Surface cleaning devices, such as dry vacuums and wet extractors, are used to remove dirt, and other various debris from a surface, such as a carpet or hard floor. Wet extractors typically apply a cleaning fluid or solution to the surface before agitating the surface with a brush and then recover the applied cleaning solution with suction to remove dirt or debris from the surface along with the recovered fluid. Typically, extractors rely on a user to directly activate a distribution of cleaning solution onto the surface to be cleaned via a mechanism, such as by the user pressing or holding a button, trigger, or the like. Relying on user interaction for the distribution of the cleaning solution can lead to a misestimate of an amount of cleaning solution to apply to the surface by either applying too much or too little fluid. Furthermore, actuation of a trigger during prolonged use of the extractor may lead to user fatigue.
An extractor is disclosed having a base movable along a surface to be cleaned, and a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface. The extractor includes an encoder operable to generate a signal based on user-initiated movement of the base along the surface, and a controller operatively connected to the encoder and the liquid distribution system, the controller being configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the controller changes from the distributing mode to the non-distributing mode independent of user interaction with the extractor other than the user-initiated movement.
In another embodiment, an extractor has a base movable along a surface to be cleaned and a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface. The extractor includes an encoder operable to generate a signal indicative of user-initiated forward movement of the base along the surface, and a controller operatively connected to the encoder and the liquid distribution system. The controller controls distribution of the solution to the surface based on the signal during operation of the extractor, wherein the distribution of the solution is independent of continual user interaction with the extractor other than the user-initiated forward movement. A switch is provided for interrupting the distribution of the solution to the surface during user-initiated forward movement.
In yet another embodiment, an extractor has a base movable along a surface to be cleaned and a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface. The extractor includes an encoder operable to generate a signal based on user-initiated movement of the base along the surface, and a controller operatively connected to the encoder and the liquid distribution system. The controller is configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement. The signal is indicative of a speed of rotation of a wheel, and the distribution of the solution is increased or decreased in response to a respective increase or decrease of the speed of rotation of the wheel during operation of the extractor.
In yet another embodiment, an extractor has a base movable along a surface to be cleaned, a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface, and a liquid recovery system including a suction nozzle and a suction source in fluid communication with the suction nozzle, the suction source including a suction motor configured to generate an airflow through the suction nozzle. The extractor includes an encoder operable to generate a signal based on user-initiated movement of the base along the surface, and a controller operatively connected to the encoder, the liquid distribution system, and the liquid recovery system. The controller is configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the airflow through the suction nozzle is increased or decreased in response to the signal, wherein the signal is indicative of one or more attributes selected from a group consisting of movement in a forward direction, movement in a reverse direction, and speed of movement, and wherein the distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement.
In yet another embodiment, an extractor has a base movable along a surface to be cleaned and a handle configured to be gripped by a user to move the base along the surface to be cleaned. The extractor includes a liquid distribution system further including a supply tank and a distributor in fluid communication configured to deliver solution to the surface in a distributing mode and to not deliver solution to the surface in a non-distributing mode. The extractor has an encoder operable to generate an encoder signal as a first signal based on user-initiated movement of the base along the surface in a forward direction and as a second signal based on user-initiated movement of the base along the surface in a rearward direction, and a controller operatively connected to the encoder and the liquid distribution system, the controller being configured to operate the liquid distribution system in the distributing mode during movement of the base based on the first signal during operation of the extractor and in the non-distributing mode during movement of the base based on the second signal during operation of the extractor, wherein the controller changes from the distributing mode to the non-distributing mode based on the encoder signal and independent of user interaction with the extractor other than the user-initiated movement.
Also disclosed is a method for distributing a solution to a surface to be cleaned using an extractor. The method includes steps of: detecting, with an encoder, a user-initiated movement of a base of the extractor along the surface during operation of the extractor; generating a signal based on detection of the user-initiated movement of the base along the surface; receiving the signal at a controller of the extractor, the controller being configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base; and in response receiving the signal, distributing the solution to the surface based on the signal during operation of the extractor, wherein distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement.
In another embodiment, a method for distributing a solution to a surface to be cleaned using an extractor is provided. The method includes steps of: detecting, with an encoder, a user-initiated movement of a base of the extractor along the surface during operation of the extractor; generating an encoder signal based on detection of the user-initiated movement of the base along the surface, wherein the encoder signal is a first signal based on user-initiated movement of the base along the surface in a forward direction and a second signal based on user-initiated movement of the base along the surface in a rearward direction; receiving the encoder signal at a controller of the extractor, the controller being configured to operate a liquid distribution system in a distributing mode during movement of the base based on the first signal during operation of the extractor and in a non-distributing mode during movement of the base based on the second signal during operation of the extractor; and in response receiving the encoder signal, operating the liquid distribution system to distribute the solution to the surface based on the encoder signal during operation of the extractor, wherein a change from the distributing mode to the non-distributing mode is based on the encoder signal and independent of user interaction with the extractor other than the user-initiated movement.
