The specification relates to a surface cleaning apparatus and preferably an upright surface cleaning apparatus having an anti-rotation locking mechanism. The surface cleaning apparatus may also comprise an alignment mechanism.
The following is not an admission that anything discussed below is prior art or part of the common general knowledge of persons skilled in the art.
Various types of surface cleaning apparatus are known. Typical upright vacuum cleaners include an upper section, including an air treatment member such as one or more cyclones and/or filters, drivingly mounted to a surface cleaning head. An up flow conduit is typically provided between the surface cleaning head and the upper section. In some such vacuum cleaners, a spine, casing or backbone extends between the surface cleaning head and the upper section for supporting the upper section. The air treatment member or members and/or the suction motor may be provided on the upper section.
Surface cleaning apparatus having a rotational connection between the upper section and the surface cleaning head that can be rotatably secured in position are known. U.S. Pat. No. 7,503,098 (Stein) discloses a connection arrangement between a vacuum cleaner and a suction tool that includes a pivot element pivotably connected to the suction tool and a rotation element rotatably coupled to the pivot element. A suction wand, hose, handle or other part of the vacuum cleaner is removably connected to a connection end of the rotation element. Coupling ends of the pivot and rotation elements are inserted one in the other, and respectively have circumferential grooves that form a circumferential channel therebetween. Plural partial ring segment elements are received in the circumferential channel to form a connection ring that rotatably secures the pivot and rotation elements. The ring segment elements are inserted into or removed from the channel through a selectively coverable opening in the rotation element or the pivot element. A catch cooperates with a detent to hold a vertically pivoted, rotationally centered rest position of the components.
The following introduction is provided to introduce the reader to the more detailed discussion to follow. The introduction is not intended to limit or define the claims.
According to one broad aspect, a surface cleaning apparatus such as an upright vacuum cleaner may comprise an upper section comprising a support structure. The support structure is moveable between a storage position and an angled or declined or floor cleaning position. In the storage position the upper section preferably is in a generally upright or vertical orientation and the vacuum cleaner may be free-standing or self-supporting so that it can stand in a closet or other storage location without leaning, tipping or falling over. In addition, the upper section is rotatable relative to the surface cleaning head about a longitudinally extending axis (i.e., it may rotate about an axis extending through the upper section). The vacuum cleaner comprises an anti-rotation locking mechanism that retains the support structure in a given orientation and inhibits changes in orientation once the support structure is in the storage position. In accordance with this aspect, the anti-rotation locking mechanism is automatically engaged when the support structure is moved in the storage position by a user, and is automatically disengaged when a user moves the support structure into the floor cleaning position, allowing the user to freely change the orientation of the support structure and maneuver the vacuum cleaner during use.
The stability of a vacuum cleaner in the storage position may depend on the orientation of the support structure relative to the surface cleaning head. A vacuum cleaner may be stable when the support structure is in a particular orientation (for example when it is centered relative to the surface cleaning head so that the center of gravity of the upper section lies generally above the centerline extending from the front to the back of the surface cleaning head) and may be unstable in another orientation (for example when the support structure is rotated to the left or right such that the center of gravity of the upper section no longer overhangs the centerline. Absent a locking or securing mechanism, a support structure that is initially placed in a stable orientation may move or rotate into an unstable orientation when released by the user. Accordingly an advantage of this aspect is that the upper section will be automatically secured in a stable storage position when the upper section is moved into the storage position. Further, a user does not have to actuate a foot pedal or other lock release member to move the upper section to a floor cleaning position. A user may forget that there is a lock release that has to be actuated and may force the upper section into a floor cleaning position, thereby breaking the surface cleaning apparatus.
According to another broad aspect, a surface cleaning apparatus such as an upright vacuum cleaner may comprise an upper section, comprising a support structure that is moveable between a storage position and a floor cleaning position. In accordance with this aspect, the vacuum cleaner comprises an anti-rotation locking mechanism that is automatically engaged when the support structure is moved in the storage position by a user and an alignment mechanism. The alignment mechanism comprises a guiding or directing apparatus that assists to align the support structure relative to the surface cleaning head when the upper section is moved to the storage position. The alignment of the support structure may be done using a separate apparatus, or may use components that are common with the anti-rotation locking mechanism. It will be appreciated that the first aspect may optionally utilize the alignment mechanism.
An advantage of this aspect is that the anti-rotation locking mechanism may be damaged if the user tries to move the upper section to the storage position when the components of the anti-rotation locking mechanism are out of alignment. Further, if the anti-rotation locking mechanism is capable of locking the upper section in more than one orientation, then the upper section could be placed in the storage position with the upper section secured in an unstable orientation. The alignment mechanism would assist to ensure that the upper section is placed in the storage position in a stable orientation.
In any aspect, the support structure may comprise a bendable or pivotal construction that is drivingly connected to a surface cleaning head and/or a cleaning unit that is optionally removably mounted to the support structure. In some embodiments, the cleaning unit may be removed from the support structure while remaining in airflow communication with the surface cleaning head. In other embodiments, the cleaning unit may be removed from the support structure and from airflow communication with the surface cleaning head and be capable as being used as a separate cleaning unit.
