Surface coalescers

Information

  • Patent Grant
  • 9199185
  • Patent Number
    9,199,185
  • Date Filed
    Friday, May 14, 2010
    15 years ago
  • Date Issued
    Tuesday, December 1, 2015
    9 years ago
  • CPC
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • B01D69/02
    • B01D69/06
    • B01D69/12
    • B01D71/48
    • B01D17/04
    • Term Extension
      752
Abstract
Disclosed are coalescers, systems, and methods for coalescing a mixture of two phases, namely a continuous phase and a dispersed phase. The disclosed coalescers, systems, and methods include or utilize one or more layers of media material having a distinct mean pore size and wettability. The disclosed coalescers, systems, and methods are effective for removing the dispersed phase from the mixture.
Description
BACKGROUND

The field of the invention relates to coalescers, coalescing elements, coalescing systems, coalescing methods, and coalescing media for coalescing a mixture of two phases, namely a continuous phase and a dispersed phase. In particular, the field relates to coalescers, coalescing elements, coalescing systems, coalescing methods, and coalescing media for coalescing drops of the dispersed phase in order to collect and remove the dispersed phase from the mixture.


Coalescers are used widely to remove immiscible droplets from a gaseous or liquid continuous phase, such as in crankcase ventilation (CV) filtration, fuel water separation (FWS), and oil-water separation. Prior art coalescer designs incorporate the principles of enhanced droplet capture and coalescence by utilizing graded capture (i.e., decreasing fiber diameter, pore size and/or porosity in coalescing media) or by utilizing thick depth coalescers. Wettability also is recognized as affecting coalescer performance. (See, e.g., U.S. Pat. No. 6,767,459 and U.S. published Patent Application Nos. 2007-0131235 and 2007-0062887). U.S. Pat. No. 5,443,724 discloses that the media should have a surface energy greater than water in order to improve coalescer performance (i.e., that the media should be preferentially wetted by both coalescing droplets and continuous phases). U.S. Pat. No. 4,081,373 discloses that coalescing media should be hydrophobic in order to remove water from fuel. U.S. published Patent Application No. 2006-0242933 discloses an oil-mist coalescer in which the filtration media is oleophobic, thereby enabling the fluid mist to coalesce into droplets and drain from the filtration media.


With regard to the removal of water from fuel, there is a need to increase removal efficiency and to remove smaller droplets than in the past, in order to protect high pressure rail fuel-injection systems. This challenge is further magnified by the introduction of new fuels with lower interfacial tensions and different additive packages, than fuels in the past. In fuels with lower interfacial tension, the size of dispersed drops is decreased, making the drops more difficult to remove. Enhanced coalescence therefore is needed to meet these challenges. Improved coalescers that include improved coalescing media also are desirable because they permit the use of a smaller media pack in view of improved coalescing efficiency. In fuels with lower interfacial tension, the size of drops is decreased, making the drops more difficult to remove.


In the case of fuel, high pressure common rail (HPCR) application, essentially all non-dissolved water should be removed from ultra low sulfur diesel (ULSD) fuel and biodiesel. These fuels tend to have lower interfacial tensions, therefore smaller drop size and more stable emulsions, than previous diesel fuel. In addition, the rate of coalescence between drops may be reduced by the presence of surfactants. Traditional FWS tend to be single-stage devices in which the media is phobic with respect to the dispersed phase and acts as a barrier to the dispersed phase. Traditional FWS tend not to provide adequate removal for HPCR systems, as they are intended for use upstream of a fuel pump with high interfacial tension fuels, hence, their pore size tends to be too large to effectively capture the small drops. Also, even when the mean pore size is sufficiently small, FWS media typically possess a maximum pore size great enough that excessive amounts of water passes through these large pores. Traditional two-stage fuel-water coalescers (FWC) are designed to be used downstream of the fuel pump and tend to be two-stage devices for fuel in which the first stage captures the drops, holds them so coalescence can occur, then releases the enlarged drops which are removed by sedimentation/settling, typically after being blocked by the second separator stage (where the second separator stage acts as an FWS). Traditional two-stage FWC tend to provide higher removal efficiency than FWS, but tend to have insufficient life, due to plugging by solids or semisolids. To varying degrees, both FWS and FWC are adversely affected by the presence of surfactants that lower interfacial tension, reduce drop size, slow down the rate of coalescence, stabilize emulsions, and may adsorb onto media and render it less effective. Therefore, is a need for a high efficiency, low pressure drop fuel water coalescer that is minimally affected by low interfacial tension and the presence of surfactants.


For CV applications, near 100% removal efficiency of oil mist is required to protect the turbocharger in closed CV applications and to protect the environment in open CV applications. Increasingly high efficiency, low pressure drop and longer life are sought. To accomplish this, the media should be protected from plugging, submicron droplets need to be removed, and the oil needs to drain quickly from the media.


SUMMARY

Disclosed are coalescer media, coalescers, coalescing elements, coalescing systems, and coalescing methods for coalescing a mixture of two immiscible phases, namely a continuous phase and a dispersed phase. The disclosed coalescers, elements, systems, and methods may be utilized in order to remove or collect the dispersed phase from the mixture and may comprise or consist of a single layer or multiple layers of media material.


The disclosed coalescer media, coalescers, elements, systems, and methods are configured for capturing droplets of a dispersed phase from a mixture of the dispersed phase and a continuous phase. In the coalescers, systems, and methods, the mixture is passed from upstream to downstream through one or more layers of coalescing media. As the mixture is passed through the media, droplets of the dispersed phase coalesce and grow on the upstream surface of the media to a sufficient size whereby they are released, drained, or collected. The coalescing media may include a single layer of media material that is relatively non-wettable by the dispersed phase in the continuous phase, and optionally includes additional layers of media material.


The disclosed coalescers, elements, systems, and methods may be utilized to coalesce any suitable mixture that includes a continuous phase and a dispersed phase. Typically, the continuous phase and the dispersed phase are immiscible liquids. For example, the disclosed systems and methods may be configured or utilized for coalescing water dispersed in a hydrocarbon liquid (e.g., hydrocarbon fuel, diesel fuel, biodiesel fuel, lubricating oil, hydraulic oil, or transmission oil). In other embodiments, the continuous phase is water and the dispersed phase is hydrocarbon liquid. In further embodiments, the continuous phase is a gas and the dispersed phase is a liquid.


The coalescing media may include a single layer of media material that is relatively non-wettable by the dispersed phase in the continuous phase in order to facilitate coalescence of the dispersed phase at the upstream face of the media material. Preferably, the upstream surface (or face) of the media material is relatively smooth (e.g., by subjecting the surface to calendaring) to facilitate draining of coalesced drops of the dispersed phase.


The single layer has a mean pore size M, which may be determined by porometer. Typically, the mean pore size for the single layer is less than the average droplet size for the dispersed phase of the mixture. The mean pore size of the single layer may have a preferred size. In some embodiments, 0.2 μM≦M≦12.0 μM (preferably 2.0 μM≦M≦10.0 μM, or more preferably 4.0 μM≦M≦8.0 μM). The single layer further may have a maximum pore size MM. Preferably, the single layer has a maximum pore size MM and 1≦MM/M≦3, or more preferably, 1≦MM/M≦2.


The single layer of media material has a capillary pressure P. Capillary pressure for the layer may be defined as:






P
=


4

γ





cos





θ

M







    • where P=local capillary pressure for the layer;
      • γ=interfacial tension;
      • θ=contact angle of a drop of the dispersed phase in the continuous phase on the layer; and
      • M=pore size for the layer.





The single layer of media material is relatively non-wettable by the dispersed phase in the continuous phase. In some embodiments, the contact angle for a drop of dispersed phase in the continuous phase on the media material, θ, is no less than 90°, and preferably no less than 120° (more preferably no less than 135°).


The single layer of media material has a porosity ε. Preferably, the porosity ε is no less than 0.8. In some embodiments, the single layer of media material includes a layer of relatively fine fibers having a mean diameter between 0.07 μm and 3.0 μm (preferably between 0.15 μm and 1.5 μm) supported on a substrate of relatively coarser fibers with a mean diameter greater than the mean diameter of the relatively fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm). In other embodiments, the single layer includes a heterogenous mixture comprising relative fine fibers having a diameter between 0.07 μm and 3.0 μm (preferably between 0.15 μm and 1.5 μm) and relatively coarser fibers with diameter greater than the mean diameter of the relatively fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm).


The single layer preferably has a thickness suitable for coalescing a dispersed phase in a continuous phase. In some embodiments, the single layer has a thickness as measured from upstream to downstream relative to flow through the layer of between about 0.05 and 0.4 mm (preferably 0.1 and 0.3 mm).


In further embodiments, the disclosed coalescing media includes at least two adjacent layers that extend in series from upstream to downstream, namely at least a first layer and at least a second layer, where the second layer may have the characteristics of the single layer as described above. The first layer has a mean pore size M1 that is greater than the mean pore size of the second layer M2, for example as determined by porometer. In some preferred embodiments, M1 is at least about 2.5 times greater than M2 (preferably at least about 5 times greater than M2, or more preferably at least about 10 times greater than M2, even more preferably at least about 20 times greater than M2). The mean pore sizes of the first layer and the second layer may have a preferred size. In some embodiments, M1 may be no less than about 30 μm (preferably no less than about 180 μm). In other embodiments, 0.2 μM≦M2≦12.0 μM (preferably 2.0 μM≦M2≦10.0 μM, or more preferably 4.0 μM≦M2≦8.0 μM).


