SURFACE DISPLAYED ENDOGLYCOSIDASES

Information

  • Patent Application
  • 20240026325
  • Publication Number
    20240026325
  • Date Filed
    June 30, 2023
    a year ago
  • Date Published
    January 25, 2024
    12 months ago
Abstract
The present disclosure provides engineered eukaryotic cells comprising a surface displayed catalytic domain of an endoglycosidase and methods of use.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in XML format electronically and is hereby incorporated by reference in its entirety. Said XML copy, created on Sep. 28, 2023, is named 56287US_CRF_sequencelisting.xml and is 435,421 bytes in size.


BACKGROUND OF THE INVENTION

Recombinant protein expression is a useful method for producing large quantities of animal-free proteins. However, recombinant proteins produced in Pichia pastoris are known to be highly glycosylated. Excessive glycosylation can, at least, raise the risk of immunogenicity in cases where the recombinant protein is intended for consumption and/or therapeutic use. There exists an unmet need for methods and systems for expressing recombinant proteins with reduced amounts of glycosylation.


SUMMARY

An aspect of the present disclosure is an engineered eukaryotic cell comprising a surface displayed catalytic domain of an endoglycosidase in which the surface displayed catalytic domain of an endoglycosidase is a portion of a fusion protein


In some embodiments, the fusion protein further comprises an anchoring domain of a cell surface protein.


In embodiments, the fusion protein comprises a portion of the endoglycosidase in addition to its catalytic domain.


In various embodiments, the fusion protein comprises substantially the entire amino acid sequence of the endoglycosidase.


In some embodiments, the endoglycosidase is endoglycosidase H.


In embodiments, the fusion protein comprises an amino acid sequence that is at least 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 1 or SEQ ID NO:2.


In various embodiments, the fusion protein comprises a portion of the cell surface protein in addition to its anchoring domain.


In some embodiments, the fusion protein comprises substantially the entire amino acid sequence of the cell surface protein.


In embodiments, the cell surface protein is selected from Sed1p, Flo5-2, or Flo11.


In various embodiments, the fusion protein comprises an amino acid sequence that is at least 95% identical to one of SEQ ID NO: 3 to SEQ ID NO: 7 and SEQ ID NO: 20.


In some embodiments, the anchoring domain stably attaches the fusion protein to the extracellular surface of the cell.


In embodiments, upon translation, the fusion protein comprises a signal peptide and/or a secretory signal.


In various embodiments, the anchoring domain is N-terminal to the catalytic domain in the fusion protein. In some cases, the fusion protein comprises a linker C-terminal to the anchoring domain.


In some embodiments, the anchoring domain is C-terminal to the catalytic domain in the fusion protein. In some cases, the fusion protein comprises a linker N-terminal to the anchoring domain.


In embodiments, the cell surface protein is Sed1p and the endoglycosidase is endoglycosidase H. In some cases, the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 9 or SEQ ID NO: 10.


In various embodiments, the cell surface protein is Flo5-2 or Flo11 and the endoglycosidase is endoglycosidase H. In some cases, the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 11 or SEQ ID NO: 12. In some cases, the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 13 or SEQ ID NO: 14.


In various embodiments, the engineered eukaryotic cell comprises a mutation in its AOX1 gene and/or its AOX2 gene.


In some embodiments, the engineered eukaryotic cell is a yeast cell. In some cases, the yeast cell is a Pichia species.


In embodiments, the engineered eukaryotic cell further comprises a genomic modification that overexpresses a secretory glycoprotein. In some cases, the secretory glycoprotein is an animal protein, e.g., an egg protein. The egg protein may be selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


In various embodiments, the cell lacks a genomic modification that overexpresses a secretory glycoprotein.


In some embodiments, the engineered eukaryotic cell further comprises a nucleic acid sequence that encodes the fusion protein. In some cases, the nucleic acid sequence that encodes the fusion protein is integrated into the cell's genome. In some cases, the nucleic acid sequence that encodes the fusion protein is extrachromosomal. In some cases, the nucleic acid sequence comprises an inducible promoter. The inducible promoter may be an AOX1, DAK2, PEX11, FLD1, FGH1, DAS2, CAT1, MDH3, HAC1, BiP, RAD30, RVS161-2, MPP10, THP3, or GBP2 promoter. The nucleic acid sequence may comprise an AOX1, TDH3, RPS25A, or RPL2A terminator. The nucleic acid sequence may encode a signal peptide and/or a secretory signal. The nucleic acid sequence may comprise codons that are optimized for the species of the engineered cell.


Yet another aspect of the present disclosure is an method for deglycosylating a secreted glycoprotein. The method comprising contacting a secreted protein with a fusion protein anchored to engineered eukaryotic cell of any herein disclosed aspect or embodiment, thereby providing a deglycosylated secreted glycoprotein.


In embodiments, the secreted glycoprotein is expressed by the engineered eukaryotic cell.


In various embodiments, the fusion protein anchored to an engineered eukaryotic cell is more effective at deglycosylating the secreted protein than an intracellular endoglycosidase. In some cases, the intracellular endoglycosidase is located within a Golgi vesicle.


In some embodiments, the intracellular endoglycosidase is linked to a membrane associating domain. In some cases, the membrane associating domain comprises an amino acid sequence of OCH1.


In embodiments, the secreted protein is expressed by a cell other than the engineered eukaryotic cell.


In various embodiments, the method further comprises a step of isolating the deglycosylated secreted protein. In some cases, the method further comprises a step of drying the deglycosylated secreted protein.


In some embodiments, the secreted protein is an animal protein, e.g., an egg protein. The egg protein may be selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


In an aspect, the present disclosure provides a method for deglycosylating a plurality of secreted glycoproteins. The method comprising contacting the plurality of secreted glycoproteins with a population of engineered eukaryotic cells of any herein disclosed aspect or embodiment, thereby providing a plurality of deglycosylated secreted glycoproteins.


In embodiments, substantially every secreted glycoprotein in the plurality of secreted proteins is deglycosylated upon contact with the population of engineered eukaryotic cells.


In various embodiments, the amount of deglycosylation of the secreted glycoproteins is not increased by further contacting the secreted protein with an isolated endoglycosidase.


In some embodiments, the amount of deglycosylation of the secreted glycoproteins is more than the amount obtained from a population of cells that express an intracellular endoglycosidase.


In embodiments, the method further comprises a step of isolating the plurality of deglycosylated secreted proteins. In some cases, the method further comprises a step of drying the plurality of deglycosylated secreted proteins.


In various embodiments, the secreted protein is an animal protein, e.g., an egg protein. The egg protein may be selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


In another aspect, the present disclosure provides a method for expressing a fusion protein comprising an anchoring domain of a cell surface protein and a catalytic domain of an endoglycosidase, the method comprising obtaining the engineered eukaryotic cell of any herein disclosed aspect or embodiment and culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein.


In some embodiments, when the engineered eukaryotic cell comprises a nucleic acid sequence that encodes the fusion protein and comprises an inducible promoter, culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein comprises contacting the cell with an agent that activates the inducible promoter. In some cases, the inducible promoter is an AOX1, DAK2, PEX11 promoter and the agent that activates the inducible promoter is methanol.


In yet another aspect, the present disclosure provides a population of engineered eukaryotic cells of any herein disclosed aspect or embodiment.


An aspect of the present disclosure is a bioreactor comprising the population of engineered eukaryotic cells of any herein disclosed aspect or embodiment.


Another aspect of the present disclosure is a composition comprising an engineered eukaryotic cell of any herein disclosed aspect or embodiment and a secreted glycoprotein.


In embodiments, the secreted glycoprotein is an animal protein, e.g., an egg protein. The egg protein may be selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


In an aspect, the present disclosure provides a composition comprising an engineered eukaryotic cell of any herein disclosed aspect or embodiment, a secreted protein that has been deglycosylated, and one or more oligosaccharides cleaved from the secreted protein.


In various embodiments, the secreted glycoprotein is an animal protein, e.g., egg protein. The egg protein may be selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


In another aspect, the present disclosure provides a engineered eukaryotic cell which expresses a surface displayed catalytic domain of endoglycosidase H in which the catalytic domain is directly or indirectly tethered to the exterior surface of the cell.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:



FIG. 1 shows an SDS-PAGE gel demonstrating that a surface displayed EndoH-Sed1p fusion protein is capable of deglycosylating a glycoprotein. Left two lanes show heavy glycosylated species when the secreted glycoprotein is not contacted by a surface displayed fusion protein comprises whereas engineered cells expressing the surface displayed EndoH-Sed1p fusion protein cleaved off the glycoprotein's oligosaccharides, leaving lighter, deglycosylated protein bands.



FIG. 2 shows an SDS-PAGE gel demonstrating that, in bioreactor cultures, engineered cells expressing the EndoH-Sed1p fusion protein cleaved off the glycoprotein's oligosaccharides, leaving faster migrating, deglycosylated protein bands.