In accordance with one aspect, there is provided an upright surface cleaning apparatus having a front, a rear and opposed lateral sides may comprise a surface cleaning head having a dirt inlet, an upper section moveably mounted to the surface cleaning head between an floor cleaning position and a storage position, an air flow path extending from the dirt inlet to a clean air outlet with a suction motor and a treatment member provided in the air flow path and, an anti-rotation locking mechanism automatically operably engaged when the upper section is moved into the storage position and automatically operably disengaged when the upper section is moved into the floor cleaning position.
In any embodiment, the upper section may comprise a rotational coupling member having a longitudinally extending member and the upper section is rotatably mounted about the longitudinal axis and the longitudinal axis extends through a portion of the air flow path.
In any embodiment the rotational coupling member may comprise a portion of the air flow path.
In any embodiment the rotational coupling member may comprise an up flow duct.
In any embodiment the suction motor and the treatment member may be provided in a cleaning unit and the cleaning unit may be removably mounted to the upper section.
In any embodiment the upper section may have an absence of a housing defining a recess for receiving the cleaning unit.
In any embodiment the cleaning unit may be useable in a first configuration wherein the cleaning unit is mounted on the upright surface cleaning apparatus and at least one additional configuration wherein the cleaning unit is removed from the upright surface cleaning apparatus and attached in air flow communication with the surface cleaning head or wherein the cleaning unit is removed from the upright surface cleaning apparatus and removed from air flow communication with the surface cleaning head and useable as a portable surface cleaning apparatus.
In any embodiment the upper section may be rotationally mounted to the surface cleaning head and the storage position may include a particular orientation of the upper section and the apparatus may further comprise an alignment mechanism comprising a first cooperating alignment member associated with the surface cleaning head and a second cooperating alignment member associated with the upper section, the first and second cooperating alignment members guide the upper section to the particular orientation when the upper section is moved into the storage position.
In any embodiment the anti-rotation locking mechanism and the alignment mechanism may utilize common components.
In any embodiment the anti-rotation locking mechanism may comprise a pair of spaced apart engagement members and complimentary locking members.
In any embodiment the spaced apart engagement members maybe provided on the lateral sides.
In any embodiment the engagement members may be moveably mounted and biased to a disengaged position, each engagement member having an engaging end and the engaging ends are secured together.
In any embodiment the engaging ends may be secured together by a connector that extends around a portion of the fluid flow path.
In any embodiment the connector may engage the complimentary locking members.
In any embodiment the anti-rotation locking mechanism may further comprise a cam member provided on the surface cleaning head and drivingly associated with the engagement member and the complimentary locking members may comprise receiving members provided on the upper section and the engagement members may be moveable longitudinally to cooperate with the receiving members.
In any embodiment the alignment mechanism may comprise a portion of at least one of the receiving members.
In any embodiment the complimentary locking members may comprise a cam member.
According to another broad aspect, an upright surface cleaning may have apparatus a front, a rear and opposed lateral sides and may include a surface cleaning head having a dirt inlet. The surface cleaning apparatus may include an upper section moveably mounted to the surface cleaning head between a floor cleaning position, in which the upright surface cleaning apparatus is useable for cleaning a floor, and a storage position. The upper section may be rotatably coupled to the surface cleaning head whereby rotation of the upper section relative to the surface cleaning head is enabled. A cleaning unit may be removably mounted to the upper section. The cleaning unit may include an air treatment member, a suction motor and a clean air outlet. An air flow path may extend from the dirt inlet to the clean air outlet and may include the air treatment member and the suction motor. An anti-rotation locking mechanism may inhibit rotation of the upper section when the upper section is in the storage position. The cleaning unit may be removable while the upper section is in the storage position.
In any embodiment, the surface cleaning apparatus may have at least two operating modes including:
In any embodiment, when the surface cleaning apparatus is in the first operating mode the cleaning unit may be supported by the upper section.
In any embodiment, the upper section may be movable between the storage position and the floor cleaning position when the surface cleaning apparatus is in the first operating mode or the second operating mode.
In any embodiment, the surface cleaning apparatus may be changeable between the first operating mode and the second operating mode without interrupting the airflow communication between the dirty air inlet and the cleaning unit.
In any embodiment, the surface cleaning apparatus may be operable in a third operating mode in which the cleaning unit is detached from the upper section and is not in air flow communication with the surface cleaning head and is operable as a hand vacuum cleaner.
In any embodiment, the upper section may include a rigid airflow conduit, and wherein the cleaning unit may be supported on the rigid airflow conduit when mounted to the upper section.
In any embodiment, the cleaning unit may be vertically removable from the upper section when the upper section is in the storage position.
In any embodiment, the cleaning unit may be removable in the absence of adjusting a configuration of the upper section.
In any embodiment, the anti-rotation locking mechanism may include a first abutment member and a second abutment member spaced apart from the first abutment member. The first and second abutment members may each extend laterally outward from one of the surface cleaning head and the upper section. The other of the surface cleaning head and the upper section may include a stop member having a first stop face and a second stop face spaced apart from the first stop face, when the upper section is in the storage position the first abutment member abuts the first stop face and the second abutment member abuts the second stop face, and when the upper section is in the floor cleaning position the first abutment member is spaced apart from the first stop face and the second abutment member is spaced apart from the second stop face.
In any embodiment, the first and second abutment members and the stop member may include an alignment mechanism whereby contact between at least one of the abutment members and the stop member guides the upper section to a storage rotational orientation when the upper section is moved from the floor cleaning position into the storage position.