The features, functions, and advantages that have been discussed may be achieved independently in various embodiments of the device and methods described herein or may be combined with yet other embodiments, further details of which can be seen with reference to the following description and drawings.
The foregoing and other advantages and features of the disclosure, and the manner in which the same are accomplished, will become more readily apparent upon consideration of the following detailed description of the disclosure taken in conjunction with the accompanying drawings, which illustrate embodiments of the disclosure and which are not necessarily drawn to scale, wherein:
Embodiments of the present disclosure now may be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the disclosure are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure may satisfy applicable legal requirements. Like numbers refer to like elements throughout.
It should be understood that “operatively coupled,” when used herein, means that the components may be formed integrally with each other, or may be formed separately and coupled together. Furthermore, “operatively coupled” means that the components may be formed directly to each other, or to each other with one or more components located between the components that are operatively coupled together. Furthermore, “operatively coupled” may mean that the components are detachable from each other, or that they are permanently coupled together. Furthermore, operatively coupled components may mean that the components retain at least some freedom of movement in one or more directions or may be rotated about an axis (i.e., rotationally coupled). Furthermore, “operatively coupled” may mean that components may be electronically connected and/or in fluid communication with one another.
It should be understood that a “switch,” as used herein, refers to any device used for completing or breaking an electrical or mechanical or fluid connection. A user-interface for a switch may be embodied as a button, lever, dial, touch-screen interface, electronic switch, or the like. The switch may be actuated manually by a user of the surface cleaning device or automatically by a controller, computer, or other electronic interface to enact a change in device operation.
Also, it will be understood that, where possible, any of the advantages, features, functions, devices, and/or operational aspects of any of the embodiments of the present invention described and/or contemplated herein may be included in any of the other embodiments of the present invention described and/or contemplated herein, and/or vice versa. In addition, where possible, any terms expressed in the singular form herein are meant to also include the plural form and/or vice versa, unless explicitly stated otherwise. Accordingly, the terms “a” and/or “an” shall mean “one or more.”
As seen in
As seen in
Clean water and/or detergent flow through tubing from the clean water supply tank 110 and the detergent supply tank 112, when present, to form a cleaning solution. In various alternatives, the flow of liquid from the water supply tank 110 and the detergent supply tank 112 may be selectively distributed individually by a valve or series of valves, or may be combined in a mixing valve, a mixing chamber, a selection switch, or other flow control as desired. In the illustrated embodiment, tubing from the water supply tank 110 and the detergent supply tank 112 deliver clean water and detergent, respectively, through a mixing chamber to a valve assembly 506, shown in
The liquid is delivered through the tubing routed within the extractor 100 using gravity or routed with the assistance of a pump. In some embodiments, cleaning solution is drawn through the tubing and supplied to a cleaning tool using the pump 414. In some embodiments, the cleaning solution is supplied to a distributor in the base 102 using gravity. In the illustrated embodiment, the cleaning solution of clean water or a mixed cleaning solution (i.e., clean water and detergent when detergent is present) is selectively routed by either the valve assembly 506 to a distributor 410 (as depicted and discussed with respect to
The base 102 further includes a fluid distributor 410. The distributor 410 distributes the cleaning solution to the surface to be cleaned. The distributor 410 may at least partially distribute the cleaning solution to the one or more brushes 404 of the brush assembly 402. The one or more brushes 404 agitate and scrub the cleaning solution on the surface to dislodge embedded dirt or debris. During operation, the extractor 100 distributes cleaning solution to the surface from the liquid distribution system including the supply tank and distributor, while substantially simultaneously extracting and recovering the applied cleaning solution in a continuous operation.
The applied cleaning solution is extracted from the surface by a suction nozzle 406. In the illustrated embodiment, the nozzle has an inlet at least partially spanning the front portion of the base 102. The suction nozzle 406 is in fluid flow communication with the recovery tank 114 by way of an air duct 408 formed by the base 102. The air duct 408 and the base 102 are operatively coupled to and in fluid communication with the upright portion 104 via an air passage 412 that leads to the recovery tank 114 of the extractor 100. A suction/vacuum source 416 such as a motor and fan assembly (not shown), housed in the upright portion 104 draws air through the nozzle 406 and the formed air passageway of the base 102, through the recovery tank 114 to then exhaust the air to the external atmosphere. In other embodiments, the suction source may be alternatively housed in a different portion of the extractor 100, such as the base 102. In some embodiments, suction may be continuously generated by the suction source during operation of the extractor.