DETAILED DESCRIPTION
Introduction

The present disclosure provides engineered eukaryotic cells comprising a surface displayed catalytic domain of an endoglycosidase and methods of use.


Surface displaying a catalytic domain of an endoglycosidase provides efficient extracellular deglycosylation of glycoproteins. A glycoprotein is a protein that carries carbohydrates covalently bound to their peptide backbone. It is known that approximately half of all proteins typically expressed in a cell undergo glycosylation, which entails the covalent addition of sugar moieties (e.g., oligosaccharides) to specific amino acids. Most soluble and membrane-bound proteins expressed in the endoplasmic reticulum are glycosylated to some extent, including secreted proteins, surface receptors and ligands, and organelle-resident proteins. Additionally, some proteins that are trafficked from the Golgi to the cell wall and/or to the extracellular environment are also glycosylated. Lipids and proteoglycans can also be glycosylated, significantly increasing the number of substrates for this type of modification. In particular, many cell wall proteins are glycosylated.


Protein glycosylation has multiple functions in a cell. In the ER, glycosylation is used to monitor the status of protein folding, acting as a quality control mechanism to ensure that only properly folded proteins are trafficked to the Golgi. Oligosaccharides on soluble proteins can be bound by specific receptors in the trans Golgi network to facilitate their delivery to the correct destination. These oligosaccharides can also act as ligands for receptors on the cell surface to mediate cell attachment or stimulate signal transduction pathways. Because they can be very large and bulky, oligosaccharides can affect protein—protein interactions by either facilitating or preventing proteins from binding to cognate interaction domains.


In general, a glycoprotein's oligosaccharides are important to the protein's function. Consequently, should a glycoprotein be deglycosylated intracellularly, once the protein has reached its final destination (if ever), and in a deglycosylated state, the protein may have a lessened and/or an absent activity.


When it is desirable to deglycosylate a recombinant glycoprotein for inclusion in composition for human or animal use (e.g., a food product, drink product, nutraceutical, pharmaceutical, or cosmetic), the recombinant glycoprotein may be contacted with an isolated endoglycosidase that is capable of cleave sugar chains from the glycoprotein. For this, the isolated endoglycosidase may be added to a culturing vessel such that the recombinant glycoprotein is deglycosylated once secreted into its culturing medium. Alternately, a recombinant glycoprotein that has been separated from its culturing medium may be subsequently incubated with the isolated endoglycosidase. Although both of these methods may have effectiveness in providing deglycosylated recombinant proteins, they both increase, at least, the time, expense, and inefficiency involved with manufacturing deglycosylated recombinant proteins. When preparing deglycosylated recombinant proteins for human or animal use, e.g., in a consumable composition, it is preferable, and in some cases, necessary due to regulatory requirements, for the final recombinant protein be free of contaminants. One such contaminant is the endoglycosidase itself. In this case, the endoglycosidase must be removed in part or completely from the final recombinant protein product. This removal would entail multiple purification steps that both increase the expense due to these additional steps and reduce the amount of recombinant protein produced, as some protein would be lost during the various purifications. Also, these purification steps would extend the time for manufacturing the recombinant protein product, thereby reducing efficiency of the process. Moreover, when a recombinant glycoprotein is combined with the endoglycosidase, either in a culturing medium or after the recombinant glycoprotein has been separated from its medium, there is no guarantee that each recombinant glycoprotein will come into contact with an endoglycosidase; to ensure sufficient deglycosylation, the glycoprotein and endoglycosidase must remain in a solution for an extended period of time. This extension of time further reduces the efficiency of the manufacturing process. Finally, purchasing the isolated endoglycosidase or manufacturing the isolated endoglycosidase in house would incur additional expenses. Together, there is an unmet need for manufacturing deglycosylated recombinant protein that is effective and efficient. The methods and systems of the present disclosure satisfy this unmet need.


In the present disclosure, an endoglycosidase is localized to the extracellular surface of a cell, i.e., is surface displayed. This way, the endoglycosidase is unlikely to contact an intracellular, membrane-associated, or cell wall glycoprotein, thereby lowering the opportunity for the endoglycosidase to remove a needed oligosaccharide from the glycoprotein. Instead, the surface displayed endoglycosidase primarily deglycosylates proteins found in the extracellular space, e.g., secreted recombinant proteins. Accordingly, the present disclosure provides recombinant cells having the means to deglycosylate secreted glycoproteins proteins and having a reduced likelihood of undesirably deglycosylating its own intracellular, membrane bound, or cell wall glycoproteins.


Additionally, since the surface displayed endoglycosidase is securely attached to the recombinant cell, it is not released into and present in a culturing medium. Thus, there is no need to separate the endoglycosidase from the secreted recombinant protein when making a generally contaminant-free recombinant protein product. In other words, the use of surface displayed endoglycosidase avoids the added expense, time, and inefficiency, as described above, that is needed to later remove the endoglycosidase when manufacturing a recombinant protein product for human or animal use, e.g., in a consumable composition.


Fusion Proteins

Aspects of the present disclosure provide an engineered eukaryotic cell comprising a surface displayed catalytic domain of an endoglycosidase. The surface displayed catalytic domain of the endoglycosidase is included in a fusion protein expressed by the cell. As used herein, the term “catalytic domain” comprises a portion of an endoglycosidase that provides catalytic activity.


A fusion protein is a protein consisting of at least two domains that are normally encoded by separate genes but have been joined so that they are transcribed and translated as a single unit; thereby, producing a single (fused) polypeptide.


In the present disclosure, a fusion protein comprises at least a catalytic domain of an endoglycosidase and an anchoring domain of a cell surface protein.


A fusion protein may further comprise linkers that separate the two domains. Linkers can be flexible or rigid; they can be semi-flexible or semi-rigid. Separating the two domains, may promote activity of the catalytic domain in that it reduces steric hindrance upon the catalytic site which may be present if the catalytic site is too closely positioned relative to an anchoring domain. Additionally, a linker may further project the catalytic domain into the extracellular space, thereby increasing the likelihood that the catalytic domain will encounter and cleave glycoproteins.


When a linker is present, a fusion protein may have a general structure of: N terminus -(a)-(b)-(c)-C terminus, wherein (a) is comprises a first domain, (b) is one or more linkers, and (c) is a second domain. The first domain may comprise a catalytic domain of an enzyme and the second domain may comprise an anchoring domain of a cell surface protein. Alternately, the first domain may comprise an anchoring domain of a cell surface protein and the second domain may comprise a catalytic domain of an enzyme. In some embodiments, the anchoring domain is N-terminal to the catalytic domain in the fusion protein. The fusion protein may comprise a linker C-terminal to the anchoring domain. In other embodiments, the anchoring domain is C-terminal to the catalytic domain in the fusion protein. The fusion protein may comprise a linker N-terminal to the anchoring domain.


In some embodiments, a fusion protein comprises more than one anchoring domains of a cell surface protein. In such embodiments, the fusion protein may have a general structure of: N terminus -(a)-(b)-(c)-(d)-(e)- C terminus, wherein (a) and (e) comprise anchoring domains of a cell surface protein, (b) and (d) are linkers (which may be the same linker or different) and (c) is comprises a catalytic domain of an enzyme.


Linkers useful in fusion proteins may comprise one or more sequences of SEQ ID NO: 21 to SEQ ID NO: 25. In one example, a tandem repeat (of two, three, four, five, six, or more copies) of a linker, e.g., of SEQ ID NO: 22 or SEQ ID NO: 23, is included in a fusion protein.


In embodiments, a fusion protein comprises a Glu-Ala-Glu-Ala (EAEA; SEQ ID NO: 21) spacer dipeptide repeat. The EAEA is a removable signal that promotes yields of an expressed protein in certain cell types.


Other linkers are well-known in the art and can be substituted for the linkers of SEQ ID NO: 21 to SEQ ID NO: 25. For example, In embodiments, the linker may be derived from naturally-occurring multi-domain proteins or are empirical linkers as described, for example, in Chichili et al., (2013), Protein Sci. 22(2):153-167, Chen et al., (2013), Adv Drug Deliv Rev. 65(10):1357-1369, the entire contents of which are hereby incorporated by reference. In embodiments, the linker may be designed using linker designing databases and computer programs such as those described in Chen et al., (2013), Adv Drug Deliv Rev. 65(10):1357-1369 and Crasto et. al., (2000), Protein Eng. 13(5):309-312, the entire contents of which are hereby incorporated by reference.


In embodiments, the linker comprises a polypeptide. In embodiments, the polypeptide is less than about 500 amino acids long, about 450 amino acids long, about 400 amino acids long, about 350 amino acids long, about 300 amino acids long, about 250 amino acids long, about 200 amino acids long, about 150 amino acids long, or about 100 amino acids long. For example, the linker may be less than about 100, about 95, about 90, about 85, about 80, about 75, about 70, about 65, about 60, about 55, about 50, about 45, about 40, about 35, about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, or about 2 amino acids long. In some cases, the linker is about 59 amino acids long.


The length of a linker may be important to the effectiveness of a surface displayed endoglycosidase catalytic domain. For example, if a linker is too short, then the catalytic domain of the endoglycosidase may not project far enough away from the cell surface such that it is incapable of interacting with a glycoprotein. In this case, the catalytic domain may be buried in the cell wall and/or among other cell surface proteins or sugars. On the other hand, the linker may be too long and/or too rigid to allow adequate contact between a secreted glycoprotein and the catalytic domain of the endoglycosidase.


The secondary structure of a linker may also be important to the effectiveness of a surface displayed endoglycosidase catalytic domain. More specifically, a linker designed to have a plurality of distinct regions may provide additional flexibility to the fusion protein. As examples, a linker having one or more alpha helices may be superior to a linker having no alpha helices.


The longer linker of (SEQ ID NO: 25) comprises three subsections: an N-terminal flexible GS linker with higher S content (SEQ ID NO: 295), a rigid linker that forms four turns of an alpha helix (SEQ ID NO: 24), and a flexible GS linker with much higher G content (SEQ ID NO: 296) on its C-terminus. Linkers containing only G's and S's in repetitive sequences are commonly used in fusion proteins as flexible spacers that do not introduce secondary structure. In some cases, the ratio of G to S determines the flexibility of the linker. Linkers with higher G content may be more flexible than linkers with higher S content. The structure of the linker of SEQ ID NO: 25 is designed to mimic multi-domain proteins in nature, which often uses alpha helices (sometimes multiple) to separate as well as orient their domains spatially. In fusion proteins of the present disclosure, a complex linker, such as that of SEQ ID NO: 25 can be viewed as a multi-domain protein with the catalytic domain of an endoglycosidase and an anchoring domain of a cell surface protein being separate functional domains.


In various embodiments, the fusion protein comprises a linker having an amino acid sequence that is at least 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 25.


In embodiments, the linker is substantially comprised of glycine and serine residues (e.g. about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or about 100% glycines and serines).


Endoglycosidases

An Endoglycosidase is an enzyme that releases oligosaccharides from glycoproteins or glycolipids. Unlike exoglycosidases, endoglycoidases cleave polysaccharide chains between residues that are not the terminal residue and break the glycosidic bonds between two sugar monomer in the polymer. When an endoglycosidase cleaves, it releases an oligosaccharide product.


Numerous endoglycosidases have been characterized, cloned, and/or purified. These include Endoglycosidase D, Endoglycosidase F1, Endoglycosidase F2, Endoglycosidase F3, Endoglycosidase H, Endoglycosidase Hf, Endoglycosidase S, Endoglycosidase T, Endoglycoceramidase I, O-Glycosidase, Peptide-N-Glycosidase A (PNGaseA), and PNGaseF.


Normally, an endoglycosidase comprises at least a catalytic domain which is responsible for cleaving an oligonucleotide from a glycoprotein. The endoglycosidase may also comprise domains that help recognize an oligosaccharide and/or the glycoprotein itself. The endoglycosidase may further comprise domains that help facilitate, e.g., positioning of the oligosaccharide and/or glycoprotein itself, cleavage of the oligosaccharide.


In various embodiments, a fusion protein comprises at least the catalytic domain of the endoglycosidase. In some cases, a fusion protein comprises a portion of the endoglycosidase in addition to its catalytic domain. In some embodiments, a fusion protein comprises substantially the entire amino acid sequence of the endoglycosidase.


Endoglycosidase H

In some cases, the endoglycosidase is endoglycosidase H.


Endoglycosidase H (Endo H); Endo-beta-N-acetylglucosaminidase H (EC:3.2.1.96); DI-N-acetylchitobiosyl beta-N-acetylglucosaminidase H; Mannosyl-glycoprotein endo-beta-N-acetyl-glucosaminidase H is a highly specific endoglycosidase which cleaves asparagine-linked mannose rich oligosaccharides, but not highly processed complex oligosaccharides from glycoproteins. EndoH hydrolyzes (cleaves) the bond in the diacetylchitobiose core of the oligosaccharide between two N-acetylglucosamine (GlcNAc) subunits directly proximal to the asparagine residue, generating a truncated sugar molecule that is released intact and one N-acetylglucosamine residue remaining on the asparagine.


Variants of the known amino acid sequence of endoH may be determined by consulting the literature. e.g. Robbins et al., “Primary structure of the Streptomyces enzyme endo-beta-N-acetylglucosaminidase H.” J. Biol. Chem. 259:7577-7583 (1984); Rao et al., “Crystal structure of endo-beta-N-acetylglucosaminidase H at 1.9-A resolution: active-site geometry and substrate recognition.” Structure 3:449-457 (1995); Rao et al., “Mutations of endo-beta-N-acetylglucosaminidase H active site residue Asp130 and Glu132: activities and conformations.” Protein Sci. 8:2338-2346 (1999); the contents of which are incorporated by reference in their entirety. For example, Rao et al., (1999) teaches specific mutations that reduce (e.g., from 1.25% to 0.05% of wild-type activity) or completely obliterate enzymatic activity. Thus, a variant of endoH which comprises a substitution at Asp172 and/or Glu174 (with respect to SEQ ID NO: 2) would be understood to have undesired activity. Based on the published structural and functional analyses and routine experimentation, it could be readily determined those amino acids within endoH that could be substituted and would retain enzymatic activity and which amino acids could not be substituted.


In embodiments, the endoH that is surface displayed, e.g., is part of a fusion protein, comprises an amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2. The amino acid sequence of SEQ ID NO: 1 lacks an N-terminal signal peptide that is present in SEQ ID NO: 2. The endoH may be a variant of SEQ ID NO: 1 or SEQ ID NO: 2. The variant may have at least or about 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with one of SEQ ID NO: 1 or SEQ ID NO: 2.


Surface Display

Aspects of the present disclosure include engineered eukaryotic cells comprising a surface displayed catalytic domain of an endoglycosidase.


In embodiment, surface display occurs by attachment of the catalytic domain to the extracellular surface of the cell via an anchoring domain of a cell surface protein. In the present disclosure, the catalytic domain and anchoring domain are present in a fusion protein, optionally, separated by one or more linkers.


Surface display is understood as the projection of a protein, e.g., a fusion protein, out from a cell's surface and/or from the cell's membrane and into the extracellular space, e.g., into the growth medium in which the engineered eukaryotic cell is being cultured. By projecting into the extracellular space, a surface displayed fusion protein is positioned to interact with soluble glycoproteins present in the extracellular space. Alternately, a surface displayed fusion protein is positioned to interact with cell-associated proteins on adjacent cells. When the surface displayed fusion protein comprise a catalytic domain of an enzyme, e.g., an endoglycosidase, and especially, endoH, the catalytic domain is positioned to cleave off oligonucleotides from soluble glycoproteins present in the extracellular space or cleave off oligonucleotides from cell-associated glycoproteins on adjacent cells.


In some cases, the cell that expresses a surface displayed fusion protein also expresses (co-expresses) a secreted glycoprotein. This co-expression simplifies the production of deglycosylated proteins in that only one engineered cell needs to be produced and cultured. Moreover, as the secreted glycoprotein is released by the engineered cell, it is an enhanced likelihood of contacting the fusion protein that is located on the surface of the same cell.


In alternate case, the cell that expresses the fusion protein is different from the cell that secretes the glycoprotein. An advantage of this configuration is that an engineered cell that optimally expresses a fusion protein can be co-cultured with an engineered cell that optimally expresses a secreted glycoprotein.


To ensure that a fusion protein is surface displayed and remains attached to the extracellular surface of a cell rather than being secreted and released into the extracellular space, a fusion protein comprises an anchoring domain from a cell surface protein. These anchoring domains either bind to a component of the cell's membrane or its cell wall or the anchoring domain comprises a motif that is used to attach the protein to the cell's membrane, e.g., via a glycosylphosphatidylinositol (GPI) anchor. Thus, the anchoring domain stably attaches the fusion protein to the extracellular surface of the engineered cell.


In some cases, a fusion protein comprises a portion of the cell surface protein in addition to its anchoring domain. In embodiments, a fusion protein comprises substantially the entire amino acid sequence of the cell surface protein.


In various embodiments, the cell surface protein is selected from Sed1p, Flo5-2, Flo11, Saccharomyces cerevisiae Flo5, CWP, and PIR.


Sed1p is a major component of the Saccharomyces cerevisiae cell wall. It is required to stabilize the cell wall and for stress resistance in stationary-phase cells. See, e.g., the world wide web (at) uniprot.org/uniprot/Q01589. It is believed that Asn 318 (with respect to SEQ ID NO: 3) is the most likely candidate for the GPI attachment site in Sed1p. In some embodiments, a fusion protein comprising a Sed1p anchoring domain has a sequence having at least 95% or more sequence identity with SEQ ID NO: 3 or SEQ ID NO: 4. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In various embodiments, the Sed1p anchoring domain of a fusion protein of the present disclosure comprises a GPI attachment site; thus, the anchoring domain may only require a short fragment of SEQ ID NO: 3 or SEQ ID NO: 4, i.e., a fragment that is 5, 10, 25, 50, 100, 200, or 300 or more amino acids in length, as long as it is capable of projecting the catalytic domain of the fusion protein into the extracellular space. In some embodiments, the anchoring domain comprises, at least, Sed1p's GPI attachment site.


In some cases, the cell surface protein is Sed1p and the endoglycosidase is endoglycosidase H. The fusion protein may comprise an amino acid sequence that is at least 95% identical to SEQ ID NO: 9 or SEQ ID NO: 10. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 9 or SEQ ID NO: 10.



Komagataella phaffii Flo5-2 is considered to be an ortholog of both Saccharomyces Flo1 and Flo5. See, e.g., the world wide web (at) uniprot.org/uniprot/F2QXPO. The two Saccharomyces flocculation proteins are highly similar in their amino acid sequence, only significantly differing in the length of the linker portion used to extend the protein past the cell wall. The Saccharomyces flocculation proteins are cell wall proteins that participate directly in adhesive cell-cell interactions during yeast flocculation, a reversible, asexual process in which cells adhere to form aggregates (flocs) consisting of thousands of cells. The lectin-like proteins stick out of the cell wall of flocculent cells and selectively bind mannose residues in the cell walls of adjacent cells. Literature on Saccharomyces Flo1p shows that monomeric mannose added to the media can prevent flocculation, suggesting that flocculation by Flo1p results from binding to mannose in the cell wall and free-floating mannose can compete for the binding spot. Thus, the flocculation family of proteins are useful in the present disclosure, for, at least, two reasons. First, they generally extend relative far from the cell wall, and, second, it is believed that they bind and capture some exopolysaccharides. Notably, Flo5-2 has a GPI anchor site towards its C-terminus which can tether the protein to a cell's membrane. Therefore, a fusion protein comprising an anchoring domain of Flo5-2 may anchor the fusion protein to the extracellular surface of an engineered cell via its GPI anchor or by the domain's interaction with exopolysaccharides located on the extracellular surface of an engineered cell. Moreover, without wishing to be bound by theory, inclusion of an anchoring domain of Flo5-2 may promote capture of a secreted glycoprotein for deglycosylation.


In some embodiments, a fusion protein comprising a Flo5-2 anchoring domain has a sequence that has 95% or more sequence identity with SEQ ID NO: 5 or SEQ ID NO: 6. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In various embodiments, the Flo5-2 anchoring domain of a fusion protein of the present disclosure comprises a GPI attachment site; thus, the anchoring domain may only require a short fragment of SEQ ID NO: 5 or SEQ ID NO: 6, i.e., a fragment that is 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 or more amino acids in length, as long as it is capable of projecting the catalytic domain of the fusion protein into the extracellular space. In some embodiments, the anchoring domain comprises, at least, Flo5-2's GPI attachment site. In some embodiments, the anchoring domain lacks Flo5-2's GPI attachment site yet retains the ability to capture exopolysaccharides and retain the fusion protein at the extracellular surface.


In some cases, the cell surface protein is Flo5-2 and the endoglycosidase is endoglycosidase H. The fusion protein may comprise an amino acid sequence that is at least 95% identical to SEQ ID NO: 11 or SEQ ID NO: 12. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 11 or SEQ ID NO: 12.



Saccharomyces cerevisiae Flo5 has a GPI anchor site towards its C-terminus which can tether the protein to a cell's membrane. Therefore, a fusion protein comprising an anchoring domain of Flo5 may anchor the fusion protein to the extracellular surface of an engineered cell via its GPI anchor or by the domain's interaction with exopolysaccharides located on the extracellular surface of an engineered cell. Moreover, without wishing to be bound by theory, inclusion of an anchoring domain of Flo5 may promote capture of a secreted glycoprotein for deglycosylation.


In some embodiments, a fusion protein comprising a Saccharomyces cerevisiae Flo5 anchoring domain has a sequence that has 95% or more sequence identity with SEQ ID NO: 20. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In various embodiments, the Flo5 anchoring domain of a fusion protein of the present disclosure comprises a GPI attachment site; thus, the anchoring domain may only require a short fragment of SEQ ID NO: 20, i.e., a fragment that is 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 or more amino acids in length, as long as it is capable of projecting the catalytic domain of the fusion protein into the extracellular space. In some embodiments, the anchoring domain comprises, at least, Flo5's GPI attachment site. In some embodiments, the anchoring domain lacks Flo5's GPI attachment site yet retains the ability to capture exopolysaccharides and retain the fusion protein at the extracellular surface.


In some cases, the cell surface protein is Saccharomyces cerevisiae Flo5 and the endoglycosidase is endoglycosidase H. The fusion protein may comprise an amino acid sequence that is at least 95% identical to SEQ ID NO: 293. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 293.


Flo11 is another GPI-anchored cell surface glycoprotein (flocculin). See, e.g., the world wide web (at) uniprot.org/uniprot/F2QRD4. Flo11 is believed to be required for pseudohyphal and invasive growth, flocculation, and biofilm formation. It is a major determinant of colony morphology and required for formation of fibrous interconnections between cells. Like the other yeast flocculation proteins, its adhesive activity is inhibited by mannose, but not by glucose, maltose, sucrose or galactose. Thus, use of Flo11 in a fusion protein of the present disclosure may be useful extending the fusion protein relatively far from the cell wall, and for binding and capturing some exopolysaccharides. Like, Flo5-2, Flo11 has a GPI anchor site towards its C-terminus which can tether the protein to a cell's membrane. Therefore, a fusion protein comprising an anchoring domain of Flo11 may anchor the fusion protein to the extracellular surface of an engineered cell via its GPI anchor or by the domain's interaction with exopolysaccharides located on the extracellular surface of an engineered cell. Moreover, without wishing to be bound by theory, inclusion of an anchoring domain of Flo11 may promote capture of a secreted glycoprotein for deglycosylation.


In some embodiments, a fusion protein comprising a Flo11 anchoring domain has a sequence that has 95% or more sequence identity with SEQ ID NO: 7 or SEQ ID NO: 8. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In various embodiments, the Flo11 anchoring domain of a fusion protein of the present disclosure comprises a GPI attachment site; thus, the anchoring domain may only require a short fragment of SEQ ID NO: 7 or SEQ ID NO: 8, i.e., a fragment that is 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 or more amino acids in length, as long as it is capable of projecting the catalytic domain of the fusion protein into the extracellular space. In some embodiments, the anchoring domain comprises, at least, Flo11's GPI attachment site. In some embodiments, the anchoring domain lacks Flo11's GPI attachment site yet retains the ability to capture exopolysaccharides and retain the fusion protein at the extracellular surface.


In some cases, the cell surface protein is Flo11 and the endoglycosidase is endoglycosidase H. The fusion protein may comprise an amino acid sequence that is at least 95% identical to SEQ ID NO: 13 or SEQ ID NO: 14. In some cases, the sequence identity may be greater than or about 90%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 13 or SEQ ID NO: 14.


Engineered Eukaryotic Cells

The present disclosure relates to engineered eukaryotic cells. These engineered cells are transfected to express a surface displayed catalytic domain of an endoglycosidase. In various embodiments, the engineered cells are transfected to express a surface displayed fusion protein comprising a catalytic domain of an endoglycosidase and an anchoring domain of a cell surface protein.


In some cases, the engineered eukaryotic cell is a yeast cell, e.g., yeast cell that is a Pichia species


A fusion protein may be expressed by the cell by nucleic acid sequence, e.g., an expression cassette, that is stably integrated into a cell's chromosome. Alternately, a fusion protein may be expressed by the cell by an extrachromosomal nucleic acid sequence, e.g., plasmid, vector, or YAC which comprises an expression cassette. Any method for transfecting cells with suitable constructs that express the fusion protein may be used.


An expression cassette is any nucleic acid sequence that contains a subsequence that codes for a transgene and can confer expression of that subsequence when contained in a microorganism and is heterologous to that microorganism. It may comprise one or more of a coding sequence, a promoter, and a terminator. It may encode a secretory signal. It may further encode a signal sequence. In some embodiments, a nucleic acid sequence, e.g., which is expressed by a recombinant cell, may comprise an expression cassette.


The expression cassettes useful herein can be obtained using chemical synthesis, molecular cloning or recombinant methods, DNA or gene assembly methods, artificial gene synthesis, PCR, or any combination thereof. Methods of chemical polynucleotide synthesis are well known in the art and need not be described in detail herein. One of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to produce a desired DNA sequence. For preparing polynucleotides using recombinant methods, a polynucleotide comprising a desired sequence can be inserted into a suitable cloning or expression vector, and the cloning or expression vector in turn can be introduced into a suitable host cell for replication and amplification. Suitable cloning vectors may be constructed according to standard techniques, or may be selected from a large number of cloning vectors available in the art. While the cloning vector selected fvmay vary according to the host cell intended to be used, useful cloning vectors will generally have the ability to self-replicate, may possess a single target for a particular restriction endonuclease, and/or may carry genes for a marker that can be used in selecting clones containing the expression vector. Methods for obtaining cloning and expression vectors are well-known (see, e.g., Green and Sambrook, Molecular Cloning: A Laboratory Manual, 4th edition, Cold Spring Harbor Laboratory Press, New York (2012)), the contents of which is incorporated herein by reference in its entirety.


In some cases, it is desirable for a engineered cell to express multiple copies of the fusion protein and/or to control expression of the fusion protein. Thus, a nucleic acid sequence or expression cassette may comprise a constitutive promoter, inducible promoter, and hybrid promoter. A promoter refers to a polynucleotide subsequence of nucleic acid sequence or an expression cassette that is located upstream, or 5′, to a coding sequence and is involved in initiating transcription of the coding sequence when the nucleic acid sequence or expression cassette is integrated into a chromosome or located extrachromosomally in a host cell.


Notably, in some cases, it is undesirable for a cell to excessively express the fusion protein. The main purpose of the recombinant cells of the present disclosure is to produce the recombinant glycoproteins, e.g., for inclusion in composition for human or animal use. Should a cell express excessive amounts of the fusion protein, then the transcriptional and translational machinery dedicated to producing the fusion protein cannot be used to produce the recombinant glycoproteins. If so, the cell may become stressed and produce either less recombinant glycoproteins and/or may produce undesirable byproducts. Thus, in some embodiments, a nucleic acid encoding a fusion protein is fused to a weak promoter or to an intermediate strength promoter rather than a strong promoter.


In embodiments, the nucleic acid sequence or expression cassette comprises an inducible promoter. The inducible promoter may be an AOX1, DAK2, PEX11, FLD1, FGH1, DAS2, CAT1, MDH3, HAC1, BiP, RAD30, RVS161-2, MPP10, THP3, or GBP2 promoter. In some embodiments, the promoter used may have a sequence that has 95% or more sequence identity with any of SEQ ID NO: 26 to SEQ ID NO: 40. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of SEQ ID NO: 26 to SEQ ID NO: 40.


Useful promoters may be selected from acu-5, adh1+, alcohol dehydrogenase (ADH1, ADH2, ADH4), AHSB4m, AINV, alcA, α-amylase, alternative oxidase (AOD), alcohol oxidase I (AOX1), alcohol oxidase 2 (AOX2), AXDH, B2, CaMV, cellobiohydrolase I (cbh1), ccg-1, cDNA1, cellular filament polypeptide (cfp), cpc-2, ctr4+, CUP1, dihydroxyacetone synthase (DAS), enolase (ENO, ENO1), formaldehyde dehydrogenase (FLD1), FMD, formate dehydrogenase (FMDH), G1, G6, GAA, GAL1, GAL2, GAL3, GAL4, GAL5, GAL6, GAL7, GAL8, GAL9, GAL10, GCW14, gdhA, gla-1, α-glucoamylase (glaA), glyceraldehyde-3-phosphate dehydrogenase (gpdA, GAP, GAPDH), phosphoglycerate mutase (GPM1), glycerol kinase (GUT1), HSP82, invl+, isocitrate lyase (ICL1), acetohydroxy acid isomeroreductase (ILV5), KAR2, KEX2, β-galactosidase (lac4), LEU2, me10, MET3, methanol oxidase (MOX), nmt1, NSP, pcbC, PETS, phosphoglycerate kinase (PGK, PGK1), pho 1, PH05, PH089, phosphatidylinositol synthase (PIS1), PYK1, pyruvate kinase (pki1), RPS7, sorbitol dehydrogenase (SDH), 3-phosphoserine aminotransferase (SERI), SSA4, SV40, TEF, translation elongation factor 1 alpha-(TEF1), THI11, homoserine kinase (THR1), tpi, TPS1, triose phosphate isomerase (TPI1), XRP2, YPT1, GCW14, GAP, a sequence or subsequence chosen from SEQ ID NO: 26 to SEQ ID NO: 48, and any combination thereof. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of SEQ ID NO: 26 to SEQ ID NO: 48.


In embodiments, the nucleic acid sequence or expression cassette comprises a terminator sequence. A terminator is a section of nucleic acid sequence that marks the end of a gene during transcription. In some cases, the terminator is an AOX1, TDH3, RPS25A, or RPL2A terminator. In some embodiments, the terminator used may have a sequence that has 95% or more sequence identity with any of SEQ ID NO: 53 to SEQ ID NO: 56. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of SEQ ID NO: 53 to SEQ ID NO: 56.


Certain combinations of promoter and terminator may provide more preferred expression of the fusion protein and/or more preferred activity of the fusion protein, e.g., in deglycosylating glycoproteins. It is well-within the skill of an artisan to determine which combinations of promoters and terminators achieve desirability and which combinations do not.


Moreover, in some cases, the same combination of promoter and terminator may have preferred activity in one strain and have less preferred activity in another strain. Without wishing to be bound by theory, the strain difference may be due to a construct's integration into the host cell's genome or it may be due to epigenetic reasons. It is well-within the skill of an artisan to determine which strains for a certain combination of promoter and terminator achieve desirability and which strains do not.


Additionally, some combinations of promoters and terminators and certain strains perform better when cells are cultured at higher density (e.g., in bioreactors) versus low density cell cultures, as in a high throughput screen. Thus, a combination or strain may appear to be less desirable when assayed in small scale cultures, but may actually be a preferred combination or strain when cultured at higher cell density, which would be the case for commercial scale production of deglycosylated proteins. It is well-within the skill of an artisan to determine the culturing conditions that ensure certain combination of promoter and terminator and specific strains provided desirable amounts of glycoprotein deglycosylation.


In some cases, the nucleic acid sequence or expression cassette encodes a signal peptide and/or a secretory signal. A signal peptide, also known as a signal sequence, targeting signal, localization signal, localization sequence, transit peptide, leader sequence, or leader peptide, may support secretion of a protein or polynucleotide. Extracellular secretion (for the purposes of surface display) of a recombinant or heterologously expressed fusion protein is facilitated by having a signal peptide included in the fusion protein. A signal peptide may be derived from a precursor (e.g., prepropeptide, preprotein) of a protein. Signal peptides may be derived from a precursor of a protein including, but not limited to, acid phosphatase (e.g., Pichia pastoris PHO1), albumin (e.g., chicken), alkaline extracellular protease (e.g., Yarrowia lipolytica XRP2), α-mating factor (α-MF, MATα) (e.g., Saccharomyces cerevisiae), amylase (e.g., α-amylase, Rhizopus oryzae, Schizosaccharomyces pombe putative amylase SPCC63.02c (Amy 1)), β-casein (e.g., bovine), carbohydrate binding module family 21 (CBM21)-starch binding domain, carboxypeptidase Y (e.g., Schizosaccharomyces pombe Cpy 1), cellobiohydrolase I (e.g., Trichoderma reesei CBH1), dipeptidyl protease (e.g., Schizosaccharomyces pombe putative dipeptidyl protease SPBC1711.12 (Dpp1)), glucoamylase (e.g., Aspergillus awamori), heat shock protein (e.g., bacterial Hsp70), hydrophobin (e.g., Trichoderma reesei HBFI, Trichoderma reesei HBFII), inulase, invertase (e.g., Saccharomyces cerevisiae SUC2), killer protein or killer toxin (e.g., 128 kDa pGKL killer protein, α-subunit of the K1 killer toxin (e.g., Kluyveromyces lactis), K1 toxin KILM1, K28 pre-pro-toxin, Pichia acaciae), leucine-rich artificial signal peptide CLY-L8, lysozyme (e.g., chicken CLY), phytohemagglutinin (PHA-E) (e.g., Phaseolus vulgaris), maltose binding protein (MBP) (e.g., Escherichia coli), P-factor (e.g., Schizosaccharomyces pombe P3), Pichia pastoris Dse, Pichia pastoris Exg, Pichia pastoris Pir1, Pichia pastoris Scw, and cell wall protein Pir4 (protein with internal repeats). In some embodiments, the signal peptide used may have a sequence that has 80% or more sequence identity with any of SEQ ID NO: 57 to SEQ ID NO: 156. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of SEQ ID NO: 57 to SEQ ID NO: 156. In some cases, the signal peptide used may have a sequence that has 80% or more sequence identity with any of SEQ ID NO: 57 to SEQ ID NO: 61. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of SEQ ID NO: 57 to SEQ ID NO: 61.


In various embodiments, a fusion protein comprises an α-mating factor (α-MF, MATα) (e.g., Saccharomyces cerevisiae) secretion signal. In some cases the alpha mating factor signal peptide and secretion signal has a sequence that has 95% or more sequence identity with SEQ ID NO: 290 or SEQ ID NO: 291. In some cases, the sequence identity may be greater than or about 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with any of with SEQ ID NO: 290 or SEQ ID NO: 291. The α-mating factor secretion signal targets a fusion protein through the secretory pathway and is removed before exiting the cell.


In some cases, a nucleic acid sequence or expression cassette encodes a selectable marker. The selectable maker may be an antibiotic resistance gene (e.g., zeocin, ampicillin, blasticidin, kanamycin, nourseothricin, chloroamphenicol, tetracycline, triclosan, ganciclovir, and any combination thereof), an auxotrophic marker (e.g., f ade1, arg4, his4, ura3, met2, and any combination thereof).


In various embodiments, a nucleic acid sequence or expression cassette comprises codons that are optimized for the species of the engineered cell, e.g., a yeast cell including a Pichia cell. As known in the art, codon optimization may improve stability and/or increase expression of a recombinant protein, e.g., a fusion protein of the present disclosure. Surprisingly, codon optimization of a nucleic acid sequence or expression cassette my improve the transfection efficiency of the nucleic acid sequence or expression cassette into the genome of a host cell. Codon utilization tables for various species of host cell are publicly available. See, e.g., the world wide web (at) kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4922&aa=15&style=N.


Host cells useful for expression fusion proteins of the present disclosure include but are not limited to: Arxula spp., Arxula adeninivorans, Kluyveromyces spp., Kluyveromyces lactis, Pichia spp., Pichia angusta, Pichia pastoris, Saccharomyces spp., Saccharomyces cerevisiae, Schizosaccharomyces spp., Schizosaccharomyces pombe, Yarrowia spp., Yarrowia lipolytica, Agaricus spp., Agaricus bisporus, Aspergillus spp., Aspergillus awamori, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Colletotrichum spp., Colletotrichum gloeosporiodes, Endothia spp., Endothia parasitica, Fusarium spp., Fusarium graminearum, Fusarium solani, Mucor spp., Mucor miehei, Mucor pusillus, Myceliophthora spp., Myceliophthora thermophila, Neurospora spp., Neurospora crassa, Penicillium spp., Penicillium camemberti, Penicillium canescens, Penicillium chrysogenum, Penicillium (Talaromyces) emersonii, Penicillium funiculosum, Penicillium purpurogenum, Penicillium roqueforti, Pleurotus spp., Pleurotus ostreatus, Rhizomucor spp., Rhizomucor miehei, Rhizomucor pusillus, Rhizopus spp., Rhizopus arrhizus, Rhizopus oligosporus, Rhizopus oryzae, Trichoderma spp., Trichoderma altroviride, Trichoderma reesei, Trichoderma vireus, Aspergillus oryzae, Bacillus subtilis, Escherichia coli, Myceliophthora thermophila, Neurospora crassa, Pichia pastoris, Komagataella phaffii and Komagataella pastoris.


Transfection of a host cell with an expression cassette can exploit the natural ability of a host cell to integrate exogenous DNA into its chromosome. This natural ability is well documented for yeast cells, including Pichia cells. In some embodiments an additional vector and or additional elements may be designed to aide (as deemed necessary by one skilled in the art) for the particular method of transfection (e.g. CAS9 and gRNA vectors for a CRISPR/CAS9 based method).


In some cases, a host eukaryotic cell that expresses a fusion protein comprises a mutation in its AOX1 gene and/or its AOX2 gene. A deletion in either the AOX1 gene or AOX2 gene generates a methanol-utilization slow (mutS) phenotype that reduces the strain's ability to consume methanol as an energy source. A deletion in both the AOX1 gene and the AOX2 gene generates a methanol-utilization minus (mutM) phenotype that substantially limits the strain's ability to consume methanol as an energy source. Using an AOX1 mutant and/or AOX2 mutant cell is especially useful in the context of a fusion protein encoded by an expression cassette that comprises a methanol-inducible promoter, e.g., OAX1, DAS1, and FDH1. In this configuration, the host cell does not use methanol as an energy source, thus, when the cell is provided methanol, the methanol is primarily used to activate the methanol-inducible promoter, thereby especially activating the promoter and causing increased expression of the fusion protein.


Another aspect of the present disclosure is a population of engineered eukaryotic cells of any of the herein disclosed aspects or embodiments. The present disclosure further relates to a bioreactor comprising this population of engineered eukaryotic cells.


Yet another aspect of the present disclosure is a method for expressing a fusion protein comprising an anchoring domain of a cell surface protein and a catalytic domain of an endoglycosidase. The method comprises obtaining any herein disclosed engineered eukaryotic cell and culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein.


The conditions that promote expression of the fusion protein may be standard growth conditions. However, when the engineered eukaryotic cell comprises a nucleic acid sequence that encodes the fusion protein and comprises an inducible promoter, culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein comprises contacting the cell with an agent that activates the inducible promoter. When the inducible promoter is an AOX1, DAK2, PEX11 promoter the agent that activates the inducible promoter is methanol.


Glycoprotein and Sources Thereof

In some cases, the engineered eukaryotic cell that expresses the surface display fusion protein further comprises a genomic modification that overexpresses a secretory glycoprotein. Here, as a cell secretes the glycoprotein into the extracellular space, it comes in contact with a surface displayed fusion protein, which cleaves the oligosaccharide from the glycoprotein, with both the deglycosylated protein and the liberated oligosaccharide progressing into the extracellular space, e.g., the growth medium in which the eukaryotic cell is being cultured.


In alternate cases, a first engineered eukaryotic cell expresses the surface display fusion protein and a second engineered eukaryotic cell overexpresses a secretory glycoprotein. Here, the second cell secretes the glycoprotein into the extracellular space and it comes in contact with a surface displayed fusion protein on the first cell. The fusion protein cleaves the oligosaccharide from the glycoprotein, with both the deglycosylated protein and the liberated oligosaccharide progressing into the extracellular space, e.g., the growth medium in which the engineered eukaryotic cell is being cultured.


In other cases, a first engineered eukaryotic cell expresses the surface display fusion protein and further comprises a genomic modification that overexpresses a secretory glycoprotein, however, the fusion protein cleaves a secretory glycoprotein that was overexpressed by a second engineered eukaryotic cell.


The genomic modification that overexpresses a secretory glycoprotein may comprise a promoter (constitutive promoter, inducible promoter, and hybrid promoter) as disclosed herein; the genomic modification that overexpresses a secretory glycoprotein may comprise a terminator sequence as disclosed herein; the genomic modification that overexpresses a secretory glycoprotein may encode a secretory signal as disclosed herein; and/or the genomic modification that overexpresses a secretory glycoprotein may encode a signal sequence as disclosed herein.


A host cell may comprise a first promoter driving the expression of the fusion protein and a second promoter driving the expression secretory glycoprotein. The first and second promoter may be selected from the list of promoters provided herein. In some cases, the first promoter and the second promoter may be the same. Alternatively, the first and the second promoter may be different.


In various embodiments, the secreted glycoprotein is an animal protein. In some embodiments, the animal protein is an egg protein, e.g., selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


The glycoprotein may have amino acid sequence of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The glycoprotein may be a variant of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The variant may have at least or about 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with one of SEQ ID NO: 157 to SEQ ID NO: 290.


Another aspect of the present disclosure is a population of engineered eukaryotic cells (that express a surface display fusion protein alone or that express a surface display fusion protein and overexpress a secretory glycoprotein) of any of the herein disclosed aspects or embodiment. The present disclosure further relates to a bioreactor comprising this population of engineered eukaryotic cells.


Compositions

The present disclosure further relates to composition comprising any herein disclosed engineered eukaryotic cell, a secreted protein that has been deglycosylated, and one or more oligosaccharides cleaved from the secreted protein.


Also, the present disclosure further relates to a composition comprising a secreted protein that has been deglycosylated and one or more oligosaccharides cleaved from the secreted protein.


Further, the present disclosure relates to a composition comprising a secreted protein that has been deglycosylated.


Additionally, the present disclosure relates to a composition comprising one or more oligosaccharides cleaved from a secreted protein.


In various embodiments, the secreted glycoprotein is an animal protein. In some embodiments, the animal protein is an egg protein, e.g., selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


The glycoprotein may have amino acid sequence of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The glycoprotein may be a variant of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The variant may have at least or about 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with one of SEQ ID NO: 157 to SEQ ID NO: 290.


These compositions may be liquid or dried. The secreted protein that has been deglycosylated and/or one or more oligosaccharides cleaved from the secreted protein may be lyophilized. In some cases, the secreted protein that has been deglycosylated and/or one or more oligosaccharides cleaved from the secreted protein are isolated, e.g., from each other and/or from a growth medium. The secreted protein that has been deglycosylated and/or one or more oligosaccharides cleaved from the secreted protein may be concentrated.


Deglycosylated proteins and/or one or more oligosaccharides cleaved from the secreted protein, as disclosed herein, may be used in a consumable composition comprising. Illustrative uses and features of such consumable compositions are described in WO 2016/077457, the contents of which is incorporated herein by reference in its entirety.


A consumable composition may comprise one or more deglycosylated proteins. As used herein, a consumable composition refers to a composition, which comprises an isolated deglycosylated protein and/or a cleaved oligosaccharide and may be consumed by an animal, including but not limited to humans and other mammals. Consumable food compositions include food products, beverage products, dietary supplements, food additives, and nutraceuticals as non-limiting examples. The consumable composition may comprise one or more components in addition to the deglycosylated protein. The one or more components may include ingredients, solvents used in the formation of foodstuff or beverages. For instance, the deglycosylated protein may be in the form of a powder which can be mixed with solvents to produce a beverage or mixed with other ingredients to form a food product.


The nutritional content of the deglycosylated protein may be higher than the nutritional content of an identical quantity of a control protein. The control protein may be the same protein produced recombinantly but not treated with a fusion protein of the present disclosure. The control protein may be the same protein produced recombinantly in a host cell which does not express a surface displayed fusion protein. The control protein may be the same protein isolated from a naturally occurring source. For instance, the control protein may be an isolated an egg white protein.


The nutritional content of a composition comprising the deglycosylated protein can be more than the nutritional content of the composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 80% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 5% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 10% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 20% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 50% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1% to 80% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 5% to 10%, 5-15%, 5-20%, 5-30%, 5-50%, 5-80% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 10% to 80%, 10-20%, 10-30%, 10-50%, 10-70%, 10-80% more than the protein content of a composition comprising a control protein. The protein content of the deglycosylated protein composition may be about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% more than the protein content of a composition comprising a control protein.


Protein content of a deglycosylated protein composition may be measured using conventional methods. For instance, protein content may be measured using nitrogen quantitation by combustion and then using a conversion factor to estimate quantity of protein in a sample followed by calculating the percentage (w/w) of the dry matter.


The nitrogen to carbon ratio of a deglycosylated protein be higher than the nitrogen to carbon ratio of a control protein. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.1. The nitrogen to carbon ratio of a deglycosylated protein be higher than the nitrogen to carbon ratio of a control protein. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.25. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.3. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.35. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.4. The nitrogen to carbon ratio of a recombinant protein may be greater than or equal to about 0.5.


Solubility of a deglycosylated protein may be greater than the solubility of a control protein. Solubility of a composition comprising a deglycosylated protein may be higher than the solubility of a composition comprising the control protein. Thermal stability of the deglycosylated protein may be greater than the thermal stability of a control protein.


The degree of glycosylation of the recombinant protein may be dependent on the consumable composition being produced. For instance, a consumable composition may comprise a lower degree of glycosylation to increase the protein content of the composition. Alternatively, the degree of glycosylation may be higher to increase the solubility of the protein in the composition.


Methods for Deglycosylating a Secreted Protein

Another aspect of the present disclosure is a method for deglycosylating a secreted glycoprotein. The method comprises contacting a secreted protein with a fusion protein anchored to any herein-disclosed engineered eukaryotic cell. By contacting a secreted protein with the fusion protein, the catalytic domain cleaves and releases an oligonucleotide from the secreted glycoprotein.


In some cases, the secreted glycoprotein is expressed by the engineered eukaryotic cell.


Notably, a fusion protein anchored to an engineered eukaryotic cell (of the present disclosure) is more effective at deglycosylating the secreted glycoprotein than an intracellular endoglycosidase, e.g., an intracellular endoglycosidase located within a Golgi vesicle. In particular, a fusion protein anchored to the surface of an engineered eukaryotic cell (of the present disclosure) is more effective at deglycosylating the secreted glycoprotein than an intracellular endoglycosidase that is linked to a membrane associating domain, e.g., a membrane associating domain that comprises an amino acid sequence of OCH1. Preferably, the amino acid sequence of OCH1 that is included in a fusion protein of the present disclosure lacks the wild-type OCH1 Golgi retention domain. This retention domain comprises at least a portion of the first 48 residues of Pichia OCH1 protein. If the Golgi retention domain of OCH1 is included in a fusion protein of the present disclosure, then it is unlikely that the fusion protein would be displayed on the exterior of the cell, as needed to be a surface displayed fusion protein of the present disclosure. In embodiments, a fusion protein having an OCH1 anchoring domain lacks the OCH1 Golgi retention domain. In some embodiments, a fusion protein having an OCH1 anchoring domain lacks at least a portion of the first 48 residues of Pichia OCH1 protein. In various embodiments, a fusion protein having an OCH1 anchoring domain lacks the first 48 residues of Pichia OCH1 protein.


A deglycosylated protein of the present disclosure can have a level of N-linked glycosylation that is reduced by at least about 10 percent (e.g., 10 percent, 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, or 100 percent) as compared to the level of N-linked glycosylation of the same glycoprotein that is not contacted with a fusion protein of the present disclosure, including a glycoprotein contacted with an intracellular endoglycosidase.


In some cases, the secreted glycoprotein is expressed by a cell other than the engineered eukaryotic cell.


In some embodiments, the method further comprises a step of isolating the deglycosylated secreted protein, e.g., from a cleaved oligosaccharide and/or from its growth medium. In some embodiments, the method further comprises a step of drying the deglycosylated secreted protein and/or the cleaved oligosaccharides.


In various embodiments, the secreted glycoprotein is an animal protein. In some embodiments, the animal protein is an egg protein, e.g., selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


The glycoprotein may have amino acid sequence of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The glycoprotein may be a variant of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The variant may have at least or about 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with one of SEQ ID NO: 157 to SEQ ID NO: 290.


Another aspect of the present disclosure is a method for deglycosylating a plurality of secreted glycoproteins. The method comprises contacting the plurality of secreted glycoproteins with a population of any herein disclosed engineered eukaryotic cells. By contacting the plurality of secreted glycoprotein with the fusion protein, the catalytic domains cleave and release oligonucleotides from the plurality secreted glycoprotein and provide a plurality of deglycosylated secreted proteins.


In some cases, substantially every secreted glycoprotein in the plurality of secreted glycoproteins is deglycosylated upon contact with the population of engineered eukaryotic cells.


Notably, the amount of deglycosylation of the secreted glycoproteins is not increased by further contacting the secreted protein with an isolated endoglycosidase.


Further, the amount of deglycosylation of the secreted glycoproteins is more than the amount obtained from a population of cells that express an intracellular endoglycosidase in addition to expressing the secreted glycoprotein.


In some embodiments, the method further comprises a step of isolating the plurality of deglycosylated secreted proteins and may further comprise a step of drying the plurality of deglycosylated secreted proteins.


In various embodiments, the secreted glycoprotein is an animal protein. In some embodiments, the animal protein is an egg protein, e.g., selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.


The glycoprotein may have amino acid sequence of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The glycoprotein may be a variant of any one of SEQ ID NO: 157 to SEQ ID NO: 290. The variant may have at least or about 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with one of SEQ ID NO: 157 to SEQ ID NO: 290.


Additional Catalytic Domains

Much of the above disclosure relates to surface displayed fusion proteins comprising a catalytic domain of an endoglycosidase, e.g., endoglycosidase H.


The engineered cells, nucleic acid sequences, compositions, and method disclosed herein may be adapted to relate to fusion proteins with catalytic domains of enzymes other than endoglycosidases. As used herein, the term “catalytic domain” comprises a portion of an enzyme that provides catalytic activity.


Accordingly, another aspect of the present disclosure is an engineered eukaryotic cell which expresses a surface displayed catalytic domain of an enzyme, wherein the catalytic domain is directly or indirectly tethered to the exterior surface of the cell.


Any aspect or embodiment described herein can be combined with any other aspect or embodiment as disclosed herein.


Definitions

Unless defined otherwise, all terms of art, notations and other technical and scientific terms or terminology used herein are intended to have the same meaning as is commonly understood by one of ordinary skill in the art to which the claimed subject matter pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art.


As used in the specification and claims, the singular forms “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.


As used herein, the phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” mean A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


As used herein, “or” may refer to “and”, “or,” or “and/or” and may be used both exclusively and inclusively. For example, the term “A or B” may refer to “A or B”, “A but not B”, “B but not A”, and “A and B”. In some cases, context may dictate a particular meaning.


As used herein, the term “about” a number refers to that number plus or minus 10% of that number and/or within one standard deviation (plus or minus) from that number. The term “about” a range refers to that range minus 10% of its lowest value and plus 10% of its greatest value and that range minus one standard deviation its lowest value and plus one standard deviation of its greatest value.


Throughout this application, various embodiments may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosure. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


The terms “increased”, “increasing”, or “increase” are used herein to generally mean an increase by a statically significant amount relative to a reference level. In some aspects, the terms “increased,” or “increase,” mean an increase of at least 10% as compared to a reference level, for example an increase of at least about 10%, at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any increase between 10-100% as compared to a reference level. Other examples of “increase” include an increase of at least 2-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 50-fold, at least 100-fold, at least 1000-fold or more as compared to a reference level.


The terms “decreased”, “decreasing”, or “decrease” are used herein generally to mean a decrease in a value relative to a reference level. In some aspects, “decreased” or “decrease” means a reduction by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (e.g., absent level or non-detectable level as compared to a reference level), or any decrease between 10-100% as compared to a reference level.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


EXAMPLES

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.


Example 1: Construction of a Surface Displayed EndoH-Sed1p Fusion Protein

A nucleic acid sequence that expressed a surface displayed fusion protein of SEQ ID NO: 10 was constructed and transfected in to Pichia cells. Transfected cells that faithfully expressed and surface displayed the fusion protein were isolated and expanded in culture.


The fusion protein included the Saccharomyces cerevisiae alpha mating factor signal peptide and secretion signal (89 residues, ending in EAEA; SEQ ID NO: 21), EndoH codon variant 2 (271 residues; SEQ ID NO: 1), a flex linker of 26 residues [GSS]8 (eight repeats of SEQ ID NO: 23), a semi-rigid alpha helix linker of 20 residues [EAAAR]4, (SEQ ID NO: 24) another flex linker of 15 residues [GGGGS]3 (three repeats of SEQ ID NO: 22) and the full Sed1 gene minus the N term 18 amino acid signal peptide (320 residues; SEQ ID NO: 3). Glycine-Serine linkers are commonly used in fusion proteins to space them out with no intervening secondary structure. The ratio of serine to glycine determines the relative stiffness of the linker, but even high serine content GS linkers are still fairly flexible. The entire linker of this fusion protein has an amino acid sequence of SEQ ID NO: 25. The full fusion protein had the amino acid sequence of SEQ ID NO: 10.


During translation and processing by the engineered cell, the signal peptide (MRFPSIFTAVLFAASSALA; SEQ ID NO: 59) was first cleaved off in the cell's endoplasmic reticulum. When the protein arrives in the late Golgi, the secretion signal (APVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV SLDKR; SEQ ID NO: 291) was cleaved off. Around the same time, the propeptide on the C-term (APVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV SLDKREAEA; SEQ ID NO: 292) was also cleaved off for the attachment of the GPI anchor. The final resultant fusion protein is as below, and include the full EndoH protein, the mature Sed1 protein, plus various linker elements and having the amino acid sequence of SEQ ID NO: 9.


The surface displayed fusion protein was incorporated into the cell membrane via a GPI anchor attached to the protein's C-terminus.


This surface displayed fusion protein was shown to be effective at deglycosylating an illustrative secreted glycoprotein (here, ovomucoid (OVD)). A high-throughput screen of cells engineered cells to express OVD and the surface displayed EndoH-Sed1p fusion protein was performed. In this screen, all engineered cell lines were capable of fully deglycosylating OVD while maintaining OVD titer. As shown in FIG. 1, secreted OVD absent the fusion protein comprises heavy glycosylated species (left two lanes), whereas engineered cells expressing the EndoH-Sed1p fusion protein cleaved off the glycoprotein's oligosaccharides, leaving a lighter, deglycosylated protein bands.


To expand production of EndoH-Sed1p fusion protein/glycoprotein secreting P. pastoris cells, a seed strain was removed from cryo-storage and thawed to room temperature. Contents of the thawed seed vials were used to inoculate liquid seed culture media in baffled flasks which were grown at 30° C. in shaking incubators. These seed flasks were then transferred and grown in a series of larger and larger seed fermenters containing a basal salt media, trace metals, and glucose. The temperature in the seed reactors were controlled at 30° C., pH at 5, and dissolved oxygen (DO) at 30%. pH was maintained by feeding ammonia hydroxide which also acted as a nitrogen source. Once sufficient cell mass was reached, the grown EndoH-Sed1p fusion protein/glycoprotein secreting P. pastoris was inoculated in a production-scale reactor containing basal salt media, trace metals, and glucose. Like in the seed tanks, the culture was also controlled at 30° C., pH 5 and 30% DO throughout the process. pH was again maintained by feeding ammonia hydroxide. During the initial batch glucose phase, the culture was left to consume all glucose and subsequently-produced ethanol. Once the target cell density was achieved and glucose and ethanol concentrations were confirmed to be zero, the glucose fed-batch growth phase was initiated. In this phase, glucose was fed until the culture reaches a target cell density. Glucose was fed at a limiting rate to prevent ethanol from building up in the presence of non-zero glucose concentrations. In the final induction phase, the culture was co-fed glucose and methanol which induced the cells to produce EndoH-Sed1p fusion protein via a methanol-inducible promoter included in the construct expressing the fusion protein. Glucose was fed at an amount to produce a desired growth rate, while methanol was fed to maintain the methanol concentration at 1% to ensure that fusion protein expression was consistently induced. Regular samples were taken throughout the fermentation process for analyses of specific process parameters (e.g., cell density, glucose/methanol concentrations, product titer, and quality).


The bioreactor-expanded cells were assayed for their ability to deglycosylate an illustrative glycoprotein. As shown in FIG. 2, in bioreactor cultures, engineered cells expressing the EndoH-Sed1p fusion protein cleaved off the glycoprotein's oligosaccharides, leaving faster migrating, deglycosylated protein bands.


Another version of the surface displayed fusion protein described above was generated with a shorter linker (i.e., [GGGGS]3) and with a different EndoH codon set. Surprisingly, this other version of the fusion protein has much lower deglycosylation ability.


Example 2: Construction of a Surface Displayed EndoH—Flo5-2 Fusion Protein

A nucleic acid sequence that expressed a surface displayed fusion protein of SEQ ID NO: 12 was constructed and transfected into Pichia cells. Transfected cells that faithfully expressed and surface displayed the fusion protein were isolated and expanded in culture.


Overexpression results in Pichia cells showed that Flo5-2 strongly flocculates pichia cells. These results were conducted in cells that did not co-express a secreted glycoprotein and had low exopolysaccharides.


The EndoH—Flo5-2 fusion protein was designed to take advantage of Flo5-2's ability to flocculate pichia cells and endoH's ability to cleave off oligosaccharides from glycoproteins. Without wishing to be bound by theory, the endoH on the N terminal end of the fusion protein should shield the Flo5-2 protein and reduce the risk of flocculation while giving enough space (via linkers) for exopolysaccharides present in the extracellular space be captured. Flo proteins naturally extend well into the extracellular space because they need to be able to adhere to cell wall of another cell. Therefore, combining EndoH with Flo5-2 would provide an extended reach for the enzyme to bind to and cleave secreted glycoproteins present in the extracellular space.


The surface displayed EndoH—Flo5-2 fusion protein had the following structure: a Flo5-2 signal peptide (MKFPVPLLFLLQLFFIIATQG; SEQ ID NO: 61), EndoH (SEQ ID NO: 1), a complex linker (SEQ ID NO: 25), and a Flo5-2 mature protein (SEQ ID NO: 5) plus the propeptide that gets cut off for GPI anchoring. The propeptide that's cleaved off within the cell is on Flo5-2's the C-terminal and is likely around the same size as Sed1's propeptide of about 20 amino acids.


The surface displayed EndoH—Flo5-2 fusion protein uses Flo5-2's native signal peptide. Flo5-2 secretes itself without needing another secretion signal. So, this fusion protein did not include an alpha factor secretion signal, as used in the EndoH-Sed1 fusion protein. However, adding an alpha factor secretion signal is considered and may improve secretion of the fusion protein.


In a high throughput screen, surface displayed EndoH— Flo5-2 fusion protein was capable of fully deglycosylating an illustrative co-expressed glycoprotein (here, OVD) and at a fairly high rate.


Example 3: Construction of a Surface Displayed EndoH—Saccharomyces cerevisiae Flo5 Fusion Protein

A nucleic acid sequence that expressed a surface displayed fusion protein of SEQ ID NO: 293 was constructed and transfected into Pichia cells. Transfected cells that faithfully expressed and surface displayed the fusion protein were isolated and expanded in culture.


A high throughput screen showed that the surface displayed EndoH—Saccharomyces cerevisiae Flo5 fusion protein fully deglycosylated an illustrative co-expressed glycoprotein (here, OVD).


Example 4: Construction of a Surface Displayed EndoH-Flo11 Fusion Protein

A nucleic acid sequence that expressed a surface displayed fusion protein of SEQ ID NO: 14 are constructed and are transfected into Pichia cells. Transfected cells that faithfully express and surface display the fusion protein will be isolated and expanded in culture. And the fusion protein's ability to fully deglycosylated an illustrative co-expressed glycoprotein will be assayed.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.









TABLE 1





Sequences

















mature EndoH seq
SEQ ID NO: 1
APAPVKQGPTSVAYVEVNNNSMLNVGKYTLADGGGNAFDV


only without

AVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQIRPLQ


its native

QQGIKVLLSVLGNHQGAGFANFPSQQAASAFAKQLSDAVA


signal peptide

KYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTALRANM




PDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYYGTWQ




VPGIALPKAQLSPAAVEIGRTSRSTVADLARRTVDEGYGV




YLTYNLDGGDRTADVSAFTRELYGSEAVRTP





endoH
SEQ ID NO: 2

MFTPVRRRVRTAALALSAAAALVLGSTAASGASATPSPAP



(with signal peptide


APAPAPVKQGPTSVAYVEVNNNSMLNVGKYTLADGGGNAF



underlined)

DVAVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQIRP




LQQQGIKVLLSVLGNHQGAGFANFPