251296 | Conrad et al. | Jun 2001 | B1 |
6260234 | Wright et al. | Jul 2001 | B1 |
6345408 | Nagai et al. | Feb 2002 | B1 |
6406505 | Oh et al. | Jun 2002 | B1 |
6434785 | Vandenbelt et al. | Aug 2002 | B1 |
6440197 | Conrad et al. | Aug 2002 | B1 |
6502278 | Oh et al. | Jan 2003 | B2 |
6519810 | Kim | Feb 2003 | B2 |
6531066 | Saunders et al. | Mar 2003 | B1 |
6553612 | Dyson et al. | Apr 2003 | B1 |
6553613 | Onishi et al. | Apr 2003 | B2 |
6560818 | Hasko | May 2003 | B1 |
6581239 | Dyson et al. | Jun 2003 | B1 |
6599338 | Oh et al. | Jul 2003 | B2 |
6599350 | Rockwell et al. | Jul 2003 | B1 |
6613316 | Sun et al. | Sep 2003 | B2 |
6623539 | Lee et al. | Sep 2003 | B2 |
6625845 | Matsumoto et al. | Sep 2003 | B2 |
6640385 | Oh et al. | Nov 2003 | B2 |
6648934 | Choi et al. | Nov 2003 | B2 |
6712868 | Murphy et al. | Mar 2004 | B2 |
6732403 | Moore et al. | May 2004 | B2 |
6746500 | Park et al. | Jun 2004 | B1 |
6766558 | Matsumoto et al. | Jul 2004 | B1 |
6782583 | Oh | Aug 2004 | B2 |
6782585 | Conrad et al. | Aug 2004 | B1 |
6810558 | Lee | Nov 2004 | B2 |
6818036 | Seaman | Nov 2004 | B1 |
6833015 | Oh et al. | Dec 2004 | B2 |
6868578 | Kasper et al. | Mar 2005 | B1 |
6874197 | Conrad et al. | Apr 2005 | B1 |
6896719 | Coates et al. | May 2005 | B2 |
6929516 | Brochu et al. | Aug 2005 | B2 |
6968596 | Oh et al. | Nov 2005 | B2 |
6976885 | Lord | Dec 2005 | B2 |
7113847 | Chmura et al. | Sep 2006 | B2 |
7128770 | Oh et al. | Oct 2006 | B2 |
7160346 | Park | Jan 2007 | B2 |
7162770 | Davidshofer | Jan 2007 | B2 |
7175682 | Nakai et al. | Feb 2007 | B2 |
7198656 | Maeda et al. | Apr 2007 | B2 |
7222393 | Kaffenberger et al. | May 2007 | B2 |
7272872 | Choi | Sep 2007 | B2 |
7278181 | Harris et al. | Oct 2007 | B2 |
7341611 | Greene et al. | Mar 2008 | B2 |
7354468 | Arnold et al. | Apr 2008 | B2 |
7370387 | Walker et al. | May 2008 | B2 |
7377007 | Best | May 2008 | B2 |
7377953 | Oh | May 2008 | B2 |
7386915 | Blocker et al. | Jun 2008 | B2 |
7395579 | Oh | Jul 2008 | B2 |
7426768 | Peterson et al. | Sep 2008 | B2 |
7429284 | Oh et al. | Sep 2008 | B2 |
7448363 | Rasmussen et al. | Nov 2008 | B1 |
7449040 | Conrad et al. | Nov 2008 | B2 |
7485164 | Jeong et al. | Feb 2009 | B2 |
7488363 | Jeong et al. | Feb 2009 | B2 |
7547337 | Oh et al. | Jun 2009 | B2 |
7547338 | Kim et al. | Jun 2009 | B2 |
7563298 | Oh | Jul 2009 | B2 |
7565853 | Arnold et al. | Jul 2009 | B2 |
7588616 | Conrad et al. | Sep 2009 | B2 |
7597730 | Yoo et al. | Oct 2009 | B2 |
7628831 | Gomiciaga-Pereda et al. | Dec 2009 | B2 |
7691161 | Oh et al. | Apr 2010 | B2 |
7717973 | Oh et al. | May 2010 | B2 |
7740676 | Burnham et al. | Jun 2010 | B2 |
7770256 | Fester | Aug 2010 | B1 |
7776120 | Conrad | Aug 2010 | B2 |
7779506 | Kang et al. | Aug 2010 | B2 |
7803207 | Conrad | Sep 2010 | B2 |
7805804 | Loebig | Oct 2010 | B2 |
7811349 | Nguyen | Oct 2010 | B2 |
7867308 | Conrad | Jan 2011 | B2 |
7882593 | Beskow et al. | Feb 2011 | B2 |
7922794 | Morphey | Apr 2011 | B2 |
7931716 | Oakham | Apr 2011 | B2 |
7938871 | Lloyd | May 2011 | B2 |
7958598 | Hwang et al. | Jun 2011 | B2 |
7979959 | Courtney | Jul 2011 | B2 |
7996956 | Wood et al. | Aug 2011 | B2 |
8021453 | Howes | Sep 2011 | B2 |