The recovery tank 114 includes an air and liquid separator (not shown), such as one or more baffles or other separator as is understood by one skilled in the art, for separating the liquid (i.e., the recovered cleaning solution) from the air entering the recovery tank 114 and recovering the separated liquid in the recovery tank 114. The recovery tank 114 is removably coupled to the upright portion 104 to allow a user to remove the recovery tank 114 and empty the liquid contents. In other embodiments, the recovery tank 114 may be operatively coupled to one or more other portions of the extractor 100, such as the base 102.
In the illustrated embodiment, an encoder 510 is operatively coupled adjacent one of the wheels, such as wheel 116L as depicted in
As previously discussed, the illustrated encoder 510 detects a motion of the extractor 100 along the surface in order to automatically control operations of the extractor 100 (e.g., cleaning solution distribution). For example, in response to detecting forward movement of the extractor 100 (as shown in
Prior art extractors rely on continual user actuation of a trigger to enable distribution of a cleaning solution to a surface to be cleaned. However, as reinforced by
In one embodiment, continued distribution of the cleaning solution to the surface is dependent on the continued generation of the signal by the encoder 510 (i.e., continuous forward movement of the extractor). In the illustrated embodiment, continued distribution of the solution to the surface is based on continued generation of the signal during operation of the triggerless extractor, and the controller stops distribution of the solution when the controller does not receive the signal for a predetermined amount of time, for example ½ second, 1 second, 2 seconds, or any other predetermined amount of time as desired.
As previously discussed, an encoder 510 electronically coupled to the controller 508 is configured to sense motion of the extractor 100. In the illustrated embodiment, the encoder 510 is a rotary encoder operable to sense a rotation and direction of a wheel 602 of the extractor 100 during operation. The wheel 602 is operatively coupled to the extractor 100 via an axle 604 that allows for clockwise or counterclockwise rotation of the wheel about the axle 604 to allow the extractor 100 to be propelled in either a forward or reverse direction (as illustrated in
In one embodiment, such as the illustrated embodiment, the encoder 510 includes two Hall Effect sensors. As seen in
To confirm an intentional movement of the wheel 602 along the surface, the controller 508 may analyze one or more signals received from the encoder 510, said one or more signals being produced as a result of negative nodes 654 and the positive nodes 656 moving past the encoder 510 during rotation of the wheel 602. In one embodiment, the controller 508 confirms that the extractor 100 is being intentionally moved forward along the surface only when the controller 508 determines that a predetermined distance of movement occurs within a predetermined amount of time (e.g., at least ten nodes must pass the encoder within two seconds, or other desired rate) indicating forward movement. In response to confirming the forward movement, the controller 508 controls the distributor 410 to distribute the cleaning solution to the surface. Alternatively, a movement of the magnetic element 652 may be determined to be below a predetermined threshold and therefore insufficient to trigger cleaning solution distribution by the controller 508. For example, an insufficient amount of detected movement of the magnetic element 652 may be indicative of merely an unintentional movement or accidental jostling of the extractor 100, wherein a distribution of cleaning solution is not desired.
As an alternative to the rotary Hall Effect encoder discussed in the previous illustrated embodiment, the encoder may be any encoder configured to sense motion of the extractor. In various alternatives, the encoder may sense the relative or absolute position of one or more wheels. In one alternative, the encoder 510 may be a linear encoder, wherein the linear encoder produces a signal based on detected motion along a linear path, such as the extractor 100 traveling along the surface. In another alternative, the encoder 510 is an optical or infrared sensor, wherein the optical sensor detects motion of the extractor 100 based on a collection by the sensor. For example, an optical sensor may detect the absolute or relative position of a wheel based on detecting movement of a visual pattern or apertures applied to a surface of the wheel or other surface associated with the wheel or movement of the extractor. In another example, the optical sensor detects movement along the surface to be cleaned by collecting an image of a surface that the extractor 100 is moving along. In another alternative embodiment, the encoder includes a mechanical member, wherein wheel movement causes movement of a spring or magnetic component of the extractor 100 to move a lever or other member to trigger a switch or Hall Effect sensor for generation of a signal. In yet another alternative, the encoder 510 is a switch that is physically actuated as a result of user-applied force applied to the handle causing movement of the extractor 100, the switch triggering generation of a signal to send to the controller 508.