The first layer and the second layer further may have maximum pore sizes MM1 and MM2, respectively. Preferably; the second layer has a maximum pore size MM2 and 1≦MM2/M2≦3. More preferably, 1≦MM2/M2≦2.


In the disclosed coalescing media, the first layer and the second layer have capillary pressures, P1 and P2, respectively. Capillary pressure for a layer may be defined as:







P
I

=


4

γ





cos






θ
I



M
I








    • where P=local capillary pressure for the indicated layer 1;
      • γ=interfacial tension;
      • θ=contact angle of a drop of the dispersed phase in the continuous phase on the layer; and
      • M=pore size for the indicated layer 1.


        In some embodiments of the coalescing media disclosed herein P1≧P2.





In the disclosed coalescing media, the first layer includes media material that is relatively wettable by the dispersed phase in the continuous phase in comparison to the second layer, and in contrast, the second layer includes media material that is relatively non-wettable by the dispersed phase in the continuous phase in comparison to the first layer. In some embodiments, the contact angle for a drop of dispersed phase in the continuous phase on layer one, θ1, is no more than 90°, and preferably no more than 45°. In further embodiments, the contact angle for a drop of dispersed phase in the continuous phase on layer two, θ2, is no less than 90°, and preferably no less than 120° (more preferably no less than 135°).


In the disclosed coalescing media, the first layer and the second layer comprise filter media having porosities ε1 and ε2, respectively. Preferably, the second layer comprises filter media (optionally fibrous filter media) having a porosity ε2 that is no less than 0.8. In some embodiments, the second layer of media material includes a layer of relatively fine fibers having a mean diameter between 0.07 μm and 3.0 μm (preferably between 0.15 μm and 1.5 μm) supported on a substrate of relatively coarser fibers with a mean diameter greater than the mean diameter of the relatively fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm). In other embodiments, the second layer includes a heterogenous mixture comprising relative fine fibers having a diameter between 0.07 μm and 3.0 μm (preferably between 0.15 μm and 1.5 μm) and relatively coarser fibers with diameter greater than the mean diameter of the relatively fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm).


The second layer preferably has a thickness suitable for coalescing a dispersed phase in a continuous phase. In some embodiments the second layer has a thickness as measured from upstream to downstream relative to flow through the layer of between about 0.05 and 0.4 mm (preferably 0.1 and 0.3 mm).


The adjacent surfaces of the first layer and the second layer (i.e., the downstream surface of the first layer and the upstream face of the second layer) may be configured to facilitate draining of coalesced drops of the dispersed phase. For example, in one embodiment of the coalescing media disclosed herein the downstream surface of the first layer may comprise fibers that are oriented in a substantially vertical direction and/or the upstream surface of the second layer may be relatively smooth (e.g., by subjecting the surface to calendaring) in order to facilitate draining of coalesced drops of the dispersed phase.


The components of the disclosed coalescers, elements, systems, and methods may be arranged in any suitable configuration. In some embodiments, the components may extend in series from upstream to downstream in an axial direction (e.g., where the components are configured as a linear coalescing element), or in other embodiments the components may extend in series from upstream to downstream in a radial direction (e.g., where the components are configured as a cylindrical coalescer element utilizing either an inside-out or an outside-in flow configuration). The coalescing media also may be configured in a flat-panel or other arrangement.


The disclosed coalescers, elements, systems, and methods, optionally may include or utilize a housing. The housing may include an upstream inlet structured to receive the mixture, a first downstream outlet structured to discharge the cleaned mixture (with reduced dispersed phase concentration) after coalescing, and optionally a second outlet structure to discharge the coalesced dispersed phase. Preferably, the second outlet is on the upstream side of the media material, but downstream of the upstream inlet.


The disclosed coalescer media, coalescers, coalescing elements, coalescing systems, and coalescing methods typically include or utilize a single layer of media material (or optionally multiple layers of media material) for coalescing a dispersed phase from a mixture of the dispersed phase in a continuous phase. Optionally, the coalescers, coalescing elements, coalescing systems, and coalescing methods may include or utilize additional media (e.g., additional media positioned downstream of the coalescing media material). In some embodiments, the disclosed coalescers, coalescing elements, coalescing, and coalescing methods further may include or further may utilize an additional hydrophobic media material for removing water, where the additional hydrophobic media material is positioned downstream of the single layer of media material (or optional multiple layers of media material). In some embodiments, the disclosed coalescer media, coalescers, coalescing elements, coalescing systems, and coalescing methods further may include or further may utilize an additional media sublayer downstream of the coalescing layer to provide structural support.


In some embodiments, the disclosed coalescers, elements, systems, or methods may be utilized for removing water dispersed in a hydrophobic liquid, including, but not limited to, hydrocarbon fuel, diesel fuel, biodiesel fuel, lubricating oil, hydraulic oil, or transmission oil. Preferably, the coalescers, systems, or methods remove at least about 93% of water dispersed in liquid hydrocarbon fuel (more preferably at least about 95% of water dispersed in liquid hydrocarbon fuel, even more preferably at least about 97% of water dispersed in liquid hydrocarbon fuel, most preferably at least about 99% of water dispersed in liquid hydrocarbon fuel) after the liquid hydrocarbon fuel is passed through the coalescers, systems, or subjected to the methods. In other embodiments, the coalescers, coalescing elements, coalescing systems, and coalescing methods may be utilized for removing hydrocarbon liquid dispersed in water.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a conceptual illustration of a surface coalescence process as contemplated herein.



FIG. 2 illustrates a method for determining contact angle θ for a dispersed drop on a media phase.



FIG. 3 provides a unit cube as a model for determining M as a function of d (fiber diameter) and ε as further discussed herein.



FIG. 4 illustrates the relationship between porosity and fiber diameter for different pore sizes.



FIG. 5 illustrates the relationship between capillary pressure and contact angle for different pore sizes of the layer of the coalescing media disclosed herein.



FIG. 6 provides a conceptual illustration of a surface coalescence process as contemplated herein.



FIG. 7 illustrates the relationship between capillary pressure and contact angle for different pore sizes of the first layer of the coalescing media disclosed herein.



FIG. 8 illustrates the relationship between capillary pressure and pore size for different interfacial tensions.





DETAILED DESCRIPTION

Disclosed are coalescers, systems and methods for coalescing a mixture of two phases, namely a continuous phase and a dispersed phase. The disclosed coalescers, systems and methods may be utilized to collect and remove the dispersed phase from the mixture.


The disclosed coalescers, systems and methods include or utilize coalescing media that comprises, or alternatively consists of, a single layer of media material. As contemplated herein, the layer may have a desirable pore size, capillary pressure, porosity, and solidity. The terms “pore size,” “capillary pressure,” “porosity,” “fiber diameter,” and “solidity,” may refer to “average” or “mean” values for these terms (e.g., where the layer is non-homogenous or graded and “pore size,” “capillary pressure,” “porosity,” “fiber diameter,” and “solidity,” are reported as mean pore size, average capillary pressure, average porosity, average fiber diameter, or average solidity for the non-homogenous or graded layer).


The disclosed coalescers, systems and methods may be utilized to coalesce a dispersed phase from a mixture of the dispersed phase in a continuous phase. Mixtures contemplated herein may include mixtures of a hydrophobic liquid (e.g., a hydrocarbon liquid) and an aqueous liquid (e.g., water). In some embodiments, the continuous phase may be a hydrocarbon liquid and the dispersed phase may be water. In other embodiments, the continuous phase may be water and the dispersed phase may be a hydrocarbon liquid. As contemplated herein, a hydrocarbon liquid primarily includes hydrocarbon material but further may include non-hydrocarbon material (e.g., up to about 1%, 5%, 10%, or 20% non-hydrocarbon material).


The disclosed coalescers, systems, and methods may be particularly suitable for coalescing a dispersed phase from an emulsion mixture having an interfacial tension lower than about 20 dyne/cm (or lower than about 15, 10, or 5 dyne/cm). For example, the coalescers, systems, and methods may be utilized to coalesce water from hydrocarbon liquids comprising surfactants and having an interfacial tension lower than about 20 dyne/cm (or lower than about 15, 10, or 5 dyne/cm).


The coalescing media material utilized in the disclosed coalescers, systems, and methods typically is relatively non-wettable by the dispersed phase in the continuous phase in order to facilitate coalescence of the dispersed phase at the upstream face of the media material. Preferably, the media material remains relatively non-wettable by the dispersed phase in the continuous phase over long periods of exposure to the mixture, in particular, where the mixture comprises a surfactant. The coalescing media, as described herein, may comprise a layer of fibrous material (e.g., polymer, glass, ceramic, or metal fibers). In some embodiments, the coalescing media may comprise a layer of a polyester material (e.g., polybutylene terephthalate (PBT)), a polyamide material, a halocarbon material (e.g., Halar® brand ethylene chlorotrifluoroethylene (ECTFE)), or a media obtained by treating a fibrous material with an agent comprising fluorine functionalities. In some embodiments, the media may comprise PBT with 1-10% (w/w) of a fluorocarbon additive (e.g., hexafluoropropylene, hexafluoroisopropanol, hexafluoroisobutylene, and perfluorodecylacrylate), a polyester material (e.g., PBT) compounded with 10-40% (w/w) of a fluorocarbon polymer (e.g., ECTFE), or 100% meltblown/fiber grade fluoropolymer (e.g., ECTFE).


