Surface cleaning head for vacuum cleaner

Information

  • Patent Grant
  • 10702108
  • Patent Number
    10,702,108
  • Date Filed
    Thursday, August 24, 2017
    6 years ago
  • Date Issued
    Tuesday, July 7, 2020
    3 years ago
Abstract
A surface cleaning head includes dual rotating agitators (e.g., a leading roller and a brush roll) and a removable cover for covering a top of the agitators and allowing access to the agitators from a top of the surface cleaning head. The dual agitators may be used to facilitate capturing of debris in the air flow into a suction conduit on the underside of the surface cleaning head. The brush roll may be located in a brush roll chamber and at least partially in an opening to the suction conduit. The leading roller may be positioned adjacent to and in advance of the suction conduit opening such that the leading roller engages debris and moves the debris toward the brush roll and the opening. The leading roller may be removable from the housing and held in place by the removable cover. The cover may be coupled using isolated latching mechanisms.
Description
TECHNICAL FIELD

The present disclosure relates to vacuum cleaners and more particularly, to a vacuum cleaner surface cleaning head with dual agitators such as a leading roller and a brush roll.


BACKGROUND INFORMATION

Vacuum cleaners generally include a suction conduit with an opening on the underside of a surface cleaning head for drawing air (and debris) into and through the surface cleaning head. One of the challenges with vacuum cleaner design is to control engagement of the suction conduit with a surface being cleaned to provide the desired amount of suction. If the suction conduit is spaced too far from a surface, the suction may be less because the air is flowing into the suction conduit through a greater surface area. If the suction conduit is directly engaged with the surface and thus sealed on all sides, air will stop flowing into the suction conduit and the suction motor may be damaged as a result.


Vacuum cleaners also generally use agitation to loosen debris and facilitate capturing the debris in the flow of air into the suction conduit. Agitators are often used in the suction conduit of a surface cleaning head proximate a dirty air inlet to cause the agitated debris to flow into the dirty air inlet. If the agitator in the suction conduit is unable to loosen the debris or if the debris is too small, the suction conduit may pass over the debris without removing the debris from the surface. In other cases, the surface cleaning head may push larger debris forward without ever allowing the debris to be captured in the flow into the suction conduit (sometimes referred to as snowplowing). A rotating agitator may also cause the debris to circulate without being captured in the air flow into the dirty air inlet.


One example of an agitator is a cleaning roller such as a brush roll. A cleaning roller may be located within a suction conduit and/or may be located at a leading side of a suction conduit (e.g., a leading roller). One challenge with cleaning rollers is the ability to access the cleaning rollers, for example, to remove debris and/or replace the cleaning rollers. Other challenges include accommodating two cleaning rollers within the housing and driving the two cleaning rollers.


SUMMARY

Consistent with an embodiment, a surface cleaning head includes a housing having a front side, a back side, a first lateral side and a second lateral side. The housing defines a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side. The surface cleaning head also includes a brush roll rotatably mounted to the housing within a brush roll chamber and a leading roller mounted to the housing in front of the brush roll. The suction conduit passes through the brush roll chamber and at least a portion of the brush roll is proximate the opening of the suction conduit. A removable cover is removably coupled to the housing for covering the brush roll chamber and the brush roll and at least partially covering the leading roller.


Consistent with another embodiment, a surface cleaning head includes a housing having a front side, a back side, a first lateral side and a second lateral side. The surface cleaning head also includes a brush roll rotatably mounted to the housing within a brush roll chamber and having a first brush roll end proximate the first lateral side and a second brush roll end proximate the second lateral side. The surface cleaning head further includes a leading roller mounted to the housing in front of the brush roll and having a first leading roller end proximate the first lateral side and a second leading roller end proximate the second lateral side. A drive mechanism is coupled to the first brush roll end for rotating the brush roll, and the second brush roll end of the brush roll is coupled to the second leading roller end of the leading roller for transferring rotation from the brush roll to the leading roller. The drive mechanism includes a drive motor.


Consistent with a further embodiment, a surface cleaning head includes a housing having a front side and a back side and defining a brush roll chamber and a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side. The suction conduit passes from the suction conduit opening through at least a portion of the brush roll chamber. The surface cleaning head also includes a brush roll rotatably mounted to the housing within the brush roll chamber with at least a portion of the brush roll being proximate the opening of the suction conduit and a vacuum channel extending from a back side of the brush roll chamber such that the suction conduit passes from the brush roll chamber and into the vacuum channel. A shelf structure is located at the back side of the brush roll chamber and includes a surface facing generally downward toward the underside of the housing and opposing rotation of the brush roll. The shelf structure is configured and positioned to knock down and de-energize debris moving at the back side of the brush roll chamber to allow the debris to enter the vacuum channel via air flow through the suction conduit.


Consistent with yet another embodiment, a surface cleaning head includes a housing having a front side and back side and defining a brush roll chamber and a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side. The suction conduit passes through at least a portion of the brush roll chamber. The surface cleaning head also includes wheels coupled to the housing for supporting the housing on a surface to be cleaned, a brush roll rotatably mounted to the housing within the brush roll chamber with at least a portion of the brush roll extending through the suction conduit opening, and a leading roller mounted to the housing in front of the brush roll. The surface cleaning head further includes at least one floor sealing strip along a rear side of the suction conduit opening and along at least a portion of sides of the suction conduit opening. Side air passageways are formed between the leading roller and ends of the at least one floor sealing strip on the sides of the suction conduit. A sole plate on an underside of the housing defines at least a portion of the suction conduit opening and has a clearance from the surface to be cleaned when the wheels are supported on the surface to be cleaned. The brush roll extends beyond the sole plate less than or equal to the clearance and the at least one floor sealing strip extends greater than the clearance.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:



FIG. 1 is a top perspective view of a surface cleaning head including dual agitators, consistent with an embodiment of the present disclosure.