In any embodiment, the upper section may be rotatably coupled to the surface cleaning head by a rotational coupling member and the rotational coupling member comprises a portion of the air flow path.
In any embodiment, the first and second abutment members may be provided on opposed sides of the upper section and the stop member is provided on the surface cleaning head.
In any embodiment, the upper section may include a rotational coupling member having a longitudinally extending member that comprises a portion of the airflow path and extends along a longitudinal axis, whereby the longitudinal axis extends through a portion of the airflow path.
In any embodiment, the air flow path may include a flexible hose having a downstream end coupled to the cleaning unit.
In any embodiment, the anti-rotation locking mechanism may be operable in both the first and second operating modes.
In any embodiment, the air treatment member may include at least a first cyclone chamber having an air inlet, an air outlet and a dirt outlet, and at least a first dirt collection chamber in communication with the dirt outlet.
In any embodiment, the first dirt collection chamber may be external the first cyclone chamber.
In any embodiment, the first cyclone chamber may include a cyclone axis about which air within the first cyclone circulates and the first dirt collection chamber is disposed at least partially axially between the first cyclone chamber and the suction motor.
In any embodiment the first cooperating alignment member may comprise first and second abutment members provided on opposed sides of the upper section and the second cooperating alignment member may comprise a stop member provided on the surface cleaning head.
In any embodiment the stop member may comprise a cowling surrounding a portion of the upper section when the upper section is in the storage position.
In any embodiment the cowling may be fixedly mounted to the surface cleaning head.
In any embodiment the first and second abutment members may be integrally formed with a part of the upper section.
In any embodiment the anti-rotation locking mechanism may comprise abutment members having abutment surfaces that are fixedly mounted to the upper section and to the surface cleaning head.
In accordance with another aspect, there is provided, an upright surface cleaning apparatus having a front, a rear and opposed lateral sides may comprise a surface cleaning head having a dirt inlet, an upper section that is moveably mounted to the surface cleaning head between an floor cleaning position and a storage position. The surface cleaning head may be rotationally mounted to the surface cleaning head and the upper section is moveable into the storage position when the upper section is in a particular orientation. An air flow path may extend from the dirt inlet to a clean air outlet with a suction motor and a treatment member provided in the air flow path. The upright surface cleaning apparatus may also comprise an anti-rotation locking mechanism automatically that is operably engaged when the upper section is moved into the storage position and an alignment mechanism comprising a first cooperating alignment member associated with the surface cleaning head and a second cooperating alignment member associated with the upper section. The first and second cooperating alignment members may guide the upper section to the particular orientation when the upper section is moved into the storage position.
An embodiment in accordance with this aspect may use any one or more of the optional embodiments discussed with respect to the first aspect.
In the detailed description, reference will be made to the following drawings, in which:
Various apparatuses or methods will be described below to provide an example of each claimed invention. No example described below limits any claimed invention and any claimed invention may cover processes or apparatuses that are not described below. The claimed inventions are not limited to apparatuses or processes having all of the features of any one apparatus or process described below or to features common to multiple or all of the apparatuses described below. It is possible that an apparatus or process described below is not an embodiment of any claimed invention.
The following description describes various embodiments of an upright surface cleaning apparatus, for example an upright vacuum cleaner, carpet extractor or the like. The upright surface cleaning apparatus generally comprises an upper section that is movably connected to a surface cleaning head. The upper section (also referred to as a support structure, backbone or handle) is moveable between a storage position and a floor cleaning position. Preferably, in the floor cleaning position the upper section can be pivoted and rotated relative to the surface cleaning head. When moved into the storage position, the upper section is preferably guided into a particular storage orientation, relative to the surface cleaning head, and is automatically locked in place by an anti-rotation locking mechanism. Moving the upper section from the storage position to the floor cleaning position may automatically unlock the anti-rotation locking mechanism, enabling rotation of the upper section when in use. A cleaning unit, preferably containing a suction motor and an air treatment member, is optionally removably attached to the upper section. It will be appreciated that the upright surface cleaning apparatus may be of various designs known in the art. For example, it may use various structures for the surface cleaning head and the upper section, it may use various air treatment members and may have various attachments and options known in the art.
As exemplified, the surface cleaning head 120 comprises a dirt inlet 122 for sucking in dirt from the surface being cleaned and a pair of rear wheels 123, located behind the dirt inlet 122, for rollably engaging the surface being cleaned. In some examples, the surface cleaning head may include additional support wheels. The surface cleaning head 120 has a front end 190, a rear end 192 and opposed lateral sides 194, 196 (see
The upper section 110 is movably connected to the surface cleaning head 120 such that the upper section 110 can be moved between an upright, storage position (as exemplified in
The vacuum cleaner 100 also comprises a suction motor and an air treatment member for drawing dirty air from the floor, removing at least a portion the entrained dirt and exhausting clean (or at least relatively cleaner) air into the surrounding environment. In the present example the suction motor and treatment member are combined to within a generally self-contained cleaning unit 126. As exemplified in
In other examples, the cleaning unit 126 need not be a portable surface cleaning apparatus having a dirty air inlet for cleaning a surface. Instead it may be a cleaning unit 126 that is fixedly attached to the upper section 110. For example, it may comprise a housing that houses a suction motor and one or more air treatment members (e.g., one or more cyclones with one or more filters). Such a cleaning unit does not have a dirty air inlet adapted to clean a floor. Instead, it is configured to receive dirty air conveyed from the surface cleaning head 120, as described below. In other examples, it will be appreciated that the suction motor may be provided in the surface cleaning head.
Vacuum cleaner 100 also comprises a fluid flow path 128 (also referred to as an air flow path or air flow conduit) that operatively connects the dirty air inlet 122 (also referred to as a dirt inlet, an air inlet or a suction inlet) on the surface cleaning head 120 with a clean air outlet 124 (also referred to as an exhaust) downstream of the suction motor, e.g., on the cleaning unit 126. As exemplified in
In accordance with a first aspect, the cleaning unit 126 is removably mounted to the upper section 110 and the upright vacuum cleaning is operable in at least two configurations and optionally in three configurations. In a first configuration the cleaning unit 126 is mounted to upper section 110, in a second configuration the cleaning unit 126 is removed from the support structure but remains in air flow communication with the surface cleaning head 120 and in a third configuration the cleaning unit 126 is detached from the upper section 110 and does not remain in air flow communication with the surface cleaning head 120.
In the first configuration, as exemplified in
In a second configuration, as exemplified in
In a third configuration, as exemplified in
In some examples, the upper section 110 may include a housing, recess, casing or shell that surrounds at least a portion of the cleaning unit 126 when the cleaning unit 126 is mounted on the upper section 110. In other preferred examples, as exemplified in
In accordance with a second aspect, which may be used by itself or with any one or more other aspects, the upper section is rotationally mounted to the surface cleaning head and is moveable between a storage position and a floor cleaning position. The storage position includes one or more particular orientations of the support structure relative to the surface cleaning head that are stable and desirable for storage purposes. In some instances, the support structure may tend to rotate from the desired orientation into another orientation when a user releases the handle of support structure. To inhibit unwanted rotation of the support structure relative to the surface cleaning head, the upright vacuum cleaning includes an anti-rotation locking mechanism that locks (or fixes or otherwise secures) the orientation of the support structure relative to the surface cleaning head. It will be appreciated that the anti-rotation locking mechanism may secure the upper section in only one position or alternately in more than one position provided that each such position is stable. The anti-rotation locking mechanism is automatically engaged when the upper section 110 is moved to the storage position and automatically disengaged when the upper section is moved to a floor cleaning position.
In accordance with a third aspect, which may be used by itself or with any one or more other aspects, the upper section is rotationally mounted to the surface cleaning head and is moveable between a storage and a floor cleaning position. The storage position includes one or more particular orientations of the support structure relative to the surface cleaning head that are stable and desirable for storage purposes. To inhibit unwanted rotation of the support structure relative to the surface cleaning head, the upright vacuum cleaning includes an anti-rotation locking mechanism that locks the orientation of the support structure relative to the surface cleaning head and an alignment mechanism to guide the upper section 110 into the storage position.
In some examples, as exemplified in
In the example illustrated, when the vacuum cleaner 100 is in the storage position (as shown in
In some examples, alternately or in addition to positioning the center of gravity 130 in a front-back position (i.e. relative to the pivot axis plane 132), moving the upper section 110 into the storage position may also include registering the center of gravity 130 in the side-to-side direction (i.e. relative to a centerline plane 134 exemplified in
A vacuum cleaner 100 that is prone to tipping over when in the storage position (forward, backward or laterally) or an upper section 110 that tends to fall from the storage position into the floor cleaning position without user intervention may pose a safety hazard and may damage itself or other items when it falls. Positioning or orienting the center of gravity 130 within the centerline plane 134 or a range thereof, and optionally in front of the pivot axis plane 132, may reduce the likelihood that the vacuum cleaner 100 will tip or fall over when in the storage position. In some examples, the proper positioning of the center of gravity 130 is achieved using an alignment mechanism described below.
In addition to properly locating or aligning the center of gravity 130, when the vacuum cleaner is in the storage position it is preferred to lock (or otherwise secure) the upper section 110 in a fixed rotational position or orientation relative to the surface cleaning head 120 so that the upper section 110 will not auto-rotate (thereby moving the center of gravity 130 out of the centerline plane 134) when placed in the storage position and released by the user. The upper section 110 is positioned in the proper rotational position by using an anti-rotation locking mechanism. With the center of gravity 130 properly located and locked in position, as described above, the vacuum cleaner 100 may be considered stable when in its storage position and may be able to resist small impacts without tipping, for example being accidentally bumped or jostled by a user.
Preferably, for ease of use, the anti-rotation locking mechanism automatically engages or activates when the upper section 110 is pivoted into the storage position, and, more preferably, also automatically disengages or deactivates when the upper section 110 is pivoted into the floor cleaning position.
Referring to
As exemplified in
In addition to pivoting about the pivot axis 133, the rotational coupling member 142 is rotatably coupled to the mounting member 141 so that the rotational coupling member 142 can rotate relative to the mounting member 141. The rotatable connection between the rotational coupling member 142 and the mounting member 141 can be any suitable rotatable joint or coupling known by those skilled in the art.
In some examples the rotational coupling member 142 is a portion of the upper section 110 and is integrally formed therewith. In other examples, the rotational coupling member 142 is a separate member that is coupled or connected to a lower end of the upper section 110. Accordingly, in some examples, elements or features described as being part of the rotation coupling member 142 may form part of the upper section 110.