8062398 | Luo et al. | Nov 2011 | B2 |
8100999 | Ashbee et al. | Jan 2012 | B2 |
8101001 | Qian | Jan 2012 | B2 |
8117712 | Dyson et al. | Feb 2012 | B2 |
8146201 | Conrad | Apr 2012 | B2 |
8151407 | Conrad | Apr 2012 | B2 |
8152877 | Greene | Apr 2012 | B2 |
8156609 | Milne et al. | Apr 2012 | B2 |
8161599 | Griffith et al. | Apr 2012 | B2 |
8225456 | Hkan et al. | Jul 2012 | B2 |
8484799 | Conrad | Jul 2013 | B2 |
8673487 | Churchill | Mar 2014 | B2 |
8869344 | Conrad | Oct 2014 | B2 |
9192269 | Conrad | Nov 2015 | B2 |
9516979 | Gidwell | Dec 2016 | B2 |
9675218 | Kim et al. | Jun 2017 | B2 |
9711986 | Sunderland et al. | Jul 2017 | B2 |
10299651 | Kim et al. | May 2019 | B2 |
10405719 | Kim et al. | Sep 2019 | B2 |
10561291 | Kim et al. | Feb 2020 | B2 |
10610075 | Kim et al. | Apr 2020 | B2 |
10660493 | Kim et al. | May 2020 | B2 |
10959589 | Kim et al. | Mar 2021 | B2 |
10973380 | Seo et al. | Apr 2021 | B2 |
11229339 | Cho et al. | Jan 2022 | B2 |
11357374 | Cho et al. | Jun 2022 | B2 |
11363928 | Kim et al. | Jun 2022 | B2 |
11382471 | Kim et al. | Jul 2022 | B2 |
20020011050 | Hansen et al. | Jan 2002 | A1 |
20020011053 | Oh | Jan 2002 | A1 |
20020062531 | Oh | May 2002 | A1 |
20020088208 | Lukac et al. | Jul 2002 | A1 |
20020112315 | Conrad | Aug 2002 | A1 |
20020134059 | Oh | Sep 2002 | A1 |
20020134238 | Conrad et al. | Sep 2002 | A1 |
20020178535 | Oh et al. | Dec 2002 | A1 |
20020178698 | Oh et al. | Dec 2002 | A1 |
20020178699 | Oh | Dec 2002 | A1 |
20030037403 | Lang | Feb 2003 | A1 |
20030046910 | Lee et al. | Mar 2003 | A1 |
20030066273 | Choi et al. | Apr 2003 | A1 |
20030106180 | Tsen | Jun 2003 | A1 |
20030159238 | Oh | Aug 2003 | A1 |
20030159411 | Hansen et al. | Aug 2003 | A1 |
20030200736 | Ni | Oct 2003 | A1 |
20040010885 | Hitzelberger et al. | Jan 2004 | A1 |
20040025285 | Mccormick et al. | Feb 2004 | A1 |
20040045126 | Parker et al. | Mar 2004 | A1 |
20040216264 | Shaver et al. | Nov 2004 | A1 |
20050081321 | Milligan et al. | Apr 2005 | A1 |
20050115409 | Conrad | Jun 2005 | A1 |
20050132528 | Yau | Jun 2005 | A1 |
20050198769 | Lee et al. | Sep 2005 | A1 |
20050198770 | Jung et al. | Sep 2005 | A1 |
20050252179 | Oh et al. | Nov 2005 | A1 |
20050252180 | Oh et al. | Nov 2005 | A1 |
20060037172 | Choi | Feb 2006 | A1 |
20060042206 | Arnold et al. | Mar 2006 | A1 |
20060090290 | Lau | May 2006 | A1 |
20060123590 | Fester et al. | Jun 2006 | A1 |
20060137304 | Jeong et al. | Jun 2006 | A1 |
20060137306 | Jeong et al. | Jun 2006 | A1 |
20060137309 | Jeong et al. | Jun 2006 | A1 |
20060137314 | Conrad et al. | Jun 2006 | A1 |
20060156508 | Khalil | Jul 2006 | A1 |
20060162298 | Oh et al. | Jul 2006 | A1 |
20060162299 | North | Jul 2006 | A1 |
20060168922 | Oh | Aug 2006 | A1 |
20060168923 | Lee et al. | Aug 2006 | A1 |
20060207055 | Ivarsson et al. | Sep 2006 | A1 |
20060207231 | Arnold | Sep 2006 | A1 |
20060230715 | Oh et al. | Oct 2006 | A1 |
20060230723 | Kim et al. | Oct 2006 | A1 |
20060230724 | Han et al. | Oct 2006 | A1 |
20060236663 | Oh | Oct 2006 | A1 |
20060254226 | Jeon | Nov 2006 | A1 |
20060277711 | Hong et al. | Dec 2006 | A1 |
20060278081 | Han et al. | Dec 2006 | A1 |
20060288516 | Sawalski | Dec 2006 | A1 |