The coalescing media material utilized in the disclosed coalescers, systems, and methods has a desirable mean pore size, fiber diameter, contact angle, and porosity in order to achieve the desired coalescence. The media material may be homogenous or heterogenous. The “fiber diameter,” “contact angle,” and “porosity” for the media material may refer to “average fiber diameter,” “average contact angle,” and “average porosity” for the media material.


The disclosed coalescers, systems, and methods typically include or utilize a single layer of media material. In some embodiments, the disclosed coalescers, systems, and methods include or utilize a separate separator or stripping stage that is placed downstream and separated from the single layer of media material (e.g., hydrophobic material for removing water located downstream and separate from the single layer of media material).


The coalescing media described herein may comprise material having distinct hydrophilicity or hydrophobicity, or distinct oleophilicity or oleophobicity. In some embodiments, the coalescing media comprises a single layer comprising relatively hydrophobic material, relative to the dispersed phase of the mixture.


The coalescers, systems, and methods contemplated herein may include or utilize components referred to as “coalescing elements,” “coalescing filters,” “coalescing apparatuses,” “coalescing assemblies,” and “housings” therefor as known in the art. (See, e.g., U.S. Pat. Nos. 7,416,657; 7,326,266; 7,297,279; 7,235,177; 7,198,718; 6,907,997; 6,811,693; 6,740,358; 6,730,236; 6,605,224; 6,517,615; 6,422,396; 6,419,721; 6,332,987; 6,302,932; 6,149,408, 6,083,380; 6,056,128; 5,874,008; 5,861,087; 5,800,597; 5,762,810; 5,750,024; 5,656,173; 5,643,431; 5,616,244; 5,575,896; 5,565,078; 5,500,132; 5,480,547; 5,480,547; 5,468,385; 5,454,945; 5,454,937; 5,439,588; 5,417,848; 5,401,404; 5,242,604; 5,174,907; 5,156,745; 5,112,498; 5,080,802; 5,068,035; 5,037,454; 5,006,260; 4,888,117; 4,790,947; 4,759,782; 4,643,834; 4,640,781; 4,304,671; 4,251,369; 4,213,863; 4,199,447; 4,083,778; 4,078,965; 4,052,316; 4,039,441; 3,960,719; 3,951,814; and U.S. published Application Nos. 2007-0289915; 2007-0107399; 2007-0062887; 2007-0062886; and 2007-0039865; the contents of which are incorporated herein by reference in their entireties.) The coalescing media disclosed herein may be manufactured utilizing methods known in the art and may include additional features disclosed in the art. (See, e.g., U.S. Pat. Nos. 6,767,459; 5,443,724; and 4,081,373; and U.S published Patent Application Nos. 2007-0131.235; 2007-0062887; and 2006-0242933; the contents of which are incorporated herein by reference in their entireties).


The coalescence process as disclosed herein may be understood to comprise a series of steps including, but not limited to: (1) capture of droplets by the coalescence media material; (2) coalescence and drop growth at the upstream face of the media material; (3) drainage of coalesced drops at the upstream face of the media material; and (4) release of coalesced drops from the media material. When the coalesced drops become large enough, drag or gravitational forces induce them to flow down the upstream face of the media material until they are released. The increased droplet concentration at the upstream face of the coalescence media material and the relatively non-wetting nature of the media material facilitates the coalescence of droplets at the upstream surface of the media material. The drainage of coalesced drops from the media material may be facilitated by utilizing a media material having an upstream face with a relatively smooth surface


This invention can be applied to any set of immiscible fluids, such as water in diesel fuel, water in biodiesel fuel, oil in water, and crankcase oil from engine blow-by gases. In further embodiments, the coalescing media is present in a coalescing system that further includes a device for removing drops that are coalesced by the coalescing media. For example, a coalescing system further may include one or more of a gravity separator, centrifuge, impactor, lamella separator, inclined stacked plate, screen, quiescent chamber, and the like.


The coalescers, systems, and methods disclosed herein may include or utilize a single layer of media material, or optionally multiple layers of media material, in which coalescence mechanisms having been optimized (i.e., coalescers, systems, and methods in which the physical, structural, and surface properties of the media material have been optimized). The following discussion provides exemplary rules and optimal relationships among the variables P, θ, M, d, and ε for a layer of media material. However, the preferred values selected ultimately may depend upon the concentration and size distribution of solids and semi-solids in the fluid to be coalesced, as these properties influence the life of the coalescer; and the upstream droplet size distribution, and the anticipated γ, interfacial tension for application, directly impact the design of the layer. These disclosed principles may be utilized to design a coalescer, system, or method that exhibits superior performance.


The disclosed principles may be utilized to design coalescers, systems, and methods for removing a dispersed phase (e.g., water) from a continuous phase (e.g., hydrocarbon fuel). For example, the disclosed coalescers, systems, and methods may be utilized for removing a dispersed phase from a continuous phase where at least about 93, 95, 97, or 99% of the dispersed phase is removed from the continuous phase after the phases are passed through the coalescers, systems, or are subjected to the methods disclosed herein.


One embodiment of a surface coalescer system is illustrated in FIG. 1, which performs as follows:

    • 1. Contaminated fluid consisting of droplets (dispersed phase) suspended in a second immiscible fluid (continuous phase), which may or may not also contain solid particulates flow through the system and contact a layer of media material.
    • 2. Droplets and solid particulates are retained on or near the upstream surface of the media material, which acts as a barrier that prevents them from flowing through and concentrates the droplets.
    • 3. Filtered, cleaned continuous phase exits the layer of media material.
    • 4. As the local concentration of captured droplets on the upstream face of the media material increases, they coalesce and grow which is facilitated by the relatively non-wetting character of the media material.
    • 5. Coalesced drops from the surface of the media material are repelled by the relatively non-wetting surface and drain down the face of the non-wetting upstream face of the media material.
    • 6. Drainage of the coalesced and wicked dispersed phase also rinse some of the capture solid particulates from the media.


The media material may be described as having at least three basic functions:

    • 1. to prevent droplets (and solid particles) larger than a certain size from passing through,
    • 2. to facilitate coalescence by concentrating the retained droplets on its upstream surface, and
    • 3. to facilitate release of drops and droplets from the surface.


Preferably, in order to facilitate release, whether by gravity settling, drag forces, or other means, and to prevent drops from penetrating the media, the media material is highly non-wetting with respect to the dispersed phase of the mixture. Also, preferably, the capillary pressure for the dispersed phase in the media material is negative and should be greater in magnitude than the pressure drop across the media material. Further, dispersed drops preferably should not penetrate nor pass through the media material.


Capillary pressure may be defined as:









P
=


4

γ





cos





θ

M





(
1
)







where P=local capillary pressure


γ=interfacial tension


θ=contact angle of a drop on the media in the fluid


M=pore size


The contact angle θ may be defined as in FIG. 2 where θ is defined as an angle having its vertex 90 at the intersection of the continuous phase, dispersed phase, and media phase with one ray 92 extending parallel to the media surface from the vertex and the other ray 94 extending tangentially to the surface of the dispersed phase at the vertex. Typically, the angle θ is reported as being measured through the dispersed phase. In some embodiments, the contact angle may be measured for a droplet on an individual fiber of media material. In other embodiments, the contact angle may be measured for a droplet on a patch of media material. Other methods of estimating and measuring θ are known in the art.


The relationship between the pressure drop across the media, ΔP, and the critical capillary pressure, PC, which is the minimum capillary pressure for the media material required to prevent passage of droplets larger than a certain size is given by:

−PC≧ΔP  (2)


The critical capillary pressure PC, can be found using equation (1) and inserting the following values: γ=lowest interfacial tension for which the coalescer is designed to operate; M=maximum pore size for the media (which should be smaller than the smallest drop size to be removed); and θ =contact angle of the media for the system. With respect to some embodiments of the coalescing media disclosed herein, θ and M may be important design properties, while γ is an application property typically outside the control of the filter manufacturer, but is accounted for in filter design.


In the media material, droplet capture typically occurs via one or more filtration mechanisms, such as diffusion, interception, inertial impaction, or sieving. For high efficiency removal of drop sizes approaching 1 μm or smaller, diffusion or sieving may be most effective. Since it is desirable for coalescence to occur on the surface of the media, as opposed to within the depth of the media as in traditional coalescers, the media of this invention is optimized to enhance removal by sieving. For the presently disclosed coalescing media, the pore size of the media material, M, typically is smaller than the smallest drop size that is desired to be removed.


As an approximation, the media material may be modeled as a hypothetical unit cube as shown in FIG. 3, in order to determine optimal physical characteristics. FIG. 3 presents a 3-dimensional representation of a screen or sieve. Operationally, M can be defined as the equivalent sizes of pores, such as determined by a porometer. In the model, the face of a unit cell is a square with the open area equivalent to the circular cross-section assumed by the porometer. A length of a side of this square, m, is:











π






M
2


4

=

m
2





(
3
)






m
=


M


π


2





(
4
)







The total volume of the unit cube, VT, is

VT=(m+d)3  (5)


where d=fiber diameter of the media.