As exemplified in
The longitudinally extending member 144 of the rotational coupling member 142 defines a longitudinal axis 148, about which the rotational coupling member 142 can rotate (see
In the present example, the rotational coupling member 142 also comprises, and cooperates with the hollow portion of the mounting member 141 to define, an up flow conduit or up flow duct that forms part of the fluid flow path 128. In other examples, the air flow or fluid flow path 128 may be entirely or at least partially separate from the coupling portion 136.
To secure the rotational coupling member 142 (and the rest of the upper section 110 attached thereto) in the desired storage position, in which the center of gravity 130 is properly registered, an anti-rotation locking mechanism 140 is operable to selectively fix the rotational position of the rotational coupling member 142 relative to the mounting member 141 and the surface cleaning head 120. As exemplified in
The locking ring 150 is a generally annular ring having an internal opening that is sized and shaped to slidingly receive a portion of the mounting member 141 (and/or a portion of the rotational coupling member 142 in some examples). While the locking ring 150 is slidable relative to the mounting member 141 in the longitudinal direction (i.e. along the longitudinal axis 148), the locking ring 150 is also connected to the locking pins 154 received within the support posts 152, which prevents the locking ring 150 from rotating relative to the mounting member 141. The locking ring 150 is moveable between an engaged or locked position, shown in
While shown as being generally circular in the present example, it is understood that the locking ring 150 may be of any shape and is preferably complimentary to the mounting member 141 and/or rotational coupling member 142. The locking ring 150 has an upper face 158, an opposed lower face 160 and a pair of upwardly extending projections 162, extending from its upper face 158. In the example shown, the locking ring 150 comprises two, upward facing projections (also referred to as studs, protrusions or bosses) located on opposed sides of the vacuum cleaner 100, e.g. that are spaced approximately 180° apart and preferably on the opposed lateral sides of the vacuum cleaner. In other examples, the locking ring 150 may comprises a greater or fewer number of upwardly extending projections and the projections may be spaced in any suitable arrangement around the periphery or edge of the locking ring.
In addition to sliding along the rotational coupling member 142, the locking ring 150, and the upward facing projections 162, are designed to engage with complimentary locking members 168 of the receiving members 156. In the present example, the receiving members 156 comprise portions of a generally continuous annular flange 164 that extend from the longitudinally extending member 144 (or other portion of the upper section 110). The annular flange 164 comprises an upper face 165, a lower face 166 and a pair of notches 168 (also referred to as gaps, cut-outs or recesses) defined in the lower face 166 comprise the complimentary locking members. The number and location of the notches 168 formed in the lower face 166 of the receiving member 156 is preferably based on the number, size and position of the corresponding projections 162 on the locking ring 150. In the present example, the locking ring 150 comprises two upward facing projections 162 and each receiving member 156 comprises a corresponding notch 168. The notches 168 are sized to receive the upward facing projections 162 so that when the locking ring 150 is moved to the engaged or locked position the projections 162 are received within their respective notches 168 and the locking ring upper face 158 abuts the flange lower face 166.
With the projections 162 substantially received with the notches 168, the angular position of the rotational coupling member 142 is fixed relative to the locking ring 150 and therefore relative rotation between the rotational coupling member 142 and the mounting member 141 is inhibited. As exemplified, the notches 168 may extend through only a portion of the receiving member 156, thereby forming a recess or blind-holes in the flange lower face 166. In other examples, the notches 168 may have a different depth (i.e. extending more or less into the receiving member 156) or may comprise through-holes or apertures that extend completely through the receiving member 156, connecting the upper and lower flange faces 165, 166.
In the present example, the locking ring 150 is supported by two, spaced apart engagement members, the locking pins 154 that are slidably received within respective support posts 152. The support posts 152 are pivotally connected to the surface cleaning head 120 and preferably secured to the mounting member 141 so that the angular position of the support posts 152 automatically changes with the position of the mounting member 141 as the vacuum cleaner 100 is moved from the storage position to the floor cleaning position, and vice versa. This connection between the support posts 152 and the mounting member 141 may be created using any suitable means known in the art. In one example of this connection, as best exemplified in
Each support post 152 also comprises a generally planar upper face 170 that generally opposes a portion of the locking ring lower face 160. In use, upward movement of the locking ring 150 may be limited by the contact between the locking ring upper face 158 and the flange lower face 166, and downward movement of the locking ring 150 may be limited by contact between the upper faces 170 of the support posts 152 and portions of the locking ring lower face 160.
Each locking pin 154 (also referred to as an engagement member) is movably mounted to the surface cleaning head 120 (via support posts 152 as described above) and comprises an upper or engagement end. The engagement ends of both locking pins 154 are joined and secured together by the locking ring 150. In other examples, the engaging ends of the locking pins 154 may be secured together by a connector other than the locking ring 150. The locking ring maintains the alignment of the engagement end with the notches and assists to cause the locking pins 154 to move concurrently. It will be appreciated that a pair of arcuate connectors may be used or other alignment members that are provided on rotational coupling member 142 may be used. In another embodiment, a locking ring 150 may not be used and the engagement end of locking pins may directly engage notches 158.