20070067944 | Kitamura et al. | Mar 2007 | A1 |
20070077810 | Gogel et al. | Apr 2007 | A1 |
20070079473 | Min et al. | Apr 2007 | A1 |
20070079585 | Oh et al. | Apr 2007 | A1 |
20070095028 | Kim et al. | May 2007 | A1 |
20070095029 | Min et al. | May 2007 | A1 |
20070136984 | Hsu | Jun 2007 | A1 |
20070209334 | Conrad | Sep 2007 | A1 |
20070209335 | Conrad | Sep 2007 | A1 |
20070271724 | Hakan et al. | Nov 2007 | A1 |
20070289089 | Yacobi | Dec 2007 | A1 |
20070289266 | Oh | Dec 2007 | A1 |
20080040883 | Beskow et al. | Feb 2008 | A1 |
20080134460 | Conrad | Jun 2008 | A1 |
20080134462 | Jansen et al. | Jun 2008 | A1 |
20080178416 | Conrad | Jul 2008 | A1 |
20080178420 | Conrad | Jul 2008 | A1 |
20080190080 | Oh et al. | Aug 2008 | A1 |
20080196194 | Conrad | Aug 2008 | A1 |
20080196745 | Conrad | Aug 2008 | A1 |
20080301903 | Cunningham et al. | Dec 2008 | A1 |
20090100633 | Bates et al. | Apr 2009 | A1 |
20090113659 | Jeon et al. | May 2009 | A1 |
20090144932 | Yoo | Jun 2009 | A1 |
20090165431 | Oh | Jul 2009 | A1 |
20090205160 | Conrad | Aug 2009 | A1 |
20090205161 | Conrad | Aug 2009 | A1 |
20090205298 | Hyun et al. | Aug 2009 | A1 |
20090209666 | Hellberg et al. | Aug 2009 | A1 |
20090265877 | Dyson et al. | Oct 2009 | A1 |
20090282639 | Dyson et al. | Nov 2009 | A1 |
20090300874 | Tran et al. | Dec 2009 | A1 |
20090300875 | Inge et al. | Dec 2009 | A1 |
20090307564 | Vedantham et al. | Dec 2009 | A1 |
20090307863 | Milne et al. | Dec 2009 | A1 |
20090307864 | Dyson | Dec 2009 | A1 |
20090308254 | Oakham | Dec 2009 | A1 |
20090313958 | Gomiciaga-Pereda et al. | Dec 2009 | A1 |
20090313959 | Gomiciaga-Pereda et al. | Dec 2009 | A1 |
20100083459 | Beskow et al. | Apr 2010 | A1 |
20100132319 | Ashbee et al. | Jun 2010 | A1 |
20100154150 | Mcleod | Jun 2010 | A1 |
20100175217 | Conrad | Jul 2010 | A1 |
20100212104 | Conrad | Aug 2010 | A1 |
20100224073 | Oh et al. | Sep 2010 | A1 |
20100229321 | Dyson et al. | Sep 2010 | A1 |
20100229324 | Conrad | Sep 2010 | A1 |
20100229328 | Conrad | Sep 2010 | A1 |
20100242210 | Conrad | Sep 2010 | A1 |
20100243158 | Conrad | Sep 2010 | A1 |
20100293745 | Coburn | Nov 2010 | A1 |
20100299865 | Conrad | Dec 2010 | A1 |
20100299866 | Conrad | Dec 2010 | A1 |
20110023261 | Proffitt, II et al. | Feb 2011 | A1 |
20110146024 | Conrad | Jun 2011 | A1 |
20110168332 | Bowe et al. | Jul 2011 | A1 |
20110219576 | Conrad | Sep 2011 | A1 |
20110289719 | Han et al. | Dec 2011 | A1 |
20120023701 | Lenkiewicz et al. | Feb 2012 | A1 |
20120030896 | Crouch et al. | Feb 2012 | A1 |
20120060322 | Simonelli et al. | Mar 2012 | A1 |
20120079671 | Stickney et al. | Apr 2012 | A1 |
20120216361 | Millington et al. | Aug 2012 | A1 |
20120222245 | Conrad | Sep 2012 | A1 |
20120222260 | Conrad | Sep 2012 | A1 |
20120222262 | Conrad | Sep 2012 | A1 |
20130160232 | Peace | Jun 2013 | A1 |
20140137362 | Smith | May 2014 | A1 |
20140137363 | Wilson | May 2014 | A1 |
20140137364 | Stickney et al. | May 2014 | A1 |
20140182080 | Lee et al. | Jul 2014 | A1 |
20140208538 | Visel et al. | Jul 2014 | A1 |
20140237956 | Conrad | Aug 2014 | A1 |
20150135474 | Gidwell | May 2015 | A1 |
20150230677 | Andrikanish | Aug 2015 | A1 |
20150297050 | Marsh et al. | Oct 2015 | A1 |