The volume of the fibers in this unit cube, Vf, is:










V
f

=


3


π


(

m
+
d

)




d
2


4





(
6
)







and the ε estimated from knowledge of M and d:










ɛ
=

1
-


V
f


V
T










ɛ
=

1
-


V
f


V
T










m
=


M


π


2









V
T

=


(

m
+
d

)

3









V
f

=


3


π


(

m
+
d

)




d
2


4








ɛ
=

1
-



3


π
(



M


π


2

+
d

)



d
2


4



(



M


π


2

+
d

)

3










R
=

M
2








ɛ
=

1
-


3

π






d
2



4



(


R


π


+
d

)

2













3

π






d
2



4


(

1
-
ɛ

)



=



(


R


π


+
d

)

2

=



R
2


π

+

2

Rd


π


+

d
2








(
7
)






0
=



R
2


π

+

2

Rd


π


+

d
2

-


3

π






d
2



4


(

1
-
ɛ

)








(
8
)








For a given M (M=2R), equation (8) shows the approximate relationship between d and ε needed to yield the desired pore size and drop size to be removed by sieving.


Using the previously developed equations, the characteristics of the media material may be determined. For optimal design for a given application, the equations and model can be used for the specific conditions of drop size, γ and ΔP. In FIG. 4, results from equation (8) for different drop sizes (i.e., different values of M), are used to show the relationship between ε and d. For fuel water removal in high pressure common rail systems, the system is designed to remove drops smaller than ˜3 μm. Drops smaller than ˜0.2 μm can, in some embodiments, be considered to be dissolved or reverse micelles. For fibrous media material, it may be desirable that the media possess ε>0.8. Thus, in some embodiments 0.07 μm≦d≦3.0 μm, and, preferably, 0.15 μm≦d≦1.5 μm. In other embodiments, the media material may comprise a thin layer of fibers with diameter between 0.07 μm and 3.0 μm with ε sufficient to yield a pore size between 0.2 and 12 μm (preferably between 2.0 and 10 μm and more preferably between 4.0 and 8.0 μm), supported on a substrate of coarser fibers having a mean diameter greater than the mean diameter of the fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm). In further embodiments, the media material may comprise a heterogenoumixture comprised of fine fibers with a mean diameter between 0.07 μm and 3.0 μm with ε sufficient to yield a mean pore size between 0.2 and 12 μm (preferably between 2.0 and 10 μm and more preferably between 4.0 and 8.0 μm) and coarser fibers having a mean diameter greater than the mean diameter of the fine fibers (e.g., where the relatively coarser fibers have a mean diameter greater than about 10 μm, preferably greater than about 20 μm).


In some embodiments, in order to achieve high efficiency, low pressure drop, or increased life, it may be desirable to use fibrous, non-woven media material, as opposed to membrane or granular material. Fine fibers between 0.07 and 3.0 μm typically have the capability to yield both low pressure drop and high efficiency. However, when used alone, these fibers may lack the structural characteristics required to maintain the desired shape of the filter element without collapse or burst. Thus, in some embodiments, a combination of fine fibers and coarser structural fibers is preferred. This can be accomplished in several ways, including, but not limited to, using:

    • 1. A layer of fine fibers bonded to or supported by a substrate of structural fibers, e.g., meltblown polyester, other polymeric fibers, microglass, cellulose or other suitable structural fibers. This may be achieved by electrospinning or otherwise producing and laying down a nanofiber layer onto a substrate of filter media composed of coarser fibers, such as 3 to 30 μm polyester fibers. The nanofiber layer typically has the capability to yield both low pressure drop and high efficiency. The structural fibers provide support, and may allow for pleating and processing. The two layers may be attached to one another through ultrasonic bonding, the use of adhesives, physical constraints, or simply by allowing the freshly produced, warm, tacky, unsolidified nanofibers to cool and adhere to the support fibers.
    • 2. A parent filter media composed primarily of coarser structural fibers greater than 1 μm, 10 μm, or 20 μm, meltblown polyester FWS media, microglass, and impregnated with carbon nanotubules smaller than 0.3 μm in diameter. The substrate material may be polymeric, e.g., polyester, nylon, polypropylene, polyphenylene sulfide, polyurethane, fluorocarbon, a thermoplastic polymer, or other polymeric material that can be formed into a non-woven fibrous or other porous structure. The substrate may be formed into a non-woven fibrous structure by wet laying, melt blowing, melt spinning, or other suitable process. The substrate media is then processed such that carbon nanotubules are incorporated into the media to bridge the micropores formed by the coarse fibers with carbon nanotubule nanofibers, such as described in U.S. Pat. Nos. 7,211,320 and 7,419,601 (which are incorporated herein by reference in their entireties); by thermally bonding the nanotubules to the parent media; or through the use of resin or other binders to attach the nanotubules to the parent media.


Non-woven filter media typically comprises pores and fibers of a range of different sizes. For high removal efficiency coalescence (e.g., greater than ˜98%), the range of M preferably is controlled. As discussed above for equation (1), M is the mean pore size of the media material. Mean pore size may be determined by a porometer. For high efficiency coalescers, the maximum pore size, MM, preferably is controlled. Specifically, the ratio of MM to M, the pore size ratio, preferably meets the criteria









1



M
M

M


3




(
9
)







Control of this ratio is important to the design of a high efficiency, single layer surface coalescers, since the flow of the emulsion will tend to preferentially pass through larger, more open pores, as opposed to smaller, more restrictive pores in the media. Thus, high removal efficiency preferably includes controlling the maximum pore size, where it is preferably that the maximum pore size is close to the mean pore size. As a previously unrecognized secondary benefit, a media that has a pore size ratio that is close to 1 will have a narrower pore size distribution and a more uniform surface that is easier for drops to drain from. In some embodiments, calendaring may be used to produce a smoother surface for the media material. This may facilitate drainage of coalesced drops to drain from the media. Therefore, in preferred embodiment, the pore size ratio for the media material is less than 3, more preferably less than 2, and even more preferably approaches 1.


In addition to these physical characteristics, the contact angle of a drop in the continuous phase on the media may be an important characteristic. In preferred embodiment, the pressure drop of the filter does not exceed ˜20 inches of water. FIG. 5 shows the dependence of PC on θ using equations 1 and 2 for an embodiment of the media material having pore sizes of 0.2 and 3 μM. In this embodiment, θ≧120°, and, ideally, θ≧135° in order to retain drops for surface coalescence and to prevent passage of droplets through the media material. A highly non-wetting θ may be obtained in a number of commercially available ways to achieve non-wetting properties of the surface of the media material. For fuel water separators and other applications where water is the dispersed phase and a hydrocarbon liquid is the continuous phase (e.g., lube or hydraulic oil), the media material typically is hydrophobic and methods for obtaining a hydrophobic media material include, but are not limited to:

    • 1. use of polymeric fibers with inherently hydrophobic properties, such as fluorocarbon fiber (e.g., Halar®ECTFE (a copolymer of ethylene and chlorotrifluoroethylene), polytetrafluoroethylene, or other fluorocarbon polymer), polyester (e.g., polybutylene terphthalate or other hydrophobic polyester), polypropylene, polyethylene, polyphenylene sulfide, polysulfone, acetal, and the like.
    • 2. treatment of a base polymer, glass, metal, ceramic, or carbon fiber media with fluorocarbon or silicone resins, or surfactants (e.g., Rain-X® brand glass treatment) to impart hydrophobicity
    • 3. plasma treatment of the media with a plasma containing fluorine substituents such as are described in U.S. patent application Ser. No. 12/247,502 and in Plasma Surface Modification and Plasma Polymerization, N. Inagaki, CRC Press, NY, 1996, which contents are incorporated herein by reference in their entireties.


For crankcase ventilation, similar methods may be used. However, preferably, the resultant surface is oleophobic. For example, the surface may include fluorocarbon functionalities. In applications of the coalescing media for removing oil or non-polar droplets from water, coolants, or other polar fluids, an oleophobic or hydrophilic surface may be obtained by methods that include, but are not limited to:

    • 1. use of mineral oxide (e.g., glass, silica, ceramic), metal or polymeric fibers with inherently hydrophillic properties, such as nylon 6,6 or other hydrophilic polyamides, glass or ceramic, hydrophilic polyurethanes, polyvinyl alcohols, other hydrophilic polymers or oleophobic fluorocarbon media.
    • 2. plasma treatment of the media with a plasma containing fluorine, oxygen, or nitrogen substituents, such as described in Plasma Surface Modification and Plasma Polymerization, N. Inagaki, CRC Press, NY, 1996, which content is incorporated herein by reference in its entirety.


In some embodiments, the orientation of the disclosed coalescing media in a coalescer is important for optimal function. Drainage will be vertically downward in the direction of gravity or may be facilitated by drag forces from the flowing continuous phase. Typically, the desired direction of drop transport does not oppose gravity.