Each locking pin 154 also comprises a lower end 172 that functions as a cam follower for engaging a cam member or cam surface 174 on the surface cleaning head 120. The support posts 152 and locking pins 154 are positioned relative to the cam surface 174 such that the lower ends 172 of the locking pins 154 are drivingly associated with the cam surfaces 174.
Based on the profile of the cam surface 174, the position of the pins 154 changes as the upper section 110 is pivoted between the storage and floor cleaning positions. In the floor cleaning position, the cam surface 174 is shaped so that the pins 154 may automatically move downward, which results in the locking ring 150 moving downward (away from the receiving member 156) toward the unlocked or disengaged position, as shown in
As exemplified in
Preferably, each support post 152 also comprises a spring 176 (or any other suitable biasing means) for biasing the pins 154 downward, toward the unlocked or disengaged position. The inclusion of the springs 176 may increase the likelihood that the pins 154 and locking ring 150 automatically move from the locked position to the unlocked position when the upper section 110 is tilted from the storage position to the floor cleaning position. To facilitate the automatic engagement/disengagement of the anti-rotation locking mechanism 140, the springs 176 exert a continuous, downward biasing force urging the locking pins 154, and therefore the locking ring 150, toward the unlocked position. The downward biasing force may also maintain the driving contact between the lower end 172 of the locking pin 154 and the cam surface 174 on the surface cleaning head 120, which supplies a reaction force, opposing the biasing force of the springs 174. When the upper section 110 is tilted from the storage position, toward the floor cleaning position, the support posts 152 pivot relative to the surface cleaning head 120 which causes the lower end 172 of the locking pins 154 to be urged downward by the spring 176 and to move forward along the cam surface 174. The profile of the cam surface 174 is designed so that as the pin 154 moves along the cam surface 174, the pin 154 slides downward, resulting in a corresponding downward movement of the locking ring 150. This automatic downward movement of the locking ring 150 operatively or functionally disengages the upward facing projections 162 from their respective notches 168 which enables the relative rotation between the rotational coupling member 142 and the mounting member 141, desired during use. It will be appreciated that cam surface 174 may be of various configurations and that pin 154 need not always contact the cam surface 174.
In the present example, each spring 176 is retained at its upper end at the top, or upper end, of the support post 152 while the lower end of the spring 176 rests on a shoulder 178 formed at the connection between the lower end 172 and a narrower, neck portion of the locking pin 154. In other examples, the spring 176, or other biasing means, may be engage in the pin 154 and the support post 152 in any suitable manner, including adhesive connections, tabs or clips.
Referring to
As exemplified in
As described above, the mounting member 241 is a hollow, tube-like member that forms part of the air flow passage 128 (e.g., air flows therethrough or a hose of the like that transports air passes therethrough). The rotational coupling member 242 telescopingly receives a portion of the mounting member 241 (like rotational coupling member 142) and comprises a longitudinally extending member 244, an elbow 246 and an upper end 247 that is connected to, or forms part of the upper section 110. The longitudinally extending member 244 defines a longitudinal axis 248, about which the rotational coupling member 242 rotates when in use.
As exemplified, the anti-rotation locking mechanism 240 comprises a stop member or receiving member, for example cowling 282, and a pair of engaging members, for example abutment members 284, each abutment member having a forward facing abutment surface. The cowling 282 is an upstanding portion of the surface cleaning head 220 (either integral with or attached to, e.g., fixedly mounted thereto by screws, welding an adhesive or the like) preferably having a curved inner surface 286 extending between and optionally terminating at a pair of spaced, rearward facing stop faces 288. In other examples the stop faces 288 may be connected directly to the surface cleaning head 220 and/or may be separate from the cowling 282 or a cowling may not be provided.
If a cowling is provided, then the cowling is shaped such that the abutment members 284 may be moved forwardly to contact stop faces 288. It will be appreciated that cowling need not be shaped to match the shape of coupling 136 provided it has a recess for coupling 136 to be received at least partially therein. The curvature of the inner surface 286 of the cowling 282 is preferably configured to match the shape, curvature and profile of the mounting member 241, the rotational coupling member 242 and the intersection between said elements. If the coupling between the mounting member 241 and the rotational coupling member 242 results in a smooth, continuous surface having a constant diameter then the inner surface 286 of the cowling 282 may have a complimentary, smooth surface. If, as exemplified, the coupling between the mounting member 241 and the rotational coupling member 242 creates a non-uniform or stepped curved surface, the inner surface 286 of the cowling 282 may have a complimentary curved surface having the appropriate shoulders, ridges and recesses for achieving a substantially flush or uniform fit of the at least a portion of the mounting member 241 and rotational coupling member 242 within the cowling 282 when in the storage position.
The rearward facing edges of the cowling 282 comprise the cowling stop faces 288. As exemplified, the stop faces 288 are generally planar edges or surfaces of the cowling 282 that serve as stops or barriers for engaging the abutment surfaces or other portions of the corresponding abutment members 284 of the rotational coupling member 242. In other examples, the stop faces 288 of the cowling 282 may be of any suitable, complimentary profile selected to match the profile of the abutment members 284 or the abutment surfaces thereon, including having a curved surface or providing a recess for receiving a portion of a respective abutment member.