20160113460 | Williams et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
112778 | Nov 1991 | AU |
1077412 | May 1980 | CA |
1218962 | Mar 1987 | CA |
2450450 | Dec 2004 | CA |
2484587 | Apr 2005 | CA |
2438079 | Aug 2009 | CA |
2658014 | Sep 2010 | CA |
2659212 | Sep 2010 | CA |
1336154 | Feb 2002 | CN |
1434688 | Aug 2003 | CN |
1493244 | May 2004 | CN |
1875846 | Dec 2006 | CN |
1875855 | Dec 2006 | CN |
1887437 | Jan 2007 | CN |
101061932 | Oct 2007 | CN |
101108110 | Jan 2008 | CN |
201290642 | Aug 2009 | CN |
101108081 | Oct 2010 | CN |
101108106 | Jul 2012 | CN |
202739907 | Feb 2013 | CN |
202932850 | May 2013 | CN |
204363891 | Jun 2015 | CN |
105816104 | Aug 2016 | CN |
205671986 | Nov 2016 | CN |
107343774 | Nov 2017 | CN |
108024674 | May 2018 | CN |
211459996 | Sep 2020 | CN |
212307697 | Jan 2021 | CN |
875134 | Apr 1953 | DE |
9216071 | Feb 1993 | DE |
4232382 | Mar 1994 | DE |
10056935 | Jan 2003 | DE |
69907201 | May 2003 | DE |
60201666 | Jun 2006 | DE |
60211663 | May 2007 | DE |
102007011457 | Oct 2007 | DE |
112010001135 | Aug 2012 | DE |
102012211246 | Jan 2014 | DE |
493950 | Apr 1998 | EP |
1200196 | Jun 2005 | EP |
1815777 | Aug 2007 | EP |
1594386 | Apr 2009 | EP |
1676516 | Jan 2010 | EP |
1629758 | Feb 2010 | EP |
2308360 | Apr 2011 | EP |
1779761 | Jun 2013 | EP |
2848173 | Mar 2015 | EP |
2812531 | Nov 2004 | FR |
700791 | Dec 1953 | GB |
1111074 | Apr 1968 | GB |
2035787 | Oct 1982 | GB |
2163703 | Jan 1988 | GB |
2268875 | Jan 1994 | GB |
2307849 | Jun 1997 | GB |
2282979 | Oct 1997 | GB |
2365324 | Jul 2002 | GB |
2440111 | Jan 2008 | GB |
2465781 | Jun 2010 | GB |
2441962 | Mar 2011 | GB |
2466290 | Oct 2012 | GB |
2508035 | May 2014 | GB |
2508035 | Mar 2015 | GB |
61131720 | Jun 1986 | JP |
2000140533 | May 2000 | JP |
2002085297 | Mar 2002 | JP |
2003135335 | May 2003 | JP |
2005040246 | Feb 2005 | JP |
2006102034 | Apr 2006 | JP |
2008206613 | Sep 2008 | JP |
2009261501 | Nov 2009 | JP |
2010081968 | Apr 2010 | JP |
2010178773 | Aug 2010 | JP |
2010220632 | Oct 2010 | JP |
2011001891 | Jan 2011 | JP |
2011189133 | Sep 2011 | JP |
2013086228 | May 2013 | JP |
1020010045598 | Jun 2001 | KR |
1020020067489 | Aug 2002 | KR |
1020020085478 | Nov 2002 | KR |
1020040050174 | Jun 2004 | KR |
1020060008365 | Jan 2006 | KR |
1020060118795 | Nov 2006 | KR |
1020060118800 | Nov 2006 | KR |
1020060118802 | Nov 2006 | KR |
1020060118803 | Nov 2006 | KR |
1020060122249 | Nov 2006 | KR |
1020060125952 | Dec 2006 | KR |
1020060125954 | Dec 2006 | KR |
1020100084127 | Jul 2010 | KR |
1020170126377 | Nov 2017 | KR |
1020170126378 | Nov 2017 | KR |
1020170126379 | Nov 2017 | KR |
1020170126380 | Nov 2017 | KR |
101832328 | Feb 2018 | KR |
101952658 | Feb 2019 | KR |
101968588 | Apr 2019 | KR |
102405363 | Jun 2022 | KR |
8002561 | Nov 1980 | WO |
9627446 | Sep 1996 | WO |
9720492 | Jun 1997 | WO |
9809121 | Mar 1998 | WO |
9843721 | Oct 1998 | WO |
0107168 | Feb 2001 | WO |
0147247 | Nov 2001 | WO |
0217766 | Feb 2003 | WO |
2004069021 | Aug 2004 | WO |
2006076363 | Jul 2006 | WO |
2006026414 | Aug 2007 | WO |
2007104238 | Sep 2007 | WO |
2008009883 | Jan 2008 | WO |
2008009888 | Jan 2008 | WO |
2008009890 | Jan 2008 | WO |