In some embodiments, the disclosed surface coalescing media comprises or consists of a single layer of coalescing media material. In other embodiments, the disclosed coalescing media includes upstream drainage/prefilter layer (e.g., “Layer A”) in addition to a layer of coalescing media material (e.g., “Layer B”). One embodiment of a surface coalescer is illustrated in FIG. 6, which performs as follows:

    • 1. Contaminated fluid consisting of droplets (dispersed phase) suspended in a second immiscible fluid (continuous phase), which may or may not also contain solid particulates flow through the first layer of media.
    • 2. In the first layer of media (which may be referred to as “Layer A”) some of the droplets and solid particulates, primarily the larger ones, are captured, and retained.
    • 3. Droplets and solid particulates not captured by Layer A flow are retained on or near the upstream surface of the second layer (which may be referred to as “Layer B”) that acts as a barrier that prevents them from flowing through and concentrates the droplets.
    • 4. Filtered, cleaned continuous phase exits Layer B.
    • 5. As the local concentration of captured droplets on the surface of Layer B increases, they coalesce and grow which is facilitated by the presence of relatively wetting Layer A.
    • 6. Coalesced drops from the surface of Layer B are repelled by the relatively non-wetting surface and optionally are wicked back into Layer A (e.g., where the contact angle of Layer A is less than about 90°), or alternatively, the coalesced drops may drain down the face of the non-wetting surface of Layer B.
    • 7. As the dispersed phase wetting surface of Layer A becomes saturated, dispersed phase drains it under the influence of gravity, pressure or other force.
    • 8. Drainage of the coalesced and wicked dispersed phase also rinse some of the capture solid particulates from the media.


The downstream layer (Layer B) has three basic functions similar to the single layer of media material discussed above.

    • 1. to prevent droplets (and solid particles) larger than a certain size from passing through,
    • 2. to facilitate coalescence by concentrating the retained droplets on its upstream surface, and
    • 3. to facilitate release of drops and droplets from the surface.


      The downstream layer (Layer B) may share one or more characteristics of the single layer of media material as discussed above. The characteristics of the downstream layer (Layer B) may be determined or modulated based on the equations discussed above for the single layer of media material.


The optional first layer, i.e., “Layer A,” typically serves a different function than the second layer, i.e., “Layer B.” Typically, the function of Layer A is to:

    • 1. provide a region of higher capillary pressure than Layer B and optionally to assist in wicking captured and coalesced drops and droplets away from the surface of Layer B,
    • 2. facilitate drainage of captured and coalesced drops and droplets from the media,
    • 3. facilitate coalescence of captured droplets, and
    • 4. optionally, serve as a prefilter for solids or other contaminants that may prematurely plug the media.


In order to facilitate wicking and coalescence of captured droplets, the first layer preferentially is more wettable by the dispersed phase than the second layer. Drainage of the dispersed phase, including drops and droplets from this layer typically is facilitated by having a large pore size. Where it is desirable that Layer A function as a pre-filter, it is further preferably that the pore size of Layer A be larger than that of Layer B. In a preferred design, a multilayer or multimedia pre-filter may precede Layer A (i.e., be upstream of Layer A) in order to maximize the life and extend the service interval of the media disclosed herein.


Layer A typically has a capillary pressure that is greater than Layer B, in order to wick away drops from the surface of Layer B. Preferably Layer A has a PC, that is less than the pressure drop across the coalescer, thus

PC,A≦ΔP  (10)
and
PC,B≦PC,A  (11)


The greater the magnitude of PC, the more readily the dispersed phase will wick away from Layer B. In view of Equations (1) and (10), it is preferred that Layer A preferentially be wetted by the dispersed phase (e.g., where θ≦90°, and preferentially θ≦60°, more preferentially θ≦45°). FIG. 7 shows that for θ≦45°, the value of PC begins to plateau and approach a maximum.


For fuel-water coalescers and other applications where water is the dispersed phase and a hydrocarbon liquid is the continuous phase (e.g., lube or hydraulic oil), Layer A is relatively hydrophilic compared to Layer B. Methods to achieve relatively hydrophilic surfaces are described above.


For crankcase ventilation and for the removal of oil or non-polar droplets from water, coolants, or other polar fluids, similar methods may be utilized. However, typically Layer A is relatively oleophilic compared to Layer B and methods to achieve oleophilic surfaces are described above.


In some embodiments, Layer B may comprise PBT with 1-10% (w/w) of a fluorocarbon additive, a polyester material compounded with 10-40% (w/w) of a fluorocarbon polymer, or 100% meltblown/fiber grade ECTFE


In some embodiments, the orientation of the disclosed coalescing media in a coalescer is important for optimal function. Drainage will be vertically downward in the direction of gravity. Wicking, will typically involve horizontal transport of droplets from the surface of Layer B, but other orientations are possible. Typically, the desired direction of drop transport for wicking does not oppose gravity. As long as Layer A is preferentially wetting, wicking should occur, even if M is so large that there is negligible capillary pressure. However, in some embodiments, M may be an important design consideration for drainage. For example, if M is too small, PC will tend to oppose drainage, and may cause a buildup of coalesced drops within Layer B and excessive pressure drop. In this case, it may be desirable to minimize PC within the constraints of equation (10) while still optimizing wicking. FIG. 8 uses equation (1) to illustrate the effect of M on PC for various γ. In general, for fuel-water separation it may be desirable that PC≦5 inch of water, and ideally that PC≦1 inch of water. In order to function over a range of γ from 5 to 15 dyn/cm, preferably M≧30 μm for Layer A and, ideally M≧180 μm for Layer A. Using equation (7), this implies that d≦100 μm for Layer A, and ideally, d≦20 μm for Layer A, in order achieve preferable M and a values.


In some embodiments, Layer A may comprise fibers that are substantially oriented in a vertical direction (e.g., in an axis that is parallel to gravity). For example, Layer A may comprises fibers that are substantially oriented in a vertical direction at the downstream surface or face of Layer A that is adjacent to the upstream surface or face of Layer B (see FIG. 6) in order to facilitate drainage of droplets from the surface of Layer B. Media material for Layer A having fibers that are substantially oriented in a vertical direction may be prepared by subjecting a surface of the media material to a “carding” process which parallelizes the fibers of the surface. In some embodiments, media that comprises fibers that are substantially oriented in a vertical direction (e.g., fibers on a downstream surface or face) means media wherein at least about 70%, 80%, or preferably 90% of the fibers are substantially vertical (e.g., deviating from a vertical axis by no more than 30, 20, or preferably 10 degrees). In further embodiments, the upstream surface of Layer B may be relative smooth, for example, where the surface has been subject to a calendaring process.


The physical and wetting characteristics of the surface coalescer may be achieved as follows. The surface coalescer may comprise two distinct filter media with the specified properties held in intimate physical contact by pleating, pressure, adhesives, bonding resins, ultrasonic bonding, thermal bonding or other means. Alternatively, the surface coalescer may comprise a single multilayer media, such as formed by melt-blowing two different layer of media, once of top of another, by a wet laid process, electrospinning, melt-spinning, or other means or combination of means or processes.


Illustrative Embodiments

The following embodiments are illustrative and are not intended to limit the scope of the claimed subject matter.


Embodiment 1. A coalescer comprising coalescing media for coalescing a mixture of two phases, namely a continuous phase comprising hydrocarbon liquid and a dispersed phase comprising water, the mixture flowing through the media from upstream to downstream, the media comprising a layer of media material for filtering the mixture, the media material having a mean pore size, M, wherein the dispersed phase comprises water droplets having a average particle size that is greater than the mean pore size, the media material being relatively non-wettable with respect to the dispersed phase, the coalescer configured for filtering the mixture as it flows from upstream to downstream in the coalescer, capturing droplets of the dispersed phase at an upstream face of the media material, and coalescingly growing the droplets into larger drops which further coalesce and grow to a sufficient size whereby they drain from the upstream face and are released from the coalescer.


Embodiment 2. The coalescer according to embodiment 1, wherein 0.2 μm≦M≦12.0 μm (preferably 2.0 μm≦M≦10.0 μm, more preferably 4.0 μm≦M≦8.0 μm).


Embodiment 3. The coalescer according to embodiment 1 or 2, wherein the media material has a maximum pore size MM and 1≦MM/M≦3.


Embodiment 4. The coalescer according to any of embodiments 1-3, wherein the media material comprises fibers having a mean diameter between 0.07 μm and 3 μm (preferably between 0.15 μm and 1.5 μm).


Embodiment 5. The coalescer according to embodiment 4, wherein the fibers comprise polyester material or polyamide material.


Embodiment 6. The coalescer according to any of embodiments 1-5, wherein the media material further comprises coarse fibers with a mean diameter greater than 1 μm (preferably greater than 10 μm, more preferably greater than 20 μm).


Embodiment 7. The coalescer according to embodiment 6, wherein the coarse fibers comprise a hydrophobic polymer which optionally is ECTFE.


Embodiment 8. The coalescer according to any of embodiments 1-7, wherein the media material has a thickness as measured from upstream to downstream of between 0.05 and 0.4 mm (preferably 0.1 and 0.3 mm).


Embodiment 9. The coalescer according to any of embodiments 1-8, wherein the contact angle for a drop of dispersed phase in the continuous phase on the media material is no less than 90° (preferably no less than 120°, more preferably no less than 135°).


Embodiment 10. The coalescer according to any of embodiments 1-9, wherein the media material has a porosity ε that is no less than 0.8.


Embodiment 11. The coalescer according to any of embodiments 1-10, comprising an additional layer of media material adjacent to the upstream face of the media material, the adjacent layers extending in series from upstream to downstream, namely an upstream first layer of media material and a downstream second layer of media material, the first layer of media material being relatively wettable by the dispersed phase in the continuous phase, and the first layer and the second layer having mean pore sizes M1 and M2, respectively, and M1>M2.


Embodiment 12. The coalescer according to embodiment 11, wherein M1 is at least about 2.5 times greater than M2.