In another embodiment, in addition to detecting movement and direction of movement, the encoder 510 also detects speed of movement of the extractor, for example by monitoring a rotational speed of the wheel 602, wherein the signal generated and transmitted by the encoder 510 to the controller 508 further includes information related to the speed of rotation of the wheel 602. In response to receiving the encoder signal, the controller 508 increases or decreases the rate of distribution of cleaning solution according to a respective increase or decrease of the speed of forward movement, e.g., speed of rotation of the wheel 602, during operation of the triggerless extractor. In one embodiment, the valve assembly 506 is configured to provide a variable flow rate (e.g., with a control valve) and to vary the size of a flow passage opening from the valve assembly 506 to the distributor thereby providing the variable flow rate. The variable flow rate may be provided in predetermined increments in response to predetermined incremental changes in speed, or may be variable over a substantially continuous range of flow rates correlated to vary with a predetermined range of speeds to allow for highly tailored, operation-dependent solution flow rates. In this way, the controller 508 may control the valve assembly 506 to provide a desired rate of distribution of the solution to the surface based on speed (e.g., a desired amount of cleaning solution applied per linear foot of the traversed surface). In one embodiment, the controller 508 calculates and delivers a cleaning solution distribution flow rate or amount based on speed, wherein a calculation may be based on the signal and/or, optionally, one or more predetermined equations, relationships, look-up tables, or the like stored in the memory of the controller 508. Providing a variable cleaning solution distribution reduces application of either an excess of or a deficiency of cleaning solution to the surface. Additionally, by incorporating the triggerless design as described herein, user error may be essentially eliminated or drastically reduced through automation of the cleaning solution distribution.
In yet another embodiment, a second signal may be generated by the encoder 510 in response to detecting a reverse motion of the extractor 100 or a reverse rotation of the wheel 602. In this embodiment, the controller stops distribution of the solution when the controller does not receive the encoder signal generated by movement of the base for a predetermined amount of time or upon receiving the second signal indicating the reverse extractor 100 movement or reverse rotation of the wheel 602. In response, the controller 508 closes the valve assembly 506 to interrupt or discontinue the distribution of the cleaning solution to the surface in a non-distributing mode during movement of the base 102 while maintaining suction. Stated another way, the controller 508 is configured to change from the distributing mode to the non-distributing mode based on the encoder signal and independent of user interaction with the extractor 100 other than the user-initiated movement of the extractor (e.g., a forward and rearward propelling motion). In one alternative, the controller changes the power supplied to the suction motor when receiving the second signal, for example to increase the amount of suction during the reverse movement stroke. In some embodiments, user actuation of a switch may generate a third signal which, upon being received by the controller 508, overrides the first signal or the second signal to interrupt the distribution of the cleaning solution.
In another embodiment of the invention, the extractor 100 may alternatively or additionally have a second valve assembly (not shown) in fluid communication with the valve assembly 506 and the distributor 410 with tubing. The second valve assembly includes a control valve configured for varying the size of a flow passage from the first valve assembly 506 to the distributor 410 and providing the variable flow rate. The controller 508 is configured to operate the second valve assembly in addition to the first valve assembly 506. In this way, an amount and/or rate of cleaning solution delivered to the distributor 410 for application to the surface can be varied and controlled. In this instance where the first valve assembly 506 metes out only clean water, the controller could control the second valve assembly to vary the output of clean water by a desired dispense amount or flow.
In another embodiment, the extractor 100 further includes a switch 120 (as depicted in
The switch 120 may be included in a user interface of the extractor 100, wherein the user interface may include one or more switches, buttons, touch screen interfaces, dials, displays, gauges, indicators, lights, or the like for controlling or monitoring one or more functions and operation states of the extractor 100 other than causing distribution of cleaning solution during motion of the extractor (e.g., toggling suction on/off, controlling brush movement, recovery tank fill level, or the like). For example, the user interface may comprise a switch for toggling between high and low suction settings of the extractor 100.
In block 904 of
In block 906 of
In block 908 of
In one embodiment, a surface cleaning device such as an extractor is provided, the extractor comprising: a base movable along a surface to be cleaned; a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface; an encoder operable to generate a signal based on user-initiated movement of the base along the surface; and a controller operatively connected to the encoder and the liquid distribution system, the controller configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the controller changes from the distributing mode to the non-distributing mode independent of user interaction with the extractor other than the user-initiated movement. In one aspect, the extractor further comprises a handle pivotally coupled to the base having a grip portion without a user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, initiation of the distribution of the solution to the surface is not dependent on continual actuation by a user of a user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to initiate the distribution of the solution when the signal indicates user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a switch configured to discontinue a flow of the solution during the user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to interrupt the distribution of the solution to the surface when the signal indicates user-initiated reverse movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the signal is indicative of one or more attributes selected from a group consisting of movement in a forward direction, movement in a reverse direction, and speed of movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to control a brush motor based on the signal during operation of the extractor. In yet another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to control a suction motor based on the signal during operation of the extractor.