2008009891 | Jan 2008 | WO |
2008035032 | Mar 2008 | WO |
2008070973 | Jun 2008 | WO |
2008088278 | Jul 2008 | WO |
2008135708 | Nov 2008 | WO |
2009026709 | Mar 2009 | WO |
2010102396 | Sep 2010 | WO |
2010142968 | Dec 2010 | WO |
2010142969 | Dec 2010 | WO |
2010142970 | Dec 2010 | WO |
2010142971 | Dec 2010 | WO |
2011054106 | May 2011 | WO |
2012042240 | Apr 2012 | WO |
2012117231 | Sep 2012 | WO |
2015129387 | Sep 2015 | WO |
2016065151 | Apr 2016 | WO |
2017046557 | Mar 2017 | WO |
2017046559 | Mar 2017 | WO |
2017046560 | Mar 2017 | WO |
2017196004 | Nov 2017 | WO |
2017196028 | Nov 2017 | WO |
Entry |
---|
English machine translation of DE112010001135T5, published on Aug. 2, 2012. |
English machine translation of DE9216071, published on Feb. 25, 1993. |
English machine translation of DE69907201, published on May 28, 2003. |
English machine translation of DE60211663, published on May 10, 2007. |
English machine translation of DE60201666, published on Jun. 1, 2006. |
English machine translation of DE4232382, published on Mar. 24, 1994. |
English machine translation of FR2812531, published on Nov. 5, 2004. |
English machine translation of DE875134, published on Apr. 30, 1953. |
English machine translation of KR1020100084127, published on Jul. 23, 2010. |
English machine translation of KR1020060125954., published on Dec. 7, 2006. |
English machine translation of KR1020060125952, published on Dec. 7, 2006. |
English machine translation of KR1020060122249, published on Nov. 30, 2006. |
English machine Translation of KR1020060118803, published on Nov. 24, 2006. |
English machine translation of KR1020060118802, published on Nov. 24, 2006. |
English machine translation of KR1020060118800, published on Nov. 24, 2006. |
English machine translation of KR1020060118795, published on Nov. 24, 2006. |
English machine translation of KR1020060008365, published on Jan. 26, 2006. |
English machine translation of KR1020040050174, published on Jun. 16, 2004. |
English machine translation of KR1020020085478, published on Nov. 16, 2002. |
English machine translation of KR1020020067489, published on Aug. 22, 2002. |
English machine translation of KR1020010045598, published on Jun. 5, 2001. |
English machine translation of JP2013086228, published on May 13, 2013. |
English machine translation of JP2011189133, published on Sep. 29, 2011. |
English machine translation of JP2011001891, published on Jan. 6, 2011. |
English machine translation of JP2010220632, published on Oct. 7, 2010. |
English machine translation of JP 2010178773, published on Aug. 19, 2010. |
English machine translation of JP2010081968, published on Apr. 15, 2010. |
English machine translation of JP2009261501, published on Nov. 12, 2009. |
English machine translation of JP2008206613, published on Sep. 11, 2008. |
English machine translation of JP2006102034, published on Apr. 20, 2006. |
English machine translation of JP2005040246, published on Feb. 17, 2005. |
English machine translation of JP2003135335, published on May 13, 2003. |
English machine translation of JP2002085297, published on Mar. 26, 2002. |
English machine translation of JP2000140533, published on May 23, 2000. |