The rotational coupling member 242 comprises a pair of abutment members 284 spaced around its periphery, preferably at the lateral sides of the vacuum cleaner 100, for engaging the cowling 282 when in the storage position. As exemplified, the two abutment members 284 are spaced on substantially opposing lateral sides of the rotational coupling member 242, separated by approximately 180°. In other examples, the spacing of the abutment members 284 may spacing of the abutment members may be greater or less than 180°, and the arc length subtended by the curved inner surface 286 of the cowling 282, may be selected to match the abutment member 284 spacing, or vice versa.
As exemplified in
For example, rotation of the rotational coupling member 242 in the clockwise direction (when viewed in
The abutment members 284 may be integrally formed with the rotational coupling member 242 or may be separate elements that are attached to the rotational coupling member 242 using known means.
While the anti-rotation locking mechanisms 140, 240 inhibit rotation of the upper section 110 of the vacuum cleaner 100 when the vacuum cleaner 100 is in the storage configuration, in some examples it may also be desirable to provide a mechanism to ensure that the upper section 110 is properly aligned with the surface cleaning head 120 (i.e. the center of gravity 130 is in its desired position) before locking the upper section 110 in place.
In accordance with this aspect, which may be used by itself or with any one or more other aspects, the upper section is rotationally mounted to the surface cleaning head and is moveable between a storage position and a floor cleaning position. The storage position includes a particular orientation of the support structure relative to the surface cleaning head and the upright vacuum cleaning includes an alignment mechanism for guiding or aligning the upper section in the desired orientation.
Referring to
As exemplified, the alignment mechanism 138 comprises the driving relationship between the upward facing projections 162 on the locking ring upper face 158 and an alignment cam surface 180 formed by a portion of the flange lower face 166.
When the upper section 110 is moved toward the storage position, locking pins 154 are driven upward by cam surface 174 on the surface cleaning head 120, which drives the locking ring 150 upward and moves the projections 162 into the notches 168 as described above. However, if the upper section 110 is not orientated properly or is not “centered” (i.e. not facing directly forward so that the center of gravity 130 lies within the centerline plane 134), then the upward facing projections 162 will not be properly aligned with their respective notches 168. In the absence of an aligning mechanism, if the projections 162 are moved upward when not properly aligned with the notches 168, the projections 162 would contact and interfere with a portion of the flange lower face 166, possibly preventing the upper section 110 from fully reaching the storage position, and possibly preventing the anti-rotation locking mechanism 140 from properly engaging (i.e. the projections 162 may not enter their respective notches 168).
To help orient the upper section 110, the vacuum cleaner 100 comprises the alignment mechanism 138. As exemplified, the alignment mechanism 138 comprises a pair of alignment cam surfaces 180 located on opposing sides of each notch 168.
Each alignment cam surface 180 extends at an angle or incline, extending generally upwardly from the flange lower face 166 toward the notch 168. If the upper section 110 is not centered when it is pivoted toward the storage position, then when the locking ring 150 moves upward each upward facing projection 162 will contact a respective alignment cam surface 180. As the upper section 110 is moved, the upward force applied by the locking ring 150 will increase (as the spring compression increases) and the angled nature of the alignment cam surfaces 180 will guide or urge the projections 162 upward, along the alignment cam surface 180 toward the notches 168. Movement of the projections 162 upward, along the alignment cam surface 180 profile will cause the upper section 110 to automatically rotate toward the centered position, and will lead to the projections 162 being aligned with their respective notches 168. Once aligned with their respective notches 168, the rotational force exerted on the projections 162 by the alignment cam surfaces 180 will decrease while the upward force exerted by the springs 176 will urge, snap or click the projections 162 into their respective notches 168, automatically locking the centered upper section 110 in place.
The length, width, slope and profile of each alignment cam surface 180 may be selected based on the size and configuration of the projections 162 and notches 168. Also, while each pair of alignment cam surfaces 180 is shown as being symmetrical (about the notch 168) it is understood that in some examples, each alignment cam surface 180 may have a unique configuration. Further, only a single cam surface may be used to guide the coupling member 142 in a particular direction.
A second example of an alignment mechanism is exemplified in
In this example, the abutment members 284 and cowling stop faces 288 are positioned symmetrically about the longitudinal axis 248, relative to the front of the vacuum cleaner. When the upper section 110 is centered and pivoting toward the storage position, the left and right abutment members 284 engage their respective stop faces 288 at the same, or substantially the same time. However, when the upper section is not centered, one abutment member 284 will engage its stop face 288 before the second abutment member 284 engages its respective stop face 288.
For example, if the upper section 110 is rotated slightly clockwise relative to its center position when it is moved toward the storage position, (when viewed in
In some examples, the rotational force exerted on the left abutment member 284 may lead to an over-rotation of the upper section 110 (i.e. past the center position), leading to an upper section 110 that is misaligned and rotated slightly in the counter-clockwise direction, for example. In such examples, as the upper section 110 continues to be pivoted forward by the user, the right abutment member 284 will be positioned forward of the left abutment member 284 and will contact the right stop face 288 before the left abutment member 284 engages the left stop face 288. An unbalanced rotational force will then be created in the clockwise direction, moving the rotational coupling member 242 toward the centered position. Alternating contact between the left and right abutment members 284 can iteratively drive the rotational coupling member 242 toward the desired, aligned orientation.