In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises at least one wheel, wherein the distribution of the solution is initiated based on a forward rotation of the at least one wheel, and wherein the distribution of the solution is interrupted based on a reverse rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a valve assembly in fluid communication with the supply tank for selectively delivering the solution. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller increases or decreases a rate of the distribution of cleaning solution according to a respective increase or decrease of the speed of forward movement during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, continued distribution of the solution to the surface is based on continued generation of the signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the signal includes output from two sensors, wherein the controller is configured to determine the direction of motion based on which sensor output the controller receives first.
In yet another embodiment, a surface cleaning device such as an extractor is provided, the extractor comprising: a base movable along a surface to be cleaned; a handle configured to be gripped by a user to move the base along the surface to be cleaned; a liquid distribution system including a supply tank and a distributor in fluid communication configured to deliver solution to the surface in a distributing mode and to not deliver solution to the surface in a non-distributing mode; an encoder operable to generate an encoder signal as a first signal based on user-initiated movement of the base along the surface in a forward direction and as a second signal based on user-initiated movement of the base along the surface in a rearward direction; and a controller operatively connected to the encoder and the liquid distribution system, the controller being configured to operate the liquid distribution system in the distributing mode during movement of the base based on the first signal during operation of the extractor and in the non-distributing mode during movement of the base based on the second signal during operation of the extractor, wherein the controller changes from the distributing mode to the non-distributing mode based on the encoder signal and independent of user interaction with the extractor other than the user-initiated movement. In one aspect, the handle further comprises a grip portion without a trigger or other user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distribution of the solution to the surface in the distribution mode is not dependent on continual actuation by a user of a trigger or other user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a switch configured to selectively discontinue flow of the solution during the user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the encoder signal is indicative of direction of movement of the base and speed of movement of the base. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises a rotatable brush operatively connected to a brush motor, wherein the controller controls the brush motor based on the encoder signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller increases speed of rotation of the brush based on the first signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a liquid recovery system including a suction nozzle and a suction source in fluid communication with the nozzle, the suction source including a suction motor generating airflow through the suction nozzle, wherein the controller controls airflow through the suction nozzle by controlling the suction motor based on the encoder signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller increases airflow through the suction nozzle based on the second signal during operation of the extractor.
In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises at least one wheel, wherein the first signal is based on a forward rotation of the at least one wheel, and wherein the second signal is based on a reverse rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a valve assembly in fluid communication with the supply tank and the distributor and operatively connected to the controller for selectively delivering the solution to the distributor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller increases or decreases a rate of the distribution of cleaning solution through the valve assembly according to a respective increase or decrease of the speed of forward movement during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, continued distribution of the solution to the surface is based on continued generation of the first signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the encoder signal includes output from two sensors, wherein the controller is configured to determine the first signal and the second signal based on which sensor output the controller receives first.
In another embodiment, a surface cleaning device such as an extractor is provided, the extractor comprising: a base movable along a surface to be cleaned; a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface; an encoder operable to generate a signal indicative of user-initiated forward movement of the base along the surface; a controller operatively connected to the encoder and the liquid distribution system, the controller controlling distribution of the solution to the surface based on the signal during operation of the extractor, wherein the distribution of the solution is independent of continual user interaction with the extractor other than the user-initiated forward movement; and a switch configured to selectively interrupt the distribution of the solution to the surface during the user-initiated forward movement. In one aspect, the extractor further comprises a handle pivotally coupled to the base having a grip portion without a user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a valve assembly in fluid communication with the supply tank for selectively delivering the solution. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller controls a brush motor based on the signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller controls a suction motor based on the signal during operation of the extractor.
In another embodiment, a surface cleaning device such as an extractor is provided the extractor comprising: a base movable along a surface to be cleaned; a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface; an encoder operable to generate a signal based on user-initiated movement of the base along the surface; and a controller operatively connected to the encoder and the liquid distribution system, the controller being configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement, wherein the signal is indicative of a speed of rotation of a wheel, and wherein the distribution of the solution is increased or decreased in response to a respective increase or decrease of the speed of rotation of the wheel during operation of the extractor. In one aspect, the controller is operable to initiate the distribution of the solution when the signal indicates user-initiated forward movement of the base along the surface. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to interrupt the distribution of the solution to the surface when the signal indicates user-initiated reverse movement of the base along the surface. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the distribution of the solution is increased based on a forward rotation of the wheel, and wherein the distribution of the solution is decreased based on a reverse rotation of the wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the signal includes output from two sensors, wherein the controller is configured to determine a direction of motion based on which sensor output the controller receives first. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a valve assembly in fluid communication with the supply tank for selectively delivering the solution.