English machine translation of JP61131720, published on Jun. 19, 1986. |
English machine translation of JP2508035, published on May 21, 2014. |
Espacenet: English machine translation of CN212307697U, publishe don Jan. 8, 2021. |
Espacenet: English machine translation of CN211459996U, published on Sep. 11, 2020. |
Espacenet: English machine translation of CN108024674A, published on May 11, 2018. |
Google Patents: English machine translation of CN107343774, published on Nov. 14, 2017. |
English machine translation of KR101832328B1, published on Feb. 26, 2019. |
English machine translation of KR101968588B1, published on Apr. 15, 2019. |
English machine translation of KR101952658B1, published on Feb. 27, 2019. |
English machine translation of KR1020170126380A, published on Nov. 17, 2017. |
English machine translation of KR1020170126379A, published on Nov. 17, 2017. |
English machine translation of KR1020170126378A, published on Nov. 17, 2017. |
English machine translation of KR1020170126377A, published on Nov. 17, 2017. |
English machine translation of KR102405363B1, published on Jun. 7, 2022. |
International Preliminary Report on Patentability, received in connection to PCT/CA2015/051332, dated Jun. 29, 2017. |
English machine translation of DE102012211246A1, published on Jan. 2, 2014. |
English machine translation of DE102007011457, published on Oct. 25, 2007. |
English machine translation of CN205671986, published on Nov. 9, 2016. |
English machine translation of CN204363891, published on Jun. 3, 2005. |
English machine translation of CN202932850, published on May 15, 2013. |
English machine translation of CN202739907, published on Feb. 20, 2013. |
English machine translation of CN201290642Y, published on Aug. 19, 2009. |
English machine translation of CN105816104A, published on Aug. 3, 2016. |
English machine translation of CN101108110A, published on Jan. 23, 2008. |
English machine translation of CN101108106B, published on Jul. 18, 2012. |
English machine translation of CN212307697U, published on Jan. 8, 2021. |
English machine translation of CN101108081B, published on Oct. 27, 2010. |
English machine translation of CN211459996, published on Sep. 11, 2020. |
English machine translation of CN101061932, published on Oct. 31, 2007. |
English machine translation of DE10056935, published on Jan. 16, 2003. |
English machine translation of CN1887437, published on Jan. 3, 2007. |
English machine translation of CN1875855, published on Dec. 13, 2006. |
English machine translation of CN1875846, published on Dec. 13, 2006. |
English machine translation of CN1493244, published on May 5, 2004. |
English machine translation of CN1434688, published on Aug. 6, 2003. |
Number | Date | Country | |
---|---|---|---|
20220287519 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62093189 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16156006 | Oct 2018 | US |
Child | 16590972 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17351943 | Jun 2021 | US |
Child | 17830507 | US | |
Parent | 15088876 | Apr 2016 | US |
Child | 16156006 | US | |
Parent | 14822211 | Aug 2015 | US |
Child | 15088876 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16590972 | Oct 2019 | US |
Child | 17351943 | US |