When the upper section 110 is properly oriented, the magnitude of the forces exerted on the left and right abutment members 284 will be substantially equal which will keep the upper section 110 in the centered position. When the upper section 110 is fully pivoted into the storage position, rotation of the upper section 110 relative to the surface cleaning head 120 is inhibited by the anti-rotation locking mechanism 140.
In some examples, as exemplified in
Preferably, the alignment mechanism may be configured to correct the alignment if the upper section is out of alignment by 10°, preferably by 15°, more preferably by 25° and most preferably by 40°.
It will be appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments or separate aspects, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment or aspect, may also be provided separately or in any suitable sub-combination.
Although the invention has been described in conjunction with specific embodiments thereof, if is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2674758 | Jul 2009 | CA | national |
This application is a continuation of U.S. application Ser. No. 12/846,144 entitled SURFACE CLEANING APPARATUS and filed Jul. 29, 2010, now allowed, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2300204 | Carlson | Oct 1942 | A |
2464587 | Knight | Mar 1949 | A |
2851313 | Bradley, Jr. | Sep 1958 | A |
4462137 | Berfield et al. | Jul 1984 | A |
4947512 | Lackner et al. | Aug 1990 | A |
5279018 | Glenn, III | Jan 1994 | A |
5323510 | Redding et al. | Jun 1994 | A |
5351361 | Buchtel | Oct 1994 | A |
5524321 | Weaver et al. | Jun 1996 | A |
5584095 | Redding et al. | Dec 1996 | A |
5715566 | Weaver | Feb 1998 | A |
6055703 | Redding et al. | May 2000 | A |
6058559 | Yoshimi | May 2000 | A |
6115880 | Wulff et al. | Sep 2000 | A |
7013521 | Grey | Mar 2006 | B2 |
7159273 | Fawcett | Jan 2007 | B2 |
7188388 | Best et al. | Mar 2007 | B2 |
7377007 | Best | May 2008 | B2 |
7377008 | Park et al. | May 2008 | B2 |
7383609 | Ji | Jun 2008 | B2 |
7503098 | Stein | Mar 2009 | B2 |
7607196 | Li | Oct 2009 | B2 |
7805804 | Loebig | Oct 2010 | B2 |
7870638 | Jansen | Jan 2011 | B2 |
7877836 | O'Neal | Feb 2011 | B2 |
8060981 | Bassett et al. | Nov 2011 | B2 |
8127398 | Conrad | Mar 2012 | B2 |
8166607 | Conrad | Apr 2012 | B2 |
8201302 | Poetting | Jun 2012 | B2 |
8375508 | Conrad | Feb 2013 | B2 |
8479358 | Conrad | Jul 2013 | B2 |
8661613 | Marsh et al. | Mar 2014 | B2 |
8667643 | Simonelli et al. | Mar 2014 | B2 |
20010023517 | Onishi et al. | Sep 2001 | A1 |
20020017005 | Kim et al. | Feb 2002 | A1 |
20020108208 | Hamada et al. | Aug 2002 | A1 |
20030051307 | Hashizume et al. | Mar 2003 | A1 |
20030145420 | Park et al. | Aug 2003 | A1 |
20040216263 | Best | Nov 2004 | A1 |
20040261211 | Overvaag et al. | Dec 2004 | A1 |
20050235454 | Courtney | Oct 2005 | A1 |
20060218741 | Kang | Oct 2006 | A1 |
20070017063 | Park et al. | Jan 2007 | A1 |
20070113369 | Cochran et al. | May 2007 | A1 |
20070209147 | Krebs | Sep 2007 | A1 |
20070209152 | Pullins et al. | Sep 2007 | A1 |
20070226937 | Courtney | Oct 2007 | A1 |
20070226946 | Best | Oct 2007 | A1 |
20070245514 | Luebbering et al. | Oct 2007 | A1 |
20080148510 | Yoo | Jun 2008 | A1 |
20080178420 | Conrad | Jul 2008 | A1 |
20080209666 | Conrad | Sep 2008 | A1 |
20080209671 | Conrad | Sep 2008 | A1 |
20090007368 | Oh | Jan 2009 | A1 |
20090056059 | Mersmann et al. | Mar 2009 | A1 |
20090056065 | Myers | Mar 2009 | A1 |
20090094779 | Jansen | Apr 2009 | A1 |
20090144929 | Yoo | Jun 2009 | A1 |
20100139030 | Yoo | Jun 2010 | A1 |
20100229338 | Conrad | Sep 2010 | A1 |
20100251506 | Conrad | Oct 2010 | A1 |
20110023256 | Conrad | Feb 2011 | A1 |
20110023262 | Conrad | Feb 2011 | A1 |
20110107553 | Myers | May 2011 | A1 |
20110219573 | Conrad | Sep 2011 | A1 |
20110219579 | Conrad | Sep 2011 | A1 |
20110219580 | Conrad | Sep 2011 | A1 |
20110219581 | Vines et al. | Sep 2011 | A1 |
20120060322 | Simonelli et al. | Mar 2012 | A1 |
20120079679 | Seo | Apr 2012 | A1 |
20120090105 | Henderson | Apr 2012 | A1 |
20120090131 | Woerwag | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2675713 | Jun 2008 | CA |
2675713 | Jul 2009 | CA |
Number | Date | Country | |
---|---|---|---|
20150026916 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12846144 | Jul 2010 | US |
Child | 14504776 | US |