In yet another embodiment, a surface cleaning device such as an extractor is provided, the extractor comprising: a base movable along a surface to be cleaned; a liquid distribution system including a supply tank and a distributor in fluid communication to deliver solution to the surface; a liquid recovery system including a suction nozzle and a suction source in fluid communication with the suction nozzle, the suction source including a suction motor configured to generate an airflow through the suction nozzle; an encoder operable to generate a signal based on user-initiated movement of the base along the surface; and a controller operatively connected to the encoder, the liquid distribution system, and the liquid recovery system, the controller being configured to operate in a distributing mode during movement of the base and in a non-distributing mode during movement of the base based on the signal during operation of the extractor, wherein the airflow through the suction nozzle is increased or decreased in response to the signal, wherein the signal is indicative of one or more attributes selected from a group consisting of movement in a forward direction, movement in a reverse direction, and speed of movement, and wherein the distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement. In one aspect, the controller is operable to initiate the distribution of the solution when the signal indicates user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the controller is operable to interrupt the distribution of the solution to the surface when the signal indicates user-initiated reverse movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises at least one wheel, wherein the airflow through the suction nozzle is decreased based on a forward rotation of the wheel, and wherein the airflow through the suction nozzle is increased based on a reverse rotation of the wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the airflow through the suction nozzle is increased and the distribution of the solution to the surface is decreased when the signal indicates movement in the reverse direction. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the signal includes output from two sensors, wherein the controller is configured to determine a direction of motion based on which sensor output the controller receives first. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the extractor further comprises a valve assembly in fluid communication with the supply tank for selectively delivering the solution.
In another embodiment, a method for distributing a solution to a surface to be cleaned using an extractor is provided, the method comprising: detecting, with an encoder, a user-initiated movement of a base of the extractor along the surface during operation of the extractor; generating a signal based on detection of the user-initiated movement of the base along the surface; receiving the signal at a controller of the extractor; and in response receiving the signal, distributing the solution to the surface based on the signal during operation of the extractor, wherein distribution of the solution is independent of user interaction with the extractor other than the user-initiated movement. In one aspect, initiating the distribution of the solution to the surface is not dependent on continual actuation by a user of a user interface connected to a liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distributing the solution to the surface further comprises distributing the solution to the surface when the signal indicates user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the method further comprises: receiving an actuation of a switch; and in response to receiving the actuation of the switch, discontinuing a flow of the solution during the user-initiated forward movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distributing the solution to the surface further comprises interrupting the distribution of the solution to the surface when the signal indicates user-initiated reverse movement. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the method further comprises the step of controlling a brush motor based on the signal during operation of the extractor. In yet another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the method further comprises the step of controlling a suction motor based on the signal during operation of the extractor.
In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises at least one wheel, and wherein detecting, with an encoder further comprises determining a rotation of the at least one wheel and generating the signal based on rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distributing the solution to the surface further comprises: initiating the distribution of the solution when the signal indicates forward rotation of the at least one wheel; and interrupting the distribution of the solution when the signal indicates reverse rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, continued distribution of the solution to the surface is based on continued generation of the signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the signal is indicative of a speed of movement of the base, and wherein distributing the solution further comprises increasing or decreasing a rate of the distribution of the solution according to a respective increase or decrease of the speed of forward movement during operation of the extractor.
In yet another embodiment, a method for distributing a solution to a surface to be cleaned using an extractor is provided, the method comprising: detecting, with an encoder, a user-initiated movement of a base of the extractor along the surface during operation of the extractor; generating an encoder signal based on detection of the user-initiated movement of the base along the surface, wherein the encoder signal is a first signal based on user-initiated movement of the base along the surface in a forward direction and a second signal based on user-initiated movement of the base along the surface in a rearward direction; receiving the encoder signal at a controller of the extractor, the controller being configured to operate a liquid distribution system in a distributing mode during movement of the base based on the first signal during operation of the extractor and in a non-distributing mode during movement of the base based on the second signal during operation of the extractor; and in response receiving the encoder signal, operating the liquid distribution system to distribute the solution to the surface based on the encoder signal during operation of the extractor, wherein a change from the distributing mode to the non-distributing mode is based on the encoder signal and independent of user interaction with the extractor other than the user-initiated movement. In one aspect, initiating the distribution of the solution to the surface is not dependent on continual actuation by a user of a user interface connected to the liquid distribution system. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the method further comprises: receiving an actuation of a switch; and in response to receiving the actuation of the switch, discontinuing a flow of the solution during the user-initiated movement in the forward direction. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distributing the solution to the surface further comprises interrupting the distribution of the solution to the surface when the encoder signal indicates the user-initiated movement in the rearward direction.