FIG. 2 is a bottom perspective view of the surface cleaning head shown in FIG. 1.



FIG. 3 is a top view of the surface cleaning head shown in FIG. 1.



FIG. 4 is a bottom view of the surface cleaning head shown in FIG. 1.



FIG. 5 is an exploded view of the surface cleaning head shown in FIG. 1 showing a removable cover and a leading roller removed from a housing.



FIG. 6 is a bottom view of the removable cover shown in FIG. 5.



FIG. 7 is an enlarged side view of the surface cleaning head shown in FIG. 1 with a side panel removed to show a latch mechanism used to engage the removable cover.



FIG. 8 is a side cross-sectional view the latching mechanism engaging the cover and the cover securing a leading roller.



FIG. 9 is a top view of the surface cleaning head shown in FIG. 1 with the removable cover removed.



FIG. 10 is a side cross-sectional view of the surface cleaning head shown in FIG. 1 illustrating a shelf structure at a back side of a brush roll chamber.



FIG. 11 is a top cross-sectional view of the surface cleaning head taking along line 11-11 in FIG. 10 and further illustrating a shelf structure at a back side of a brush roll chamber.



FIG. 12 is a bottom perspective view of a portion of the housing defining the shelf structure in the surface cleaning head.



FIG. 13 is a front view of the portion of the housing shown in FIG. 12.



FIG. 14 is a top view of a drive mechanism driving dual agitators for use in the surface cleaning head shown FIG. 1.



FIG. 15 is a top view of a bleed valve mechanism in the surface cleaning head shown in FIG. 1.



FIG. 16 is a top view of a bleed valve mechanism in the surface cleaning head shown in FIG. 1 and illustrating the bleed valve actuator.



FIG. 17 is a perspective view of a stick vacuum including a surface cleaning head, consistent with embodiments of the present disclosure.





DETAILED DESCRIPTION

A surface cleaning head, consistent with some embodiments of the present disclosure, includes dual rotating agitators (e.g., a leading roller and a brush roll) and a removable cover for covering a top of the agitators and allowing access to the agitators from a top of the surface cleaning head. The dual agitators may be used to facilitate capturing of debris in the air flow into a suction conduit on the underside of the surface cleaning head. The brush roll may be located in a brush roll chamber and at least partially in an opening to the suction conduit. The leading roller may be positioned adjacent to and in advance of the suction conduit opening such that the leading roller engages debris and moves the debris toward the brush roll and the opening. The leading roller may be removable from the housing and held in place by the removable cover. The removable cover may be coupled to the housing of the surface cleaning head using one or more latching mechanisms that are isolated from the brush roll chamber. A surface cleaning head may also include a drive mechanism that drives a brush roll at one end with the brush roll transferring rotation to a leading roller at the other end.


In other embodiments, a surface cleaning head includes a brush roll in a brush roll chamber and a shelf structure at a back side of the brush roll chamber to knock down and de-energize debris and facilitate movement of the debris into a vacuum channel extending from the back side of the brush roll chamber. The vacuum channel may include a flared mouth in communication with the brush roll chamber with at least a portion of the shelf structure extending into the flared mouth.


In further embodiments, a surface cleaning head may include features for improving air flow into a suction conduit. A surface cleaning head may include sealing strips on an underside around at least a portion of an opening to the suction conduit, forming side air passageways between the sealing strips and a leading roller. A surface cleaning head may provide a sole plate clearance sufficient to provide a desired carpet engagement by a brush roll and may have bristle strips extending from the underside to provide desired sealing on a hard wood floor. A surface cleaning head may also include a bleed valve with an actuator capable of being actuated by a pull stroke of the surface cleaning head to lower suction and facilitate maneuverability.


Although various features and concepts are described in the context of an example embodiment of a surface cleaning head, other embodiments of the surface cleaning head are within the scope of the present disclosure and the features and concepts described herein may be used in other embodiments of a surface cleaning head either alone or in combination. Embodiments of the surface cleaning head may be used in different types of vacuum cleaners including, without limitation, an “all in the head” type vacuum, upright vacuum cleaners, canister vacuum cleaners, stick vacuum cleaners, robotic vacuum cleaners and central vacuum systems.


As used herein, a “surface cleaning head” refers to a device configured to contact a surface for cleaning the surface by use of suction air flow, agitation, or a combination thereof. A surface cleaning head may be pivotably or steeringly coupled by a swivel connection to a wand for controlling the surface cleaning head and may include motorized attachments as well as fixed surface cleaning heads. A surface cleaning head may also be operable without a wand or handle. As used herein, “seal” or “sealing” refers to preventing a substantial amount of air from passing through to the suction conduit but does not require an air tight seal. As used herein, “agitator” refers to any element, member or structure capable of agitating a surface to facilitate movement of debris into a suction air flow in a surface cleaning head. As used herein, “soft” and “softer” refer to the characteristics of a cleaning element being more compliant or pliable than another cleaning element. As used herein, the term “flow path” refers to the path taken by air as it flows into a suction conduit when drawn in by suction. As used herein, the terms “above” and “below” are used relative to an orientation of the surface cleaning head on a surface to be cleaned and the terms “front” and “back” are used relative to a direction that a user pushes the surface cleaning head on a surface being cleaned (i.e., back to front). As used herein, the term “leading” refers to a position in front of at least another component but does not necessarily mean in front of all other components.


Referring to FIGS. 1-4, a surface cleaning head 100, consistent with embodiments of the present disclosure, is shown and described. The surface cleaning head 100 includes a housing 110 with a front side 112, a back side 114, first and second lateral sides 116a, 116b, an upper side 118, and a lower or under side 120. The housing 110 defines a suction conduit having an opening 111 on the underside 120 of the housing 110 (shown in FIGS. 2 and 4). The suction conduit is the interior space defined by interior walls in the housing 110, which receives and directs air drawn in by suction, for example, by a suction motor (not shown) either in the surface cleaning head 100 or another location in the vacuum. The suction conduit opening 111 is where the suction conduit meets the underside 120 of the housing 110.


The surface cleaning head 100 includes dual rotating agitators 122, 124, for example, a brush roll 122 and a leading roller 124. Although the example embodiment includes dual agitators, some of the features and concepts described herein may also be used in a surface cleaning head with only a single agitator or with more than two agitators. The brush roll 122 and leading roller 124 may be configured to rotate about first and second rotating axes. The rotating brush roll 122 is located in a brush roll chamber 119, and the leading roller 124 is positioned in front of and spaced from the brush roll 122. The brush roll chamber 119 defines a portion of the suction conduit and the brush roll 122 is located at least partially in the suction conduit opening 111. Thus, the brush roll 122 is located in the primary air flow path into the suction conduit opening 111.


The leading roller 124 is generally located in advance of and outside of the suction conduit opening 111, but at least a portion of the leading roller 124 may be exposed to a primary air flow into the suction conduit opening 111. In some embodiments, at least an inside upper portion (e.g., upper half) of the leading roller 124 is not exposed to the primary air flow path into the opening 111 of the suction conduit while at least an inside of the bottom portion of the leading roller 124 is exposed to the primary flow path into the opening 111 of the suction conduit. Other variations are possible where different portions of the leading roller 124 may be exposed or not exposed to the flow path into the suction conduit. In other embodiments, for example, a flow path may allow air to flow over the upper portion of the leading roller 124.


The rotating brush roll 122 may have bristles, fabric, or other cleaning elements, or any combination thereof around the outside of the brush roll 122. Examples of brush rolls and other agitators are shown and described in greater detail in U.S. Pat. No. 9,456,723 and U.S. Patent Application Pub. No. 2016/0220082, which are fully incorporated herein by reference. One example of the rotating brush roll 122 may include a combination of shorter stiffer bristles for engaging a carpet and longer softer bristles for engaging a hard surface. In particular, the rotating brush roll 122 may include one or more arrangements or groups of the shorter stiffer bristles and one or more arrangements or groups of the longer softer bristles, wherein the longer softer bristles are longer and softer as compared to the shorter stiffer bristles.


The leading roller 124 may be selected to be substantially softer than that of the brush roll 122. The softness, length, diameter, arrangement, and resiliency of the bristles and/or pile of the leading roller 124 may be selected to form a seal with a hard surface, whereas the bristles of the brush roll 122 may selected to agitate carpet fibers or the like. Softness may be determined, for example, based on the pliability of the bristles or pile being used. The leading roller 124 may also have an outside diameter that is smaller than the outside diameter of the brush roll 122. Examples of leading rollers 124 including sizes and the material used are described in greater detail in U.S. Patent Application Pub. No. 2017/0127896, which is fully incorporated herein by reference.


The leading roller 124 may include a relatively soft material (e.g., soft bristles, fabric, felt, nap or pile) arranged in a pattern (e.g., a spiral or helical pattern) to facilitate capturing debris. In one example, a thin helical strip of stiffer, longer bristles may be used together with a wider helical strip of softer bristles. Rotation of the leading roller 124 with the helical strip of stiffer, longer bristles may thus create a moving air channel that facilitates capturing of debris. In this example, the softer bristles may include nylon bristles having a length in a range of 4 to 12 mm and a diameter less than 0.08 mm. An example of longer, stiffer bristles includes nylon bristles having a length in a range of 6 to 16 mm and a diameter in a range of 0.06 to 0.20 mm.


The surface cleaning head 100 may also include a combing unit 129 with combing protrusions or teeth engaging the leading roller 124 for removing hair and other similar debris from the leading roller 124. Examples of a combing unit are described in greater detail in U.S. Patent Application Pub. No. 2017/0127896 and U.S. patent application Ser. No. 15/492,320, which are fully incorporated herein by reference.


The surface cleaning head 100 includes one or more wheels 130, 132, 134 for supporting the housing on a surface to be cleaned. In the illustrated embodiment, for example, larger rear wheels 130 are disposed proximate the back side 114 with smaller rear wheels 132 disposed therebetween on the underside 116 of the housing 110 and smaller forward wheels 134 are disposed on the underside 120 of the housing 110 proximate the front side 112. Other wheel configurations may also be used. The wheels 130, 132, 134 may provide the primary contact with the surface being cleaned and facilitate moving the surface cleaning head 100 along the surface to be cleaned. The larger rear wheels 130 may also allow the user to easily tilt or pivot the surface cleaning head 100 (e.g., brush roll 122 and/or the leading roller 124) off of the surface to be cleaned. When the surface cleaning head 100 is positioned on the surface being cleaned, the leading roller 124 may also rest on the surface being cleaned, as will be described in greater detail below.


The surface cleaning head 100 also includes one or more floor sealing strips 136, 138 on the underside 120 of the housing 110 to facilitate sealing against a surface being cleaned (e.g., a hard surface) and to help direct air to the suction conduit opening 111 (see FIGS. 2, 4 and 10). The floor sealing strips 136, 138 may include bristle strips formed by soft bristles or may include fabric material, rubber material, or other material capable of contacting the surface being cleaned to substantially prevent air flow into the suction conduit opening 111. The sealing strips 136, 138 may also include a combination of elements or materials, such as bristles with a cloth or rubber strip extending along the strip between the bristles (e.g., with the bristles being longer) to improve sealing.


The floor sealing strips 136, 138 may include one or more sections extending downward from the housing 110 and having a length sufficient to contact a hard surface being cleaned when the surface cleaning head 100 is supported on the hard surface. In one embodiment, as shown in FIG. 10, the sealing strips 136, 138 have a length that is greater than the clearance or height H of the sole plate 137 to allow more sealing on a hard surface. The clearance or height H of the sole plate 137 and the extent to which the brush roll 122 extends beyond the sole plate allow good carpet engagement with the brush roll 122 but with minimal brush roll engagement of a hard surface. Thus, the brush roll 122 extends beyond the sole plate 137 at or less than the clearance or height H of the sole plate 137 and the floor sealing strips 136, 138 extend at or greater than the clearance or height H of the sole plate 137. In one example, the clearance or height H of the sole plate 137 is in a range of 1.5 to 7.0 mm, the brush roll 122 extends beyond the sole plate in a range of 3 to 6 mm, and the floor sealing strips 136, 138 extend in a range of 5 to 10 mm.


In the illustrated embodiment shown in FIG. 2, the sealing strips 136, 138 are arranged to provide sealing around a portion of the suction conduit opening 111 while also providing side air passageways as shown by arrows 139. The rear sealing strip 136 extends along a rear side of the suction conduit opening 111 and the side sealing strips 138 extend from the rear sealing strip 136 along at least a portion of the sides of the suction conduit opening 111. Although separate sealing strips are shown, a single sealing strip may extend along both the sides and rear of the suction conduit opening. The leading roller 124 provides sealing along a front side of the suction conduit opening 111 and the space between the side sealing strips 138 and the leading roller 124 defines the side air passageways 139, thereby causing directed air flow into the suction conduit opening 111 at a location that facilitates capturing debris in the air flow (e.g., between the brush roll 122 and the leading roller 124). An increased speed of the air flow directed through the side air passageways 139 also enhances edge cleaning. In the illustrated embodiment, the side sealing strips 138 extend just short of the suction conduit opening 111 to form side air passageways 139 directed laterally toward the opening 111. Other configurations of the sealing strips 136, 138 are also contemplated, for example, the side sealing strips 138 may be longer or shorter.


In an embodiment, the surface cleaning head 100 includes a removable cover 140 coupled to the housing 110 and covering a top of the agitators 122, 124, as shown in FIGS. 5 and 6. The cover 140 is removable to allow access to the agitators 122, 124 for cleaning debris tangled on the agitators 122, 124 and/or removing the agitators. The cover 140 covers the brush roll chamber 119 and brush roll 122 and covers a top portion of the leading roller 124 leaving a front of the leading roller 124 exposed. Removing the cover 140 allows access to the brush roll 122 and the leading roller 124 for purposes of removing debris such as hair. The cover 140 may include a transparent window over at least the brush roll 122 allow visual inspection of the brush roll 122 during use.


The cover 140 includes a bumper 142 that extends out over the leading roller 124 and just in front of the leading roller 124, thereby providing a leading edge. As shown, the bumper 142 may extend laterally along a substantial portion of the front side 112 and downward proximate each of the sides 116a, 116b. The bumper 142 may be made of a material that is more compliant and flexible than the other material used for the cover 140 to allow the bumper 142 to flex, for example, when contacting a wall surface. In one example, the cover 140 may be made of a hard plastic or polymer material such as polycarbonate (PC) or acrylonitrile-butadiene-styrene (ABS) with the bumper 142 being made of a thermoplastic elastomer such as thermoplastic polyurethane (TPU).


The bumper 142 is configured to seal partially against a vertical surface (e.g., a wall) during use while forming air flow passageways at certain locations to improve front edge cleaning. When contacting the vertical surface, for example, the bumper 142 will direct air through front edge passageways below the sides of the bumper 142. The bumper 142 may also include one or more compression elements 143 (e.g., ribs) that form air passageways. When the bumper 142 is pushed against the vertical surface, the compression elements 143 contact the vertical surface first and push the bumper 142 locally farther back than the rest of the bumper 142, thereby forming a gap on either side of the compression elements 143. The gaps on either side of the compression elements 143 form air paths allowing air to be drawn down in front of the leading roller 124, which may disturb dust and debris so that it can be directed into the air flow path toward the suction conduit opening 111.


The removable cover 140 also includes a seal 144 on an underside of the cover 140 and configured to engage the housing 110 around an upper perimeter of the brush roll chamber 119 for sealing the brush roll chamber 119 at the top side of the housing 110. By sealing the brush roll chamber 119 at the top side, suction and airflow into the suction conduit opening 111 may be improved. The removable cover 140 may be held against the housing 110 securely to maintain the seal. In the illustrated embodiment, the removable cover 140 includes one or more tabs 146a-c at a back end of the cover 140 for engaging respective slots 113a-c in the housing 110 and one or more protrusions 147 inside the cover 140 at the sides of the front end of the cover 140 for engaging respective latch fingers 150 at the sides 116a, 116b of the housing 110. The latch fingers 150 may be retracted toward the housing by respective latch actuators 152 to release and remove the cover 140.


Referring to FIGS. 7 and 8, an embodiment of the latch mechanism on one side 116b is shown and described in greater detail. In this embodiment, the latch finger 150 is at one end of a sliding member 154 and the latch actuator 152 is engaged with the other end of the sliding member 154. The latch actuator 152 includes or is connected to a portion 153 extending downward to engage the sliding member 154. A resilient member 156, such as a spring, biases the sliding member 154 and the latch finger 150 outward and away from the housing 110 and into engagement with the protrusion 147 inside the cover 140. The latch finger 150 may be retracted against the bias of the resilient member 156 by sliding the latch actuator 152 rearward in the direction of the arrow. The latch finger 150 includes an angled top surface 151 to allow the protrusion 147 to slide over the latch finger 150 and push the latch finger 150 rearward against the bias of the resilient member 156 when the cover 140 is moved downward into engagement with the housing 110. When the protrusion 147 moves beyond the latch finger 150, the latch finger 150 will be biased into a position over the protrusion 147 thereby engaging the protrusion 147 and holding the front end of the cover 140. Other types of latch mechanisms are also within the scope of the present disclosure.


The latch mechanisms are isolated from the brush roll chamber 119 and thus do not affect the suction into the suction conduit opening 111. In particular, the latch actuator 152 is spaced from the opening to the brush roll chamber 119 as shown in FIG. 9.


In the example embodiment, the leading roller 124 is removable and is held in place by the cover 140. A downwardly extending portion 148 of the cover 142 at one side engages a non-rotating end 126 of the leading roller 124 (see FIGS. 5 and 7). The non-rotating end 126 includes a tab 128 that extends outward and an inside portion of the cover 140 engages the tab 128 when the cover 140 is held in place by the latch mechanism (see FIG. 8). The leading roller 124 may be configured to be removed and may have a driven end and non-driven end, for example, similar to the removable brush roll described in U.S. Patent Application Publication No. 2016/0220082, which is incorporated herein by reference. Although the brush roll 122 in the example embodiment of the surface cleaning head 100 is not removable, the brush roll 122 may also be similarly removable in other embodiments.


Referring to FIGS. 10-13, other embodiments of the surface cleaning head 100 may include a shelf structure 160 at a back side of the brush roll chamber 119. The shelf structure 160 may have various configurations and shapes but includes at least a surface facing generally downward toward the underside 120 of the housing 110 and opposing the rotation of the brush roll 122. As debris circulates around the brush roll chamber 119 by rotation of the brush roll 122, the shelf structure 160 knocks down and de-energizes the debris to facilitate capturing the debris in the air flow through the suction conduit, as shown by the arrows. Although the shelf structure 160 is shown in the illustrated embodiment of the surface cleaning head 100 including dual agitators 122, 124, the shelf structure may also be used in other surface cleaning heads, for example, without a leading roller 124.


In this embodiment, a vacuum channel 162 extends from the back side of the brush roll chamber 119 to further define the suction conduit. Thus, the suction conduit passes from the suction conduit opening 111 through a portion of the brush roll chamber 119 and through the vacuum channel 162. The illustrated embodiment of the vacuum channel 162 includes a flared mouth 164 at the intersection with the brush roll chamber 119, which provides a dirty air inlet that receives dirt and debris together with air being drawn through the suction conduit. As shown in FIGS. 10 and 11, the shelf structure 160 may extend into at least a portion of the flared mouth 164 of the vacuum channel 162.



FIGS. 12 and 13 show the portion of the housing 110a that defines the back side of the brush roll chamber and the flared mouth 164 of the vacuum channel 162. As shown in FIGS. 12 and 13, the shelf structure 160 may include shelf portions 160a extending into the flared mouth 164 and shelf portions 160b extending along at least a portion of the back side of the brush roll chamber. The shelf structure 160 may have a depth of about 5-10 mm and a height of about 12-20 mm. The shelf portions 160a extending into the flared mouth 164 may be deeper than the shelf portions 160b extending along the back side of the brush roll chamber.


Referring to FIG. 14, embodiments of the surface cleaning head 100 may also include driving the brush roll 122 and the leading roller 124 at opposite ends. A drive mechanism 170 directly drives the brush roll 122 at a first brush roll end 121 (e.g., via a first drive belt 172) and the leading roller 124 is driven at a second leading roller end 127 from a second brush roll end 123 of the brush roll 122 (e.g., via a second drive belt 174). The drive mechanism 170 includes a drive motor 171 for providing the rotation and first and second drive belts 172, 174 are used to transfer rotation. In other embodiments, gears may be used to transfer rotation. By driving the leading roller 124 at the opposite end, the leading roller 124 is not required to be offset and may be more centrally located in the housing 110.


Referring to FIGS. 15 and 16, embodiments of the surface cleaning head 100 may also include a motion-actuated bleed valve 180. The motion-actuated bleed valve 180 includes a pivoting actuator 181 including surface engaging elements 182 (shown in FIGS. 2 and 4), such as stiff bristles, configured to catch on a surface being cleaned during a pull stroke. The pivoting actuator 181 is coupled to a pivoting valve member 184 that covers a port 186 in a side of the vacuum channel 162. The pivoting valve member 184 is biased into a closed position covering the port 186, for example, by a resilient member (not shown) such as a torsion spring. When the surface engaging elements 182 catch on a surface during the pull stroke, the pivoting actuator 181 pivots and causes the valve member 184 to pivot away from the port 186, thereby allowing air to flow or bleed out of the vacuum channel 162. This air flow reduces the suction and makes it easier to pull the surface cleaning head 100 (i.e., when attached to wand of a vacuum cleaner). The bleed valve is useful on heavier upright vacuum cleaners especially with higher suction resulting, for example, from the techniques described herein.



FIG. 17 illustrates one type of vacuum cleaner 1700 that may include a surface cleaning head 1702, consistent with the embodiments described herein. The surface cleaning head 1702 with the leading roller 1724 may be used on a stick type vacuum cleaner 1700 with a removable handheld vacuum 1701 coupled at one end of a wand 1704, such as the type described in U.S. Patent Application Pub. No. 2015/0135474, which is commonly owned and fully incorporated herein by reference. The surface cleaning head with the leading roller may also be used on an upright vacuum cleaner (not shown) with a removable canister coupled to a wand, such as the type described in U.S. Patent Application Pub. No. 2015/0351596, which is commonly owned and fully incorporated herein by reference. A surface cleaning head consistent with embodiments described herein may also be used in a robotic vacuum cleaner such as the type described in U.S. Patent Application Ser. No. 62/511,099, which is commonly owned and fully incorporated herein by reference.


Accordingly, embodiments of a surface cleaning head, consistent with the present disclosure, may be capable of improved suction and air flow, improved front and edge cleaning, improved versatility on both carpets and hard surfaces, improved access to dual agitators for cleaning and removal, and/or improved maneuverability.


While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.

Claims
  • 1. A surface cleaning head comprising: a housing having a front side, a back side, a first lateral side and a second lateral side, the housing defining a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side;a brush roll rotatably mounted to the housing within a brush roll chamber, wherein the suction conduit passes through the brush roll chamber and at least a portion of the brush roll is proximate the opening of the suction conduit;a leading roller mounted to the housing in front of the brush roll;a removable cover removably coupled to the housing for covering the brush roll chamber and the brush roll and at least partially covering the leading roller; andat least one latching mechanism configured to engage the removable cover to removably couple the cover to the housing, wherein the latching mechanism includes a latch finger configured to engage the removable cover proximate the front of the housing when the removable cover is coupled to the housing and a latch actuator configured to retract the latch finger and release the cover.
  • 2. The surface cleaning head of claim 1 wherein the latching mechanism includes first and second latching mechanisms proximate the first lateral side and the second lateral side, respectively.
  • 3. The surface cleaning head of claim 1 wherein the latching mechanism is isolated from the brush roll chamber.
  • 4. The surface cleaning head of claim 1 wherein the removable cover includes at least one tab extending from the back portion of the removable cover for engaging the housing.
  • 5. The surface cleaning head of claim 1 wherein the removable cover includes a seal that engages a perimeter of the housing around the brush roll chamber.
  • 6. The surface cleaning head of claim 1 wherein the leading roller is removable when the removable cover is removed.
  • 7. The surface cleaning head of claim 6 wherein the removable cover engages at least one end of the leading roller and holds the leading roller in the housing.
  • 8. The surface cleaning head of claim 1 wherein the removable cover is completely removable from the housing.
  • 9. The surface cleaning head of claim 1 wherein the removable cover includes a bumper located at the front side of the housing when the removable cover is coupled to the housing.
  • 10. The surface cleaning head of claim 9 wherein the bumper includes at least a portion that extends in front of the leading roller.
  • 11. The surface cleaning head of claim 1, wherein the leading roller includes a cleaning element that is softer than a cleaning element of the brush roll.
  • 12. The surface cleaning head of claim 1, wherein the leading roller has a smaller diameter than the brush roll.
  • 13. The surface cleaning head of claim 1, wherein the brush roll includes at least one arrangement of shorter stiffer bristles and at least one arrangement of longer softer bristles, wherein the longer softer bristles are longer and softer as compared to the shorter stiffer bristles.
  • 14. A surface cleaning head comprising: a housing having a front side, a back side, a first lateral side and a second lateral side, the housing defining a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side;a brush roll rotatably mounted to the housing within a brush roll chamber, wherein the suction conduit passes through the brush roll chamber and at least a portion of the brush roll is proximate the opening of the suction conduit;a leading roller mounted to the housing in front of the brush roll;a removable cover removably coupled to the housing for covering the brush roll chamber and the brush roll and at least partially covering the leading roller; andat least one latching mechanism configured to engage the removable cover to removably couple the cover to the housing, wherein the latching mechanism includes a latch finger configured to engage the removable cover proximate the front of the housing when the removable cover is coupled to the housing and a latch actuator configured to retract the latch finger and release the cover.
  • 15. A surface cleaning head comprising: a housing having a front side, a back side, a first lateral side and a second lateral side, the housing defining a suction conduit with a suction conduit opening on an underside of the housing between the front side and the back side;a brush roll rotatably mounted to the housing within a brush roll chamber, wherein the suction conduit passes through the brush roll chamber and at least a portion of the brush roll is proximate the opening of the suction conduit;a leading roller mounted to the housing in front of the brush roll; anda removable cover removably coupled to the housing for covering the brush roll chamber and the brush roll and at least partially covering the leading roller;wherein the leading roller is removable when the removable cover is removed; andwherein the removable cover engages at least one end of the leading roller and holds the leading roller in the housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 15/331,045, filed Oct. 21, 2016, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/244,331 filed Oct. 21, 2015, U.S. Provisional Patent Application Ser. No. 62/248,813 filed Oct. 30, 2015, and U.S. Provisional Patent Application Ser. No. 62/313,394 filed Mar. 25, 2016, all of which are fully incorporated herein by reference. The present application is also a continuation-in-part of International Application No. PCT/US2016/058148, filed on Oct. 21, 2016, which is fully incorporated herein by reference. The present application is also a continuation-in-part of U.S. patent application Ser. No. 14/867,599, filed Sep. 28, 2015, which is incorporated herein by reference.

US Referenced Citations (133)
Number Name Date Kind
2032345 Cranon Mar 1936 A
2411488 White Nov 1946 A
2607062 Le Febvre Aug 1952 A
2785431 Pardee Mar 1957 A
4138762 Jost et al. Feb 1979 A
4173807 Maier Nov 1979 A
4333205 Woodward et al. Jun 1982 A
4334337 Miller et al. Jun 1982 A
4372004 Vermillion Feb 1983 A
4627127 Dupre Dec 1986 A
4662027 Parker et al. May 1987 A
4912805 Krasznai Apr 1990 A
D348548 Pino Jul 1994 S
5452490 Brundula et al. Sep 1995 A
5495634 Brundula et al. Mar 1996 A
5632060 Steinberg et al. May 1997 A
5765258 Melito et al. Jun 1998 A
5960514 Miller et al. Oct 1999 A
6012200 Murphy et al. Jan 2000 A
D440019 Mehaffey et al. Apr 2001 S
6226832 McCormick May 2001 B1
6237188 Takemoto et al. May 2001 B1
D473687 Kaffenberger Apr 2003 S
6550099 Worwag Apr 2003 B2
7013528 Parker et al. Mar 2006 B2
D524498 Luebbering et al. Jul 2006 S
7171723 Kobayashi et al. Feb 2007 B2
7200893 Gerber et al. Apr 2007 B2
7316050 Worwag Jan 2008 B2
7328479 Willenbring Feb 2008 B2
7329294 Conrad Feb 2008 B2
D566356 Medema Apr 2008 S
D569564 Labarbera May 2008 S
D594612 Umeda Jun 2009 S
D597268 Santiago et al. Jul 2009 S
7690079 Boddy et al. Apr 2010 B2
D619315 Ayers Jul 2010 S
7769490 Abramson et al. Aug 2010 B2
D635728 Fjellman Apr 2011 S
7979952 Beskow et al. Jul 2011 B2
8037571 Butts et al. Oct 2011 B2
D655468 Karsan Mar 2012 S
D668010 Stickney et al. Sep 2012 S
8316503 Follows et al. Nov 2012 B2
8402600 Beskow et al. Mar 2013 B2
8402601 Fahlstrom Mar 2013 B2
D681291 Morgan et al. Apr 2013 S
8418303 Kapoor et al. Apr 2013 B2
8631541 Tran Jan 2014 B2
8726441 Colasanti et al. May 2014 B1
8745818 Iles et al. Jun 2014 B2
8776311 Genn et al. Jul 2014 B2
8782851 Follows et al. Jul 2014 B2
8800107 Blouin Aug 2014 B2
8806710 Follows et al. Aug 2014 B2
D720104 Santiago et al. Dec 2014 S
9021655 Owen et al. May 2015 B2
9027198 Conrad May 2015 B2
D731130 Dyson et al. Jun 2015 S
D731134 Dyson et al. Jun 2015 S
D731136 Yun et al. Jun 2015 S
D731720 Gidwell et al. Jun 2015 S
D731724 Cheon et al. Jun 2015 S
9066640 Iles et al. Jun 2015 B2
D738583 Gidwell et al. Sep 2015 S
D738584 Niedzwecki Sep 2015 S
9144356 Yun Sep 2015 B2
D741558 Kerr Oct 2015 S
D742083 Gidwell et al. Oct 2015 S
D743123 Chu Nov 2015 S
D745231 Niedzwecki Dec 2015 S
D747571 Dyson Jan 2016 S
D747572 Kerr Jan 2016 S
9314140 Eriksson Apr 2016 B2
D761507 Heck et al. Jul 2016 S
D762031 Niedzwecki Jul 2016 S
9451853 Conrad et al. Sep 2016 B2
D770111 Lee et al. Oct 2016 S
9456723 Thorne Oct 2016 B2
9468346 Rzepka Oct 2016 B1
D771890 Kim Nov 2016 S
D772512 Yoon et al. Nov 2016 S
D773139 Palladino Nov 2016 S
D774260 Manning Dec 2016 S
D774264 Bartram et al. Dec 2016 S
D779751 Chu Feb 2017 S
D779752 Johnson Feb 2017 S
D781014 Wu et al. Mar 2017 S
D788393 Canas et al. May 2017 S
D789007 Jang et al. Jun 2017 S
D790785 Courtney et al. Jun 2017 S
D792665 Salagnac Jul 2017 S
D796134 Labarbera Aug 2017 S
D796136 Reynolds et al. Aug 2017 S
20020124334 Worwag Sep 2002 A1
20030106183 Frederick et al. Jun 2003 A1
20030145424 Stephens et al. Aug 2003 A1
20030159240 Mertes et al. Aug 2003 A1
20040045125 Park et al. Mar 2004 A1
20050172447 Roney et al. Aug 2005 A1
20060037170 Shimizu Feb 2006 A1
20060191097 Baumhakel Aug 2006 A1
20090229075 Eriksson Sep 2009 A1
20100107359 Yoo May 2010 A1
20100287717 Jang et al. Nov 2010 A1
20100306958 Follows et al. Dec 2010 A1
20110219571 Dyson et al. Sep 2011 A1
20110296648 Kah, Jr. Dec 2011 A1
20120000030 Conrad Jan 2012 A1
20120011676 Jung et al. Jan 2012 A1
20120169497 Schnittman et al. Jul 2012 A1
20120198644 Iles Aug 2012 A1
20120311802 Hinnat Dec 2012 A1
20120311813 Gilbert, Jr. et al. Dec 2012 A1
20130139349 Iles et al. Jun 2013 A1
20130212831 Follows et al. Aug 2013 A1
20130298350 Schnittman et al. Nov 2013 A1
20140060577 Bruders et al. Mar 2014 A1
20140150202 Schultheis Jun 2014 A1
20140196247 Kasper et al. Jul 2014 A1
20140237760 Conrad Aug 2014 A1
20140259475 Doughty Sep 2014 A1
20140259521 Kowalski Sep 2014 A1
20150033498 McVey Feb 2015 A1
20150289735 Van Der Kooi et al. Oct 2015 A1
20150359396 Yun Dec 2015 A1
20160058257 Ventress et al. Mar 2016 A1
20160183749 Isley et al. Jun 2016 A1
20160220082 Thorne et al. Aug 2016 A1
20160345795 Manning Dec 2016 A1
20170079493 Genn et al. Mar 2017 A1
20170127896 Carter et al. May 2017 A1
20170231445 Kasper Aug 2017 A1
Foreign Referenced Citations (42)
Number Date Country
102010017211 Dec 2011 DE
102010017258 Dec 2011 DE
0909547 Apr 1999 EP
1994869 Nov 2008 EP
2218385 Mar 2013 EP
2543301 Sep 2013 EP
360577 Nov 1931 GB
583738 Dec 1946 GB
877778 Sep 1961 GB
2109224 Jun 1983 GB
2285777 Jul 1995 GB
2476811 Jul 2011 GB
2509925 Jul 2014 GB
2529819 Sep 2016 GB
03228721 Oct 1991 JP
05228083 Sep 1993 JP
2639155 Aug 1997 JP
H10201682 Aug 1998 JP
H11187997 Jul 1999 JP
2001120473 May 2001 JP
2003339589 Dec 2003 JP
2004222912 Aug 2004 JP
2006247229 Sep 2006 JP
2006312066 Nov 2006 JP
2009045503 Mar 2009 JP
2011050428 Mar 2011 JP
2015116414 Jun 2015 JP
2017074258 Apr 2017 JP
20040052092 Jun 2004 KR
100593324 Jun 2006 KR
9210967 Jul 1992 WO
0141618 Jun 2001 WO
2009117383 Sep 2009 WO
2011083294 Jul 2011 WO
2013104886 Jul 2013 WO
2014131105 Sep 2014 WO
2014131106 Sep 2014 WO
2014177216 Nov 2014 WO
2015015166 Feb 2015 WO
2015015167 Feb 2015 WO
2016034848 Mar 2016 WO
2017070492 Apr 2017 WO
Non-Patent Literature Citations (21)
Entry
Extended European Search Report dated Mar. 28, 2019, received in EP Application No. 16858305.2, 7 pgs.
English translation of Japanese Office Action dated May 21, 2019, received in Japanese Application No. 2018-520541, 11 pgs.
English translation of Korean Office Action dated Apr. 30, 2019, received in Korean Application No. 10-2018-7014180, 11 pgs.
U.S. Office Action dated May 3, 2019, received in U.S. Appl. No. 15/331,045, 9 pgs.
Extended European Search Report dated Apr. 3, 2019, received in EP Application No. 16858308.6, 7 pgs.
English translation of Japanese Office Action dated Apr. 1, 2019, received in Japanese Application No. 2017-557189, 6 pgs.
U.S. Office Action dated May 15, 2019, received in U.S. Appl. No. 15/492,320, 13 pgs.
International Search Report and Written Opinion dated Mar. 17, 2017 in corresponding PCT Patent Application No. PCT/US 16/58155, 12 pgs.
International Search Report and Written Opinion dated Mar. 24, 2017 in corresponding PCT Patent Application No. PCT/US 16/58148, 14 pgs.
PCT International Search Report and Written Opinion dated Mar. 31, 2016, received in corresponding PCT Application No. PCT/US16/15370, 15 pgs.
U.S. Office Action dated Feb. 22, 2016, received in related U.S. Appl. No. 14/744,438, 29 pgs.
PCT Search Report and Written Opinion dated Dec. 26, 2018, received in PCT Application No. PCT/US18/47525, 14 pgs.
Australian Examination Report dated Oct. 23, 2018, received in AU Application No. 2016341998, 5 pgs.
Australian Examination Report dated Oct. 16, 2018, received in AU Application No. 2016342001, 5 pgs.
PCT Search Report and Written Opinion dated Aug. 23, 2018, received in PCT Application No. PCT/US18/34320, 11 pgs.
PCT Search Report and Written Opinion dated Jul. 18, 2018, received in PCT Application No. PCT/US18/28635, 16 pgs.
English translation of Korean Office Action dated May 31, 2019, received in Korean Application No. 10-2018-7014186, 8 pgs.
Chinese Office Action with English translation dated Jan. 2, 2020, received in Chinese Patent Application No. 201680061488.6, 11 pgs.
English translation of Japanese Office Action dated Dec. 2, 2019, received in JP Application No. 2018-520541, 3 pgs.
English translation of Korean Office Action dated Nov. 27, 2019, received in Korean Application No. 10-2018-7014180, 5 pgs.
U.S. Office Action dated Oct. 23, 2019, received in U.S. Appl. No. 15/492,320, 14 pgs.
Related Publications (1)
Number Date Country
20170347848 A1 Dec 2017 US
Provisional Applications (3)
Number Date Country
62313394 Mar 2016 US
62248813 Oct 2015 US
62244331 Oct 2015 US
Continuation in Parts (3)
Number Date Country
Parent 15331045 Oct 2016 US
Child 15685456 US
Parent PCT/US2016/058148 Oct 2016 US
Child 15331045 US
Parent 14867599 Sep 2015 US
Child PCT/US2016/058148 US