Embodiment 13. The coalescer according to embodiment 11 or 12, wherein M1≧20 μm (preferably M1≧30 μm).


Embodiment 14. The coalescer according to any of embodiments 11-13, wherein 0.2 μm≦M2≦12.0 μm (preferably 2.0 μm≦M2≦10.0 μm, more preferably 4.0 μm≦M2≦8.0 μm).


Embodiment 15. The coalescer according to any of embodiments 11-14, wherein the first layer comprises media having an average fiber diameter that is greater than about 1 μm, 10 μm, or 20 μm, and less than about 100 μm.


Embodiment 16. The coalescer according to any of embodiments 11-15, wherein the contact angle for a drop of dispersed phase in the continuous phase on layer one, θ1, is no more than 90° (preferably no more than 60°, more preferably no more than 45°) and the contact angle for a drop of dispersed phase in the continuous phase on layer two, θ2, is no less than 90° (preferably no less than 120°, more preferably no less than 135°).


Embodiment 17. The coalescer according to any of embodiments 11-16, wherein the first layer of media material has a downstream surface that comprises fibers that are oriented in a substantially vertical direction.


Embodiment 18. The coalescer according to any of embodiments 11-17, wherein the coalescing media is formed by obtaining a first media material and a second media material and physically or chemically coupling the first media material and the second media material in layers.


Embodiment 19. The coalescer according to any of embodiments 11-17, wherein the coalescing media is formed by melt-blowing the first media material and the second media material in layers.


Embodiment 20. The coalescer according to any of embodiments 11-19 contained in a housing, the housing having an upstream inlet structured to receive the mixture and a downstream outlet structured to discharge the mixture after coalescing of the dispersed phase.


Embodiment 21. A coalescing system comprising the coalescer according to embodiment 20.


Embodiment 22. The coalescing system according to embodiment 21, configured for removing water dispersed in hydrocarbon fuel.


Embodiment 23. The coalescing system according to embodiment 21 or 22, further comprising a hydrophobic media for removing water positioned downstream of the coalescing element.


Embodiment 24. The coalescing system according to any of embodiments 21-23, further comprising an additional device for removing water positioned downstream of the coalescing element, the device selected from a group consisting of gravity separator, centrifuge, impactor, lamella separator, inclined stacked plate, screen, and quiescent chamber.


Embodiment 25. A method of removing water dispersed in hydrocarbon fuel, the method comprising passing a mixture comprising hydrocarbon fuel and water dispersed in the hydrocarbon fuel through the coalescer or coalescing system of any of embodiments 1-24 and removing at least about 93%, 95%, 97%, or 99% of water dispersed in the hydrocarbon fuel.


In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different configurations, systems and method steps described herein may be used alone or in combination with other configurations, systems and method steps. It is to be expected that various equivalents, alternatives and modifications are possible. The afore-cited patents and published applications are incorporated herein by reference in their entireties.

Claims
  • 1. A coalescer comprising: coalescing media for coalescing a mixture of two phases, namely a continuous phase comprising hydrocarbon liquid and a dispersed phase comprising water, the mixture flowing through the media from upstream to downstream, the media comprising a layer of media material for filtering the mixture, the media material having a mean pore size, M, wherein the dispersed phase comprises water droplets having an average particle size that is greater than the mean pore size, the media material being relatively non-wettable with respect to the dispersed phase, wherein 0.2 μm≦M≦12.0 μm and the media material has a maximum pore size MM and 1≦MM/M≦3; andan additional layer of media material adjacent to the upstream face of the media material, the adjacent layers extending in series from upstream to downstream, namely an upstream first layer of media material and a downstream second layer of media material, the first layer of media material being relatively wettable by the dispersed phase in the continuous phase, and the first layer and the second layer having mean pore sizes M1 and M2, respectively, and M1>M2,wherein the coalescer is configured to filter the mixture as it flows from upstream to downstream in the coalescer.
  • 2. The coalescer according to claim 1, wherein the media material comprises fibers having a mean diameter between 0.07 μm and 3 μm.
  • 3. The coalescer according to claim 2, wherein the fibers comprise polyester material.
  • 4. The coalescer according to claim 2, wherein the media material further comprises coarse fibers with a mean diameter greater than 10 μm.
  • 5. The coalescer according to claim 4, wherein the coarse fibers comprise a hydrophobic polymer which optionally is ethylene chlorotrifluoroethylene (ECTFE).
  • 6. The coalescer according to claim 1, wherein the media material has a thickness measured from upstream to downstream between 0.05 and 0.3 mm.
  • 7. The coalescer according to claim 1, wherein the contact angle for a drop of dispersed phase in the continuous phase on the media material is no less than 90°.
  • 8. The coalescer according to claim 1, wherein the media material has a porosity that is no less than 0.8.
  • 9. The coalescer according to claim 1, wherein M1 is at least about 2.5 times greater than M1.
  • 10. The coalescer according to claim 1, wherein M1≧30 μm.
  • 11. The coalescer according to claim 1, wherein 0.2 μm≦M2≦12.0 μm.
  • 12. The coalescer according to claim 1, wherein the first layer comprises media having an average fiber diameter that is less than about 100 μm.
  • 13. The coalescer according to claim 1, wherein the contact angle for a drop of dispersed phase in the continuous phase on layer one, Ø1, is no more than 90° and the contact angle for a drop of dispersed phase in the continuous phase on layer two, Ø2, is no less than 90°.
  • 14. The coalescer according to claim 1, wherein the first layer of media material has a downstream surface that comprises fibers that are oriented in a substantially vertical direction.
  • 15. The coalescer according to claim 1, wherein the coalescing media is formed by obtaining a first media material and a second media material and physically or chemically coupling the first media material and the second media material in layers.
  • 16. The coalescer according to claim 1, wherein the coalescing media is formed by melt-blowing the first media material and the second media material in layers.
  • 17. The coalescer according to claim 1 contained in a housing, the housing having an upstream inlet structured to receive the mixture and a downstream outlet structured to discharge the mixture after coalescing of the dispersed phase.
  • 18. A coalescing system comprising the coalescer according to claim 17.
  • 19. The coalescing system according to claim 18, configured for removing water dispersed in hydrocarbon fuel.
  • 20. The coalescing system according to claim 19, further comprising a hydrophobic media for removing water positioned downstream of the coalescing element.
  • 21. The coalescing system according to claim 19, further comprising an additional device for removing water positioned downstream of the coalescing element, the device selected from a group consisting of gravity separator, centrifuge, impactor, lamella separator, inclined stacked plate, screen, and quiescent chamber.
  • 22. A coalescer comprising: coalescing media for coalescing a mixture of two phases, namely a continuous phase comprising hydrocarbon liquid and a dispersed phase comprising water, the mixture flowing through the media from upstream to downstream, the media comprising a layer of media material for filtering the mixture, the media material having a mean pore size, M, wherein the dispersed phase comprises water droplets having an average particle size that is greater than the mean pore size, the media material being relatively non-wettable with respect to the dispersed phase, wherein 0.2 μm≦M≦12.0 μm and the media material has a maximum pore size MM and 1≦MM/M≦3, the media material comprises first fibers;wherein the coalescer is configured to filter the mixture as it flows from upstream to downstream in the coalescewherein the first fibers have a mean diameter between 0.07 μm and 3 μm.
  • 23. The coalescer according to claim 22, wherein the first fibers comprise polyester material.
  • 24. The coalescer according to claim 22, wherein the media material further comprises coarse fibers with a mean diameter greater than 10 μm.
  • 25. The coalescer according to claim 24, wherein the coarse fibers comprise a hydrophobic polymer which optionally is ethylene chlorotrifluoroethylene (ECTFE).
  • 26. A coalescer comprising: coalescing media for coalescing a mixture including a continuous phase comprising hydrocarbon liquid and a dispersed phase comprising water, the mixture flowing through the media from upstream to downstream, the media including a layer of media material for filtering the mixture, the media material having a mean pore size (“M”) and a maximum pore size (“MM”) wherein the dispersed phase comprises water droplets having an average particle size that is greater than the mean pore size, the media material being relatively non-wettable with respect to the dispersed phase, wherein 0.2 μm≦M≦12.0 μm and the media material has a maximum pore size MM, a ratio of MM to M is less than three and approaches one; andan additional layer of media material adjacent to an upstream face of the media material, the adjacent layers extending in series from upstream to downstream, namely an upstream first layer of media material and a downstream second layer of media material, the first layer of media material being relatively wettable by the dispersed phase in the continuous phase, and the first layer and the second layer having mean pore sizes M1 and M2, respectively, and M1>M2.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Application Nos. 61/179,939, filed on May 20, 2009; 61/179,170, filed on May 18, 2009; and 61/178,738; filed on May 15, 2009, the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (323)
Number Name Date Kind
3228527 McPherson Jan 1966 A
3390780 Bennett Jul 1968 A
3934372 Diehn et al. Jan 1976 A
3950289 D'Amato et al. Apr 1976 A
3951814 Krueger Apr 1976 A
3956534 Brown et al. May 1976 A
3957365 Croft May 1976 A
3960719 Bresson Jun 1976 A
3973717 Jensen Aug 1976 A
4031261 Durst Jun 1977 A
4039441 Fett Aug 1977 A
4047946 Croft Sep 1977 A
4052316 Berger, Jr. et al. Oct 1977 A
4078965 Berger, Jr. et al. Mar 1978 A
4081373 Rozniecki Mar 1978 A
4083778 McGrew Apr 1978 A
4199447 Chambers et al. Apr 1980 A
4210697 Adiletta Jul 1980 A
4213863 Anderson Jul 1980 A
4229297 Nohmi et al. Oct 1980 A
4229838 Mano Oct 1980 A
4241108 Tracy et al. Dec 1980 A
4251369 Casad et al. Feb 1981 A
4304671 Labaquere Dec 1981 A
4340276 Maffitt et al. Jul 1982 A
4372847 Lewis Feb 1983 A
4457845 Robertson Jul 1984 A
4553504 Druggal et al. Nov 1985 A
4576862 Lee et al. Mar 1986 A
4578898 Greenbaum Apr 1986 A
4622821 Madden Nov 1986 A
4640781 Hughes Feb 1987 A
4643834 Batutis Feb 1987 A
4756823 O'Neill et al. Jul 1988 A
4759782 Miller et al. Jul 1988 A
4790947 Arnold Dec 1988 A
4863643 Cochran Sep 1989 A
4888117 Brown et al. Dec 1989 A
4954297 Beery et al. Sep 1990 A
4976993 Sutera Dec 1990 A
5006260 Roques et al. Apr 1991 A
5037454 Mann Aug 1991 A
5062927 Stout Nov 1991 A
5068035 Mohr Nov 1991 A
5080802 Cairo, Jr. et al. Jan 1992 A
5112498 Davies May 1992 A
5156745 Cairo, Jr. et al. Oct 1992 A
5174907 Chown et al. Dec 1992 A
5223031 Sugi et al. Jun 1993 A
5242604 Young et al. Sep 1993 A
5244574 Gatt et al. Sep 1993 A
5275729 Gris Jan 1994 A
5320909 Scharman et al. Jun 1994 A
5376183 Gatt et al. Dec 1994 A
5401404 Strauss Mar 1995 A
5401413 Gatt et al. Mar 1995 A
5417848 Erdmannsdorfer et al. May 1995 A
5439588 Chown et al. Aug 1995 A
5443724 Williamson et al. Aug 1995 A
5450835 Wagner Sep 1995 A
5454937 Lewandowski Oct 1995 A
5454945 Spearman Oct 1995 A
5468358 Ohkawa et al. Nov 1995 A
5468382 Cook et al. Nov 1995 A
5468385 Inoue Nov 1995 A
5480547 Williamson et al. Jan 1996 A
5494629 Gorden et al. Feb 1996 A
5500132 Elmi Mar 1996 A
5510112 Gatt et al. Apr 1996 A
5562888 Rajadurai Oct 1996 A
5565078 Sams et al. Oct 1996 A
5574530 Sanada Nov 1996 A
5575896 Sams et al. Nov 1996 A
5576047 Margolis Nov 1996 A
5580692 Lofftus et al. Dec 1996 A
5616244 Seureau et al. Apr 1997 A
5622101 Margolis Apr 1997 A
5629367 Lofftus et al. May 1997 A
5631919 Intermill et al. May 1997 A
5643431 Sams et al. Jul 1997 A
5656166 Linnersten et al. Aug 1997 A
5656173 Jordan et al. Aug 1997 A
5669366 Beach et al. Sep 1997 A
5750024 Spearman May 1998 A
5762810 Pelton et al. Jun 1998 A
5800597 Perrotta et al. Sep 1998 A
5837310 Margolis et al. Nov 1998 A
5861087 Manning Jan 1999 A
5874008 Hirs Feb 1999 A
RE36173 Margolis Mar 1999 E
5879556 Hein Mar 1999 A
6017300 Herman Jan 2000 A
6019717 Herman Feb 2000 A
6056128 Glasgow May 2000 A
6060410 Gillberg-LaForce et al. May 2000 A
6083380 Selby et al. Jul 2000 A
6099729 Cella et al. Aug 2000 A
6123061 Baker et al. Sep 2000 A
6139595 Herman et al. Oct 2000 A
6149408 Holt Nov 2000 A
6171488 Morse et al. Jan 2001 B1
6251168 Birmingham et al. Jun 2001 B1
6281264 Salovey et al. Aug 2001 B1
6290738 Holm Sep 2001 B1
6302932 Unger et al. Oct 2001 B1
6312505 McQuigg et al. Nov 2001 B1
6332987 Whitney et al. Dec 2001 B1
6337008 Christensen et al. Jan 2002 B1
6354283 Hawkins et al. Mar 2002 B1
6358416 Miller et al. Mar 2002 B1
6416657 Fersing et al. Jul 2002 B1
6419721 Hunter Jul 2002 B1
6422396 Li et al. Jul 2002 B1
6449947 Liu et al. Sep 2002 B1
6517615 Miller et al. Feb 2003 B2
6530978 McQuigg et al. Mar 2003 B2
6533935 Miller et al. Mar 2003 B2
6534196 Betts Mar 2003 B2
6540816 Allie et al. Apr 2003 B2
6544449 Gardner Apr 2003 B1
6569330 Sprenger et al. May 2003 B1
6579438 Creber et al. Jun 2003 B1
6582490 Miller et al. Jun 2003 B2
6601385 Verdegan et al. Aug 2003 B2
6605224 Aymong Aug 2003 B2
6610198 Jiang et al. Aug 2003 B1
6640792 Harvey et al. Nov 2003 B2
6641742 Prater et al. Nov 2003 B2
6683783 Smalley et al. Jan 2004 B1
6716349 Baracchi et al. Apr 2004 B2
6722123 Liu et al. Apr 2004 B2
6730236 Kouba May 2004 B2
6740358 Speece, Jr. et al. May 2004 B2
6749827 Smalley et al. Jun 2004 B2
6758980 Prater et al. Jul 2004 B2
6764598 Yu et al. Jul 2004 B2
6767459 Sinker et al. Jul 2004 B1
6811693 Nilsen et al. Nov 2004 B2
6884349 Jiang Apr 2005 B1
6907997 Thacker et al. Jun 2005 B2
6936233 Smalley et al. Aug 2005 B2
6946012 Miller et al. Sep 2005 B1
6949237 Smalley et al. Sep 2005 B2
6979709 Smalley et al. Dec 2005 B2
6986876 Smalley et al. Jan 2006 B2
7008604 Smalley et al. Mar 2006 B2
7041620 Smalley et al. May 2006 B2
7048262 Cheng May 2006 B2
7048999 Smalley et al. May 2006 B2
7071406 Smalley et al. Jul 2006 B2
7087207 Smalley et al. Aug 2006 B2
7105596 Smalley et al. Sep 2006 B2
7108841 Smalley et al. Sep 2006 B2
7189335 Dalzell et al. Mar 2007 B1
7198718 Turnbull Apr 2007 B1
7205069 Smalley et al. Apr 2007 B2
7211226 Liu et al. May 2007 B2
7211320 Cooper et al. May 2007 B1
7235124 Liu et al. Jun 2007 B2
7235177 Herman et al. Jun 2007 B2
7238216 Malgorn et al. Jul 2007 B2
7250126 Haberkamp et al. Jul 2007 B2
7258719 Miller et al. Aug 2007 B2
7279319 Cheng Oct 2007 B2
7285209 Yu et al. Oct 2007 B2
7297256 Loftis et al. Nov 2007 B2
7297279 Johnson et al. Nov 2007 B2
7303735 Suchak et al. Dec 2007 B2
7314558 Jaroszczyk et al. Jan 2008 B1
7323106 Jaroszczyk et al. Jan 2008 B2
7326266 Barnwell Feb 2008 B2
7328572 McKinley et al. Feb 2008 B2
7354563 Smalley et al. Apr 2008 B2
7390477 Smalley et al. Jun 2008 B2
7390767 Smalley et al. Jun 2008 B2
7406960 Knauf et al. Aug 2008 B2
7413588 Holzmann et al. Aug 2008 B2
7416657 Kretchmar Aug 2008 B2
7419601 Cooper et al. Sep 2008 B2
7419624 Smalley et al. Sep 2008 B1
7419651 Smalley et al. Sep 2008 B2
7473291 Evenstad et al. Jan 2009 B2
7481881 Okahisa Jan 2009 B2
7481989 Smalley et al. Jan 2009 B2
7510695 Smalley et al. Mar 2009 B2
7527739 Jiang et al. May 2009 B2
7563368 Martin et al. Jul 2009 B2
7581558 Martin et al. Sep 2009 B2
7582130 Ng et al. Sep 2009 B2
7591279 Martin et al. Sep 2009 B2
7614390 Holzmann et al. Nov 2009 B2
7632569 Smalley et al. Dec 2009 B2
7648543 Faber et al. Jan 2010 B2
7648565 Clausen et al. Jan 2010 B2
7655073 Evenstad et al. Feb 2010 B2
7655302 Smalley et al. Feb 2010 B2
7662216 Terres et al. Feb 2010 B1
7674425 Schwandt et al. Mar 2010 B2
7678169 Gwin et al. Mar 2010 B1
7699029 Herman et al. Apr 2010 B2
7857883 Scheckel et al. Dec 2010 B2
7879388 Clarkson et al. Feb 2011 B2
7887934 Gentleman et al. Feb 2011 B2
7892660 Gentleman et al. Feb 2011 B2
7897271 Gentleman et al. Mar 2011 B2
7901798 Gentleman et al. Mar 2011 B2
7922981 Haptmann Apr 2011 B2
7939136 Smalley et al. May 2011 B2
7939325 Adams, Jr. et al. May 2011 B2
7977267 Gentleman et al. Jul 2011 B2
8002990 Schroeder Aug 2011 B2
20010045162 McQuigg et al. Nov 2001 A1
20020046970 Murase et al. Apr 2002 A1
20020085968 Smalley et al. Jul 2002 A1
20020090330 Smalley et al. Jul 2002 A1
20020090331 Smalley et al. Jul 2002 A1
20020094311 Smalley et al. Jul 2002 A1
20020098135 Smalley et al. Jul 2002 A1
20020102196 Smalley et al. Aug 2002 A1
20020110682 Brogan Aug 2002 A1
20020115068 Tomlinson et al. Aug 2002 A1
20020119343 Betts Aug 2002 A1
20020127162 Smalley et al. Sep 2002 A1
20020127169 Smalley et al. Sep 2002 A1
20020136681 Smalley et al. Sep 2002 A1
20020136683 Smalley et al. Sep 2002 A1
20020150524 Smalley et al. Oct 2002 A1
20020159943 Smalley et al. Oct 2002 A1
20030010002 Johnson et al. Jan 2003 A1
20030045603 Salovey et al. Mar 2003 A1
20030080446 Cheng May 2003 A1
20030121858 Yu et al. Jul 2003 A1
20030158287 Salovey et al. Aug 2003 A1
20030194513 Carlson Oct 2003 A1
20040007255 Labib et al. Jan 2004 A1
20040060858 Lucas et al. Apr 2004 A1
20040094459 Prater et al. May 2004 A1
20040208841 Salovey et al. Oct 2004 A1
20040222156 Yu et al. Nov 2004 A1
20050026526 Verdegan et al. Feb 2005 A1
20050067724 Cheng Mar 2005 A1
20050084436 Suchak et al. Apr 2005 A1
20050221141 Hampden-Smith et al. Oct 2005 A1
20050233183 Hampden-Smith et al. Oct 2005 A1
20050233203 Hampden-Smith et al. Oct 2005 A1
20050247260 Shin et al. Nov 2005 A1
20050249656 Smalley et al. Nov 2005 A1
20050260120 Smalley et al. Nov 2005 A1
20050274257 Reznik Dec 2005 A1
20060108280 Jodi May 2006 A1
20060137317 Bryner et al. Jun 2006 A1
20060137318 Lim et al. Jun 2006 A1
20060153754 Hauptmann Jul 2006 A1
20060177572 Smith et al. Aug 2006 A1
20060192504 Ardavan et al. Aug 2006 A1
20060207234 Ward et al. Sep 2006 A1
20060213162 Jodi Sep 2006 A1
20060242933 Webb et al. Nov 2006 A1
20070028588 Varanasi et al. Feb 2007 A1
20070039865 Jiang et al. Feb 2007 A1
20070043158 Smalley et al. Feb 2007 A1
20070045001 Dalzell et al. Mar 2007 A1
20070048209 Smalley et al. Mar 2007 A1
20070062886 Rego et al. Mar 2007 A1
20070062887 Schwandt et al. Mar 2007 A1
20070084776 Sasur Apr 2007 A1
20070107399 Schwandt et al. May 2007 A1
20070131235 Janikowski et al. Jun 2007 A1
20070223019 Maeyama Sep 2007 A1
20070278004 Dalzell et al. Dec 2007 A1
20070289915 Jiang et al. Dec 2007 A1
20080050618 Tanno et al. Feb 2008 A1
20080053888 Ellis et al. Mar 2008 A1
20080063585 Smalley et al. Mar 2008 A1
20080063588 Smalley et al. Mar 2008 A1
20080070022 Umezu et al. Mar 2008 A1
20080089830 Smalley et al. Apr 2008 A1
20080107586 Smalley et al. May 2008 A1
20080133018 Salovey et al. Jun 2008 A1
20080163814 Kim et al. Jul 2008 A1
20080220148 Clarkson et al. Sep 2008 A1
20080224100 Smalley et al. Sep 2008 A1
20080264018 Herman Oct 2008 A1
20080292498 Resch et al. Nov 2008 A1
20080311025 Smalley et al. Dec 2008 A1
20090004094 Smalley et al. Jan 2009 A1
20090020465 Jiang et al. Jan 2009 A1
20090065419 Jiang Mar 2009 A1
20090100811 Scheckel et al. Apr 2009 A1
20090134097 Kerfoot May 2009 A1
20090142837 Adams, Jr. et al. Jun 2009 A1
20090146193 Rudin Jun 2009 A1
20090155566 Gentleman et al. Jun 2009 A1
20090155609 Gentleman et al. Jun 2009 A1
20090159512 Brattested Jun 2009 A1
20090169463 Smalley et al. Jul 2009 A1
20090188870 Schroeder Jul 2009 A1
20090191103 Hauptmann Jul 2009 A1
20090229632 Labib et al. Sep 2009 A1
20090250402 Jiang et al. Oct 2009 A1
20100006149 Gentleman et al. Jan 2010 A1
20100029465 Gentleman et al. Feb 2010 A1
20100101993 Wells et al. Apr 2010 A1
20100143620 Ajdelsztajn et al. Jun 2010 A1
20100147185 Gentleman et al. Jun 2010 A1
20100151197 Gentleman et al. Jun 2010 A1
20100151264 Gentleman et al. Jun 2010 A1
20100213436 Khan Aug 2010 A1
20100219117 Reiland et al. Sep 2010 A1
20100252510 Godsay et al. Oct 2010 A1
20100264401 Adivarahan et al. Oct 2010 A1
20100320124 Zhang et al. Dec 2010 A1
20100320440 Khan Dec 2010 A1
20110052902 Gentleman et al. Mar 2011 A1
20110073838 Khan et al. Mar 2011 A1
20110083583 Gentleman et al. Apr 2011 A1
20110083736 Gentleman et al. Apr 2011 A1
20110086200 Gentleman et al. Apr 2011 A1
20110086754 Gentleman et al. Apr 2011 A1
20110086781 Smalley et al. Apr 2011 A1
20110109712 Grant et al. May 2011 A1
20110115102 Dema May 2011 A1
20110212525 Adams, Jr. et al. Sep 2011 A1
Foreign Referenced Citations (7)
Number Date Country
1684752 Oct 2005 CN
101185818 May 2008 CN
101687128 Mar 2010 CN
1813498 May 1993 RU
2371235 Oct 2009 RU
1761201 Sep 1992 SU
WO-2010042706 Apr 2010 WO
Non-Patent Literature Citations (26)
Entry
International Search Report for PCT/US2011/031259 dated Oct. 28, 2011.
Written Opinion for PCT/US2011/031259 dated Oct. 28, 2011.
International Preliminary Report on Patentability for PCT/US2010/034922 dated Feb. 9, 2012.
International Search Report for PCT/US2010/034922 dated Jan. 10, 2012.
Written Opinion for PCT/US2010/034922 dated Jan. 10, 2012.
Final Office Action received for U.S. Appl. No. 12/247,502 dated Aug. 18, 2011.
Final Office Action received for U.S. Appl. No. 12/247,502 dated Aug. 24, 2012.
Final Office Action received for U.S. Appl. No. 12/820,784 dated Apr. 29, 2013.
Final Office Action received for U.S. Appl. No. 12/820,791 dated Feb. 21, 2013.
First Office Action received for Chinese Appln. No. 201080021992.6 dated Nov. 1, 2013.
International Search Report and Written Opinion for PCT/US2011/031257 dated May 28, 2011.
Non-final Office Action received for U.S. Appl. No. 12/247,502 dated Mar. 24, 2011.
Non-final Office Action received for U.S. Appl. No. 12/247,502 dated May 3, 2012.
Non-final Office Action received for U.S. Appl. No. 12/820,784 dated Nov. 26, 2012.
Non-final Office Action received for U.S. Appl. No. 12/820,791 dated Aug. 23, 2012.
Non-final Office Action received for U.S. Appl. No. 13/875,589 dated Oct. 7, 2013.
Notice of Allowance received for U.S. Appl. No. 12/247,502 dated Nov. 23, 2012.
Notice of Allowance received for U.S. Appl. No. 12/820,784 dated May 5, 2013.
Notice of Allowance received for U.S. Appl. No. 12/820,791 dated Aug. 19, 2013.
Notice of Allowance received for U.S. Appl. No. 13/875,859 dated Nov. 13, 2013.
First Office Action for Chinese Patent Application No. 2011800303530 with English Translation, dated Apr. 18, 2014, 69 pages.
First Office Action for Chinese Patent Application No. 2011800315928 with English Translation, dated May 7, 2014, 7 pages.
Second Office Action for Chinese Patent Application No. 2009801395617 with English Translation, dated Jan. 30, 2014, 5 pages.
Second Office Action for Chinese Patent Application No. 201080021992.6 with English translation, dated May 5, 2014, 6 pages.
Office Action issued in Chinese Patent No. 201180031592.8, dated Dec. 25, 2014.
Decision on Grant A Patent for Invention issued in Russian Application No. 2013102593/05, dated Feb. 18, 2015.
Related Publications (1)
Number Date Country
20110124941 A1 May 2011 US
Provisional Applications (3)
Number Date Country
61178738 May 2009 US
61179170 May 2009 US
61179939 May 2009 US