In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the base further comprises at least one wheel, and wherein the step of generating an encoder signal includes generating the first signal based on a forward rotation of the at least one wheel, and generating the second signal based on a reverse rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, distributing the solution to the surface further comprises: initiating the distribution of the solution when the first signal indicates forward rotation of the at least one wheel; and interrupting the distribution of the solution when the second signal indicates reverse rotation of the at least one wheel. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, continued distribution of the solution to the surface is based on continued generation of the encoder signal during operation of the extractor. In another aspect, alone or in combination with any one of the previous aspects or any combination thereof, the encoder signal is indicative of a speed of movement of the base, and wherein distributing the solution further comprises increasing or decreasing a rate of the distribution of the solution according to a respective increase or decrease of the speed of forward movement during operation of the extractor.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. Those skilled in the art will appreciate that various adaptations, modifications, and combinations of the just described embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
This application is a continuation of U.S. patent application Ser. No. 17/839,087, filed Jun. 13, 2022 (and published Sep. 29, 2022, as U.S. Patent Application Publication No. 2022/0304535), now U.S. Pat. No. 11,896,176, which is a continuation of U.S. patent application Ser. No. 16/220,757, filed Dec. 14, 2018 (and published Jun. 20, 2019, as U.S. Patent Application Publication No. 2019/0183311), now U.S. Pat. No. 11,395,571, which claims the benefit of U.S. Provisional Application No. 62/607,099, filed Dec. 18, 2017. Each of the foregoing patent applications, patent publications, and patents is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1380163 | Spielman | May 1921 | A |
2148656 | Smellie | Feb 1939 | A |
3715775 | Nickelson | Feb 1973 | A |
4196492 | Johnson et al. | Apr 1980 | A |
4558823 | Groth | Dec 1985 | A |
5014388 | Schiazza et al. | May 1991 | A |
5115538 | Cochran et al. | May 1992 | A |
5748853 | Deschenes | May 1998 | A |
5881430 | Driessen et al. | Mar 1999 | A |
6061869 | Ettes et al. | May 2000 | A |
6108862 | Frederick et al. | Aug 2000 | A |
6131238 | Weber et al. | Oct 2000 | A |
6363571 | Block et al. | Apr 2002 | B1 |
6421862 | Lesco et al. | Jul 2002 | B2 |
6446302 | Kasper et al. | Sep 2002 | B1 |
6457205 | Conrad | Oct 2002 | B1 |
6526622 | Conrad | Mar 2003 | B2 |
6681442 | Coates et al. | Jan 2004 | B2 |
6800140 | Hansen | Oct 2004 | B2 |
6832407 | Salem et al. | Dec 2004 | B2 |
7000285 | Conner et al. | Feb 2006 | B2 |
7043794 | Conner et al. | May 2006 | B2 |
7062816 | Kasper et al. | Jun 2006 | B2 |
7076830 | Conner et al. | Jul 2006 | B2 |
7146679 | Kellum et al. | Dec 2006 | B2 |
7203993 | Tondra et al. | Apr 2007 | B2 |
7208892 | Tondra et al. | Apr 2007 | B2 |
7222390 | Cipolla et al. | May 2007 | B2 |
7237298 | Reindle et al. | Jul 2007 | B2 |
7237299 | Tondra et al. | Jul 2007 | B2 |
7269877 | Tondra et al. | Sep 2007 | B2 |
7362064 | Kellum et al. | Apr 2008 | B2 |
7367080 | Lim et al. | May 2008 | B2 |
7392566 | Gordon et al. | Jul 2008 | B2 |
7418764 | Gordon et al. | Sep 2008 | B2 |
7424766 | Reindle et al. | Sep 2008 | B2 |
7599758 | Reindle et al. | Oct 2009 | B2 |
7617563 | Hertrick et al. | Nov 2009 | B2 |
