The present invention relates to vacuum cleaners and more particularly, to a vacuum cleaner surface cleaning head with a removable non-driven agitator having one or more cleaning pads.
The following is not an admission that anything discussed below is part of the prior art or part of the common general knowledge of a person skilled in the art.
A surface cleaning apparatus, more commonly known as a vacuum cleaner, may be used to clean a variety of surfaces using at least suction. Various types of vacuum cleaners are known including, without limitation, upright vacuum cleaners, canister vacuum cleaners, stick vacuum cleaners and central vacuum systems. A surface cleaning apparatus typically includes a surface cleaning head with an inlet. Some vacuum cleaners include some or all of the operating components (e.g., the suction motor and the air treatment members) at a location other than the surface cleaning head to enable the surface cleaning head to be lighter or smaller. An upright vacuum cleaner, for example, may include an upright section containing at least an air treatment member that is mounted to a surface cleaning head. A canister vacuum cleaner may include a canister body containing at least an air treatment member and a suction motor that is connected to a surface cleaning head by a flexible hose and a handle. Another type of vacuum cleaner includes the suction motor and the air treatment members (e.g., one or more cyclones) positioned in the surface cleaning head.
A surface cleaning apparatus, such as any of the vacuum cleaners mentioned above, may also include one or more mechanical agitators, such as a rotating brush roll, in the surface cleaning head to facilitate cleaning a surface. One problem with mechanical agitators, particularly rotating brush rolls, is the difficulty removing debris (e.g., hair) that becomes entangled. The surface cleaning head often must be turned upside down to determine if the agitator is entangled or clogged and to remove the debris. Removing the debris from the mechanical agitator located inside the surface cleaning head may also be difficult, especially through the limited opening in the bottom of the surface cleaning head. An inability to remove the debris adequately may result in a decrease in performance and even damage to the mechanical agitator and/or vacuum cleaner.
In some conventional vacuum cleaners, the agitator also may not be suitable for all surfaces and/or conditions. A rotating brush roll, for example, may be desirable to provide agitation on a carpet but not on a hard wood floor. This may further limit the performance as well as the versatility of the vacuum cleaner.
Consistent with an embodiment, a surface cleaning head is provided for a vacuum. The surface cleaning head includes a cleaning head housing having a front end portion, a rear end portion, laterally disposed sides, an upper portion and a bottom portion. An agitator chamber is located in the front end portion of the cleaning head housing. The agitator chamber has a top opening through the upper portion of the cleaning head housing and a bottom opening through the bottom portion of the cleaning head housing and includes at least one driven side. The surface cleaning head also includes an agitator drive mechanism including a drive member at the driven side of the agitator chamber and an agitator drive motor drivingly coupled to the drive member. The drive member is configured to engage and drive a rotatable driven agitator when received in the agitator chamber. An external cover is mounted to the cleaning head housing for covering the top opening of the agitator chamber. The external cover is movable between a closed position and an open position. The agitator chamber is covered when the external cover is in the closed position and accessible through the top opening when the external cover is in the open position. The surface cleaning head further includes a non-driven agitator removably mounted within the agitator chamber without engaging the drive member such that the non-driven agitator is configured to contact a surface through the bottom opening. The non-driven agitator is accessible and removable through the top opening when the external cover is in the open position.
Consistent with another embodiment, a surface cleaning head is provided for a vacuum. The surface cleaning head includes a cleaning head housing having a front end portion, a rear end portion, laterally disposed sides, an upper portion and a bottom portion. An agitator chamber is located in the front end portion of the cleaning head housing. The agitator chamber has a top opening through the upper portion of the cleaning head housing and a bottom opening through the bottom portion of the cleaning head housing and includes at least one driven side. The surface cleaning head also includes an agitator drive mechanism including a drive member at the driven side of the agitator chamber and an agitator drive motor drivingly coupled to the drive member. At least one rotatable driven agitator is configured to be removably mounted within the agitator chamber and configured to engage the drive member of the agitator drive mechanism such that the drive member causes the rotatable driven agitator to rotate. At least one non-driven agitator is configured to be removably mounted within the agitator chamber without engaging the drive member and such that the non-driven agitator is configured to contact a surface through the bottom opening.
Consistent with a further embodiment, a removable non-driven agitator is provided for use in an agitator chamber of a surface cleaning head. The removable non-driven agitator includes an agitator body defining first and second elongated air inlets, an air outlet, and an air path between the at least one air inlet and the air outlet. The elongated air inlets are located along at least a portion of a bottom portion of the agitator body, and the air outlet is located on the agitator body at a position to provide engagement with a dirty air inlet in the agitator chamber of the surface cleaning head. The bottom portion of the agitator body has a width corresponding to a width of a bottom opening of the agitator chamber. First and second ends of the agitator body are configured to engage the agitator chamber without engaging a drive member in the agitator chamber. The removable non-driven agitator also includes at least one cleaning pad supported on a pad support member on at least one side of the bottom portion of the agitator body and a seal around the air outlet.
These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way.
A surface cleaning head, consistent with embodiments of the present disclosure, may be configured to receive a removable rotatable driven agitator, such as a brush roll, or a non-driven agitator. Either of these agitators may be located in an openable agitator chamber for purposes of removing debris and/or removing the agitator. The openable agitator chamber may be covered by an external cover that is movable between an open position and a closed position. The non-driven agitator may include an agitator body including a bottom portion supporting one or more cleaning pads. The non-driven agitator body may also define one or more air inlets, an air outlet and an air passageway extending therebetween to facilitate air passage through the surface cleaning head. Different removable agitators with different characteristics may be used interchangeably in the surface cleaning head.
In the illustrated embodiments, the openable agitator chamber, external cover, removable rotatable agitator and other features described herein are used in an “all in the head” type vacuum cleaner in which the functional or operational components for the transport and treatment of fluid (e.g., air) are substantially all contained within the surface cleaning head. The openable agitator chamber, external cover, removable rotatable agitator and other features described herein may also be implemented, within the scope of the present disclosure, in a surface cleaning head for any type of surface cleaning apparatus or vacuum including, without limitation, upright vacuum cleaners, canister vacuum cleaners, stick vacuum cleaners, robotic vacuum cleaners and central vacuum systems.
As used herein, a “surface cleaning head” refers to a device configured to contact a surface for cleaning the surface by use of suction air flow, agitation, or a combination thereof. A surface cleaning head may be pivotably or steeringly coupled by a swivel connection to a wand for controlling the surface cleaning head and may include motorized attachments as well as fixed surface cleaning heads. A surface cleaning head may also be operable without a wand or handle. As used herein, “agitator” refers to any element, member or structure capable of agitating a surface to facilitate movement of debris into a suction air flow in a surface cleaning head. As used herein, “transparent” means capable of allowing enough light to pass through so that objects on the other side can be seen.
Referring to
The surface cleaning head 100 includes a cleaning head housing 110, an agitator chamber 120 located in the housing 110, and a rotatable agitator 130 located in the agitator chamber 120. The rotatable agitator 130 rotates about a rotation axis 2 (
The cleaning head housing 110 may generally include one or more pieces that enclose or encompass components of the surface cleaning head 100. In the illustrated embodiment, the surface cleaning head 100 is used in an “all in the head” type vacuum cleaner. As such, the cleaning head housing 110 encloses or encompasses an air transportation and treatment system 140 (shown schematically in
The cleaning head housing 110 includes a front end portion 112, a rear end portion 114, laterally disposed sides 113, 115, an upper portion 116, and a bottom portion 118. In the illustrated embodiment, the wand 102 is steeringly coupled to the rear end portion 114, and the agitator chamber 120 is located in the front end portion 112 and extends between a top opening 117 in the upper portion 116 and a bottom opening 119 in the bottom portion 118. The rotatable agitator 130 is located in the agitator chamber 120 and is configured to contact a surface to be cleaned through the bottom opening 119. The top opening 117 and the bottom opening 119 allow the rotatable agitator 130 to be accessed from either the top or bottom or the top and bottom simultaneously, which may help facilitate inspection or servicing of the agitator. For example, a user may clean the agitator 130 via the top opening 117 while allowing debris separated from the agitator 130 to fall out of the chamber via the bottom opening 119. The rotatable agitator 130 may also be removable from the agitator chamber 120, for example, through the top opening 117, as will be described in greater detail below.
In the illustrated embodiment, the top opening 117 of the agitator chamber 120 has a width that is greater than a width of the agitator 130 to help provide access to the entire agitator 130 and/or to allow the rotatable agitator 130 to be removed. In other embodiments, the width of the top opening 117 of the agitator chamber 120 may be shorter. The bottom portion 118 includes one or more bottom guards or bars 111a, 111b extending across the bottom opening 119 (
In the illustrated embodiment, an external cover 122 is mounted to the upper portion 116 of the cleaning head housing 110 for covering the top opening 117 of the agitator chamber 120 (
In the illustrated embodiment, the surface cleaning head 100 includes one or more transparent regions 124 that allow visual inspection of the agitator chamber 120. The transparent region 124 may be made out of a polycarbonate material. In this embodiment, the transparent region 124 is in the form of a window located on the external cover 122. Additionally or alternatively, one or more transparent regions may be located in other locations on the cleaning head housing 110 that allow visual inspection of the agitator 130 in the agitator chamber 120, for example, on the sides 113, 115. The transparent region 124 together with the movable external cover 122 thus facilitate a determination of debris in the agitator chamber 120 and/or agitator 130 and then removal of that debris.
The external cover 122 may be locked in the closed position using any suitable mechanism. In the illustrated embodiment, the external cover 122 includes one or more latch releases 126a, 126b for releasing respective latching mechanisms (not shown) that hold the external cover 122 into engagement with the cleaning head housing 110, as will be described in greater detail below. In the illustrated embodiment, the latch releases 126a, 126b are located proximate the respective sides 113, 115. Additionally or alternatively, one or more releasable latches may be provided in other locations on the external cover 122 and/or on the cleaning head housing 110. The external cover 122 may be pivotably or movably coupled to the cleaning head housing 110, as will be described in greater detail below, or may be completely removable from the cleaning head housing 110 (
The surface cleaning head 100 may also include one or more lights, such as LEDs 129 on the external cover 122. In this embodiment, wiring (not shown) extends from the housing 110 to the external cover 122 and passes through the inside of the cover 122 to the LEDs 129. The lights may also be mounted on other locations on the cleaning head housing 110.
In the illustrated embodiment, as shown in
As shown in
The illustrated embodiment of the agitator caddy 160 further includes one or more mounting arms 166 extending from container 162. The mounting arms engage the wand 102 to mount the caddy 160 to the wand 102. The mounting arms 166 may be shaped similar to the contours of the wand 102 and may be dimensioned such that the arms 166 flex and apply pressure against the wand 102 to hold the agitator caddy 160 in place and prevent the caddy 160 from sliding. In other embodiments, the agitator caddy 160 may include other structures for engaging and mounting on the wand 102 and/or surface cleaning head 100.
In this embodiment, as shown in greater detail in
This embodiment of the rotatable agitator 130 also includes one or more cutting grooves 138 extending substantially axially along at least a portion of the agitator body 131. The cutting groove(s) 138 are recessed below a surface of the agitator body 131 and have a depth sufficient to accommodate a cutting tool (e.g., scissors or knife). The cutting tool may thus be inserted beneath strands of hair, string or other types of debris that can get wound around the rotatable agitator 130 during use. The cutting tool may then be translated along the length of the cutting groove 138 to cut hair or other debris entangled around the agitator 130. The rotatable agitator 130 may be manually rotated to allow the cutting groove 138 to be accessed through the top opening 117 or through the bottom opening 119 of the chamber 120. If the rotatable agitator 130 is removable, the agitator 130 may be removed for cutting away the hair and other entangled debris. This embodiment of the rotatable agitator 130 further includes spaces 139a, 139b to accommodate the bottom guards or bars 111a, 111b such that the rotatable agitator 130 extends partially through the bottom opening 119 (see
The agitator body 131 may be solid, hollow or partially solid/hollow. The agitator body 131 may also include wheel weights to balance the rotatable agitator 130 when driven. One example of the wheel weights (not shown) may include screws threaded into the body 131. A hollow agitator body may not need to be weighted.
A rotatable agitator or brush roll may also include other types of agitator patterns and/or agitator elements including, without limitation, fabric material (e.g., cloth, felt or polyester), a rubber material, and bristles of different thicknesses and/or materials. Rotatable agitators with different agitator patterns and/or agitator elements may be used for different surfaces, functions and/or applications. A rotatable agitator with stiffer bristles may be used, for example, for carpets and/or deep cleaning. A rotatable agitator with softer bristles or fabric may be used, for example, for hardwood floors and/or delicate quick cleaning. Thus, different brush rolls having different agitating characteristics may be easily interchangeable in a surface cleaning head with an openable agitator chamber, consistent with embodiments described herein, to increase the functionality and improve the performance of the vacuum cleaner.
As shown in
In this embodiment, the agitator elements 536 may also be different, for example, bristles of a different material, thickness and/or height as compared to the agitator elements 136 in the agitator 130. In one example, the agitator 130 shown in
According to a further embodiment, a rotatable agitator (not shown) may include fabric material wrapped around at least a portion of an agitator body. The fabric material may include, for example, a felt material. This embodiment of the rotatable agitator may also be suited for hard surfaces and/or delicate applications. A rotatable agitator may include any combination of agitator elements such as, for example, a soft agitator element (e.g., a fabric material or soft bristles/brush) and a relatively stiff agitator element (e.g., a rubber blade or stiff bristles/brush).
In further embodiments, a surface cleaning head 100 with an openable agitator chamber 120 may be configured to receive non-rotatable, non-driven agitators in addition to rotatable driven agitators. A non-driven agitator is configured to engage each side of the agitator chamber 120 without engaging the drive mechanism 150 on the driven side of the chamber, as will be described in greater detail below. The non-driven agitator is also configured to engage the dirty air inlet 143 to allow air flow through the non-driven agitator into the air transportation and treatment system 140. A non-driven agitator may be suited for flat, hard surfaces such as hardwood floors or other surfaces or conditions where a rotating agitator may be undesirable.
One embodiment of a non-driven agitator 630 is shown in greater detail in
The cleaning pads 635a-635c may include textile or fabric pads, such as felt pads, or other sheets or pads having a nap or pile suitable for cleaning a surface. The cleaning pads 635a-635c may also include brush pads having bristles extending therefrom. Similar to the brush rolls described above, different non-driven agitators may have different types of cleaning pads for different cleaning applications, such as brush pads with stiff bristles and brush pads with soft bristles. In one example, a brush pad with soft bristles may have thinner nylon bristles (e.g., a diameter of 0.04±0.02 mm).
The cleaning pad(s) 635a-635c may also be removably attached to the bottom support member 633, for example, using hook and loop fasteners such as VELCRO® or other attachment methods. Other attachment mechanisms may be used such as clips. Thus, different cleaning pads with different textures may be attached to the non-driven agitator 630 for use in different applications. Removable cleaning sheets or pads may also be attached to other locations of the agitator body 631, for example, the sheets or pads may be wrapped around the pad support member 633 and attached on a top portion of the agitator body 631. Combinations of different types of cleaning pads may also be used at the same time or different times to provide different cleaning characteristics. The cleaning pads may also be reusable or disposable. In other embodiments, the non-driven agitator 630 may include permanent cleaning or abrasive material attached thereto to provide cleaning or scrubbing in addition to or instead of the removable cleaning sheets or pads.
In this embodiment of the non-driven agitator 630, the agitator body 631 also defines one or more air inlets 636a, 636b, an air outlet 638 and an air path therebetween such that the inlet(s) 636a, 636b are in fluid communication with the outlet 638. The air inlets 636a, 636b are elongated and extend along at least a portion of the pad support member 633 adjacent to the cleaning pad(s) 635a-635c. Although the illustrated embodiment shows the cleaning pad(s) 635a-635c on one side of the air inlets 636a, 636b, cleaning pads 635a-635c may be located on both sides of the air inlets 636a, 636b. The air is directed from the air inlets 636a, 636b along the air path (as indicated by the arrows) to the air outlet 638. When the non-driven agitator 630 is positioned in the agitator chamber 120 (
The air outlet 638 may include a seal 639 around a perimeter thereof to provide sealing between the air outlet 638 and the dirty air inlet. The seal 639 may be made of an elastomeric material or other suitable sealing material and may have any known configuration, such as a lip seal or a face seal, capable of forming a seal against a flat face. Alternatively, the air outlet 638 may be configured to engage a seal around the dirty air inlet in the agitator chamber.
The illustrated embodiment of the non-driven agitator 630 also includes one or more projections 637 on the bottom portion of the agitator body 631. The projections 637 are configured to be received in associated slots in the agitator chamber, as will be described in greater detail below. These projections 637 are generally spaced along the bottom portion of the body 631 on the other side of the air inlets 636a, 636b. The non-driven agitator 630 may also include at least one wing 631a extending from at least one end of the agitator body 631 (FIG. 6A). The wing 631a is configured to be positioned beneath a drive member in the agitator chamber, as will be described in greater detail below.
Referring to
A sealing member 725 may also be located between the pivotable external cover 722 and the cleaning head housing 710 and around the perimeter of the agitator chamber 720. A removable agitator (not shown) may thus be mounted in the agitator chamber 720 inside of the sealing member 725. In the illustrated embodiment, the pivotable external cover 722 includes the sealing member 725 extending around an inside perimeter of the cover 722. In the closed position, the sealing member 725 seals against the cleaning head housing 710 around the perimeter of the agitator chamber 720. The sealing member 725 is capable of forming a substantially air tight seal at the interface between the cover 722 and the cleaning head housing 710 with substantially equal pressure around the perimeter of the chamber 720 to prevent air and/or debris from passing through.
The sealing member 725 may be made of an elastomeric material or other suitable sealing material and may have any known configuration capable of forming a seal against a flat face or rib. A lip seal or face seal, for example, may be used on the pivotable external cover 722 to facilitate alignment and sealing when the cover pivots to the closed position. In other embodiments, the sealing member 725 may be provided on the cleaning head housing 710.
The surface cleaning head 700 may also include a latch mechanism to secure the pivotable external cover 720 in the closed position. The latch mechanism may provide multiple points of engagement around the perimeter between the external cover 720 and the cleaning head housing 710 such that the sealing member 725 is engaged with substantially equal pressure around the perimeter of the chamber 720.
In the illustrated embodiment, the pivotable external cover 722 includes latch mechanisms 770a, 770b on an opposite side from the hinge 723. The latch mechanisms 770a, 770b may include slidable actuators 772a, 772b with hooks 774a, 774b that releasably engage slots 776a, 776b on the cleaning head housing 710. Each of the latch mechanisms 770a, 770b include two hooks 774a, 774b to provide four spaced apart points of engagement between the cover 720 and the housing 710.
The slidable actuators 772a, 772b translate in a transverse direction between a latched position and an unlatched position. The slidable actuators 772a, 772b may be biased into the latched position, for example, by springs (not shown). The slidable actuators 772a, 772b are operably coupled to latch releases 726a, 726b for moving the slidable actuators 772a, 772b against the spring bias, thereby releasing the hooks 774a, 774b from the slots 776a, 776b (as indicated by the arrows in
A movable external cover may also have other configurations. For example, a surface cleaning head may have a pivotable external cover that pivots rearwardly relative to the cleaning head housing to the open position. A surface cleaning head may also have a multiple-piece pivotable external cover including one cover portion that pivots forwardly and another cover portion that pivots rearwardly relative to the cleaning head housing. Another embodiment of a surface cleaning head may have a slidable external cover that slides or rolls in a longitudinal direction relative to the cleaning head housing, for example, similar to a garage door. A further embodiment of a surface cleaning head may have a slidable external cover that slides laterally relative to the cleaning head housing.
In any of these embodiments, the external cover may be latched, for example, using a latching mechanism as described above or any other latching mechanism. In any of these embodiments, the external cover may be sealed, for example, using a sealing member as described above or any other sealing member. In each of these embodiments, the external cover may be moved between open and closed positions while remaining engaged with the surface cleaning head housing. In other embodiments, the external cover may be completely removed from the surface cleaning head housing. Other variations and locations for the external cover are also within the scope of the present disclosure.
Referring to
In this embodiment, the external cover 722 is configured to secure the removable rotatable agitator 730 in the agitator chamber 720. The external cover 722 includes, for example, an engaging structure 728 that engages the non-driven end 734 of the removable rotatable agitator 730. In other embodiments, an agitator engaging member 739 may be movably mounted to the surface cleaning head housing 710 for movement into engagement with the non-driven end 734 of the removable rotatable agitator 730. The agitator engaging member 739 is shown schematically but may be in the form of a clip, slide or latch and may slide and/or pivot in to and out of engagement with the agitator 130.
Although this embodiment shows a pivotable external cover 722 similar to that shown and described above, the removable rotatable agitator 730 in this embodiment may also be used with other types of openable external covers.
The surface cleaning head 700 may also include a kill switch that stops power to the drive mechanism 750 when the pivotable external cover 722 is in the open position. A kill switch actuator 721 is located at a point along the perimeter of the agitator chamber 720 to activate the kill switch when the pivotable external cover 722 is opened. In the example embodiment, the kill switch actuator 721 is biased to an open position that opens the kill switch. When the pivotable external cover 722 is in the closed position, the cover 722 engages the kill switch actuator 721 to close the kill switch, allowing power to the drive mechanism 750. When the pivotable external cover 722 moves to the open position, the actuator 721 moves to the biased open position to open the kill switch, stopping power to the drive mechanism 750. In one embodiment, the kill switch actuator 721 may be recessed to prevent being actuated by a user and may be actuated by a protrusion (e.g., a small rod) extending from the cover 722. The actuator 721 may also be in other locations and may be actuated in other ways.
According to this embodiment of the surface cleaning head 700, the agitator chamber 720 is also configured to receive non-driven agitators, for example, as described above. As shown in
When the non-driven agitator 630 is positioned within the agitator chamber 720, the air outlet 638 engages with a dirty air inlet 743 in the surface cleaning head 700 (see
As shown in greater detail in
As shown in greater detail in
The illustrated embodiment shows the splined drive member 770 with external splines and the splined driven member 780 with internal splines. In other embodiments, the splined drive member 770 may include the internal splines and the splined driven member 780 may include the external splines.
In the illustrated embodiment, the spline teeth 772, 782 on the splined drive member 770 and the splined driven member 780 are both generally wedge shaped with a radially outer portion 771, 781 being wider than a radially inner portion 773, 783 (see
The shape and configuration of the spline teeth 772, 782 in the illustrated embodiment provide self-alignment and facilitate engagement of the splined driven member 780 with the splined drive member 770. The splined drive member 770 and the splined driven member 780 may be engaged in a number of different angular positions and thus do not require a precise angular alignment for engagement. The shape and configuration of the spline teeth 772, 782 in the illustrated embodiment may also reduce or eliminate backlash when the splined drive member 770 drives the splined driven member 780.
One or both of the splined driven member 780 and splined drive member 770 may also be made of an elastomeric material such as a thermoplastic rubber having a higher durometer (e.g., 90 or greater). The elastomeric material may facilitate engagement of the spline teeth 772, 782 and may provide vibration reduction or isolation when the splined drive member 770 drives the splined driven member 780. Thus, the drive mechanism 750 may rotate the agitator 730 at higher RPMs with reduced vibrations.
In the illustrated embodiment, each of the splined drive member 770 and the splined driven member 780 have six (6) spline teeth 772, 782 arranged in a star configuration around an axis of rotation. The six spline teeth are capable of withstanding the desired drive forces and torques while also facilitating alignment and preventing backlash; however, other numbers of spline teeth may be possible. Other shapes and configurations of the spline teeth on the splined drive member 770 and splined driven member 780 may also be possible. Furthermore, other couplings or mechanisms for axially coupling rotating shafts to transmit torque and rotation may also be used including, without limitation, a dog clutch, a non-slip clutch, a Hirth joint and a curvic coupling.
As shown in greater detail in
As shown in greater detail in
Referring to
To mount the rotatable agitator 730 within the agitator chamber 720, the driven end 732 is angled into the chamber 720 to engage the splined drive member 770 with the splined driven member 780 (see
Referring to
Referring to
Accordingly, a surface cleaning head, consistent with embodiments of the present disclosure, includes an openable agitator chamber to facilitate inspection, cleaning, servicing, and/or replacement of an agitator in the surface cleaning head. The removable agitator may include a rotatable driven agitator that engages a drive mechanism in the agitator chamber or a non-rotatable, non-driven agitator that is received within the agitator without engaging the drive mechanism.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. It will be appreciated by a person skilled in the art that a surface cleaning apparatus may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/110,232, filed on Jan. 30, 2015, which is fully incorporated herein by reference. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/739,915 filed on Jun. 15, 2015, which is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2411488 | White | Nov 1946 | A |
2707792 | Waller | May 1955 | A |
2785431 | Pardee | Mar 1957 | A |
2910721 | Burrage | Nov 1959 | A |
3643276 | Worwag | Feb 1972 | A |
4173807 | Maier | Nov 1979 | A |
4333205 | Woodward et al. | Jun 1982 | A |
4372004 | Vermillion | Feb 1983 | A |
4429430 | Lyman | Feb 1984 | A |
4662027 | Parker et al. | May 1987 | A |
4866804 | Masbruch et al. | Sep 1989 | A |
4980945 | Bewley | Jan 1991 | A |
5014387 | Hays | May 1991 | A |
5309601 | Hampton et al. | May 1994 | A |
5452490 | Brundula et al. | Sep 1995 | A |
5495634 | Brundula et al. | Mar 1996 | A |
5632060 | Steinberg et al. | May 1997 | A |
5659919 | Kajihara | Aug 1997 | A |
5765258 | Melito et al. | Jun 1998 | A |
5799364 | Foisy et al. | Sep 1998 | A |
5960514 | Miller et al. | Oct 1999 | A |
6012200 | Murphy et al. | Jan 2000 | A |
6226832 | McCormick | May 2001 | B1 |
6324714 | Walz et al. | Dec 2001 | B1 |
6513190 | Allgeier et al. | Feb 2003 | B1 |
6539575 | Cohen | Apr 2003 | B1 |
6550099 | Worwag | Apr 2003 | B2 |
7013528 | Parker et al. | Mar 2006 | B2 |
7200893 | Gerber et al. | Apr 2007 | B2 |
7316050 | Worwag | Jan 2008 | B2 |
7329294 | Conrad | Feb 2008 | B2 |
7690079 | Boddy et al. | Apr 2010 | B2 |
7987546 | Poch et al. | Aug 2011 | B2 |
8037571 | Butts et al. | Oct 2011 | B2 |
8316503 | Follows et al. | Nov 2012 | B2 |
8402601 | Fahlstrom | Mar 2013 | B2 |
8434194 | Jeong et al. | May 2013 | B2 |
8533904 | Conrad | Sep 2013 | B2 |
8631541 | Tran | Jan 2014 | B2 |
8720001 | Courtney et al. | May 2014 | B2 |
8726441 | Colasanti et al. | May 2014 | B1 |
8776311 | Genn et al. | Jul 2014 | B2 |
8782851 | Follows et al. | Jul 2014 | B2 |
8800107 | Blouin | Aug 2014 | B2 |
8806710 | Follows et al. | Aug 2014 | B2 |
20020092122 | Zahuranec et al. | Jul 2002 | A1 |
20030106183 | Frederick et al. | Jun 2003 | A1 |
20030145424 | Stephens et al. | Aug 2003 | A1 |
20030159240 | Mertes et al. | Aug 2003 | A1 |
20040045125 | Park et al. | Mar 2004 | A1 |
20060272122 | Butler et al. | Dec 2006 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20100306958 | Follows et al. | Dec 2010 | A1 |
20110296648 | Kah, Jr. | Dec 2011 | A1 |
20120311802 | Hinnant | Dec 2012 | A1 |
20130198995 | Eriksson | Aug 2013 | A1 |
20130212831 | Follows et al. | Aug 2013 | A1 |
20140259521 | Kowalski | Sep 2014 | A1 |
20140331446 | Eriksson | Nov 2014 | A1 |
20160073841 | Eriksson | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
102012207357 | Nov 2013 | DE |
0909547 | Apr 1999 | EP |
583738 | Dec 1946 | GB |
2509925 | Jul 2014 | GB |
H10201682 | Aug 1998 | JP |
2009045503 | Mar 2009 | JP |
2011050428 | Mar 2011 | JP |
0141618 | Jun 2001 | WO |
2013104886 | Jul 2013 | WO |
2014131105 | Sep 2014 | WO |
2014131106 | Sep 2014 | WO |
Entry |
---|
U.S. Office Action dated Feb. 22, 2016, received in related U.S. Appl. No. 14/744,438, 29 pgs. |
PCT International Search Report and Written Opinion dated Mar. 31, 2016, received in corresponding PCT Application No. PCT/US16/15370, 15 pgs. |
U.S. Office Action dated May 12, 2017, received in related U.S. Appl. No. 14/812,734, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20160220082 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62110232 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14739915 | Jun 2015 | US |
Child | 14867599 | US |