7725223 | Gordon et al. | May 2010 | B2 |
7757342 | Gordon et al. | Jul 2010 | B2 |
7758702 | Huffman | Jul 2010 | B1 |
7904990 | Miner | Mar 2011 | B1 |
8349088 | Miner | Jan 2013 | B1 |
8789235 | Krebs et al. | Jul 2014 | B2 |
8800106 | Bilek et al. | Aug 2014 | B2 |
9055848 | Liu et al. | Jun 2015 | B2 |
10176588 | Trenholm | Jan 2019 | B2 |
10602900 | Koetz et al. | Mar 2020 | B2 |
10813521 | Diana et al. | Oct 2020 | B2 |
10820770 | Diana et al. | Nov 2020 | B2 |
10827900 | Huffman et al. | Nov 2020 | B2 |
11122952 | Diana et al. | Sep 2021 | B2 |
11382477 | Terry et al. | Jul 2022 | B2 |
11395571 | Diana et al. | Jul 2022 | B2 |
20010039684 | Kasper et al. | Nov 2001 | A1 |
20040000023 | Hitzelberger et al. | Jan 2004 | A1 |
20040010884 | Hitzelberger | Jan 2004 | A1 |
20040177473 | Abdallah et al. | Sep 2004 | A1 |
20040221415 | Tondra et al. | Nov 2004 | A1 |
20050071056 | Tondra et al. | Mar 2005 | A1 |
20060288517 | Oh et al. | Dec 2006 | A1 |
20080276408 | Gilbert, Jr. et al. | Nov 2008 | A1 |
20090165822 | Kintz et al. | Jul 2009 | A1 |
20100257691 | Jones et al. | Oct 2010 | A1 |
20130180055 | Haley et al. | Jul 2013 | A1 |
20140259510 | Conrad | Sep 2014 | A1 |
20140283332 | Conrad et al. | Sep 2014 | A1 |
20150272412 | Liscio | Oct 2015 | A1 |
20160037983 | Hillen et al. | Feb 2016 | A1 |
20160235268 | Choi et al. | Aug 2016 | A1 |
20160235270 | Santini | Aug 2016 | A1 |
20160309973 | Sheikh et al. | Oct 2016 | A1 |
20170034019 | Nataraj et al. | Feb 2017 | A1 |
20180213985 | Song | Aug 2018 | A1 |
20180249875 | Hooley et al. | Sep 2018 | A1 |
20190082915 | Conrad | Mar 2019 | A1 |
20190290089 | Johnson et al. | Sep 2019 | A1 |
20190343360 | Diana et al. | Nov 2019 | A1 |
20190365177 | Gordon et al. | Dec 2019 | A1 |
20200054181 | Rukavina | Feb 2020 | A1 |
20220304534 | Terry et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1550198 | Dec 2004 | CN |
105361822 | Mar 2016 | CN |
107041716 | Aug 2017 | CN |
102015100636 | Jul 2016 | DE |
102016210939 | Dec 2016 | DE |
102018209385 | Dec 2017 | DE |
458057 | Nov 1991 | EP |
2682034 | Jan 2014 | EP |
3054827 | Aug 2016 | EP |
3205252 | Aug 2017 | EP |
1207569 | Feb 1960 | FR |
162777 | May 1921 | GB |
2485666 | May 2012 | GB |
2554780 | Apr 2018 | GB |
35220064 | Aug 1993 | JP |
35228073 | Sep 1993 | JP |
2009172235 | Aug 2009 | JP |
2011030668 | Feb 2011 | JP |
19980035123 | Sep 1998 | KR |
200924688 | Jun 2009 | TW |
Entry |
---|
Automation Products Group (APG), “Understanding Ultrasonic Transducers”, https://www.apgsensors.com/about-us/blog/understanding-ultrasonic-transducers-apg/. |
Examination report for European patent Application No. 18833565.7 dated Jul. 12, 2022. |
Examination report for Australian patent Application No. 2019383859 dated Nov. 15, 2022. |
Examination report for Australian patent Application No. 2019383859 dated Aug. 17, 2022. |
Office Action completed Feb. 24, 2022 for Chinese Patent Application No. 201980088191.2. |
First Office Action completed Apr. 16, 2021 for Chinese Patent Application No. 201880089636.4. |
International Search Report and Written Opinion for International Application No. PCT/US2019/058804 completed Feb. 5, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/065754 mailed Jun. 12, 2019. |
Hoover Platinum Collection F8100900 Owner's Manual, #960009435-01 Nov. 2008; 48 pages www.hoover.com. |
First Office Action issued Jul. 25, 2022 for Chinese Patent Application No. 202111578155.X. |
Number | Date | Country | |
---|---|---|---|
20240164609 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
62607099 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17839087 | Jun 2022 | US |
Child | 18430120 | US | |
Parent | 16220757 | Dec 2018 | US |
Child | 17839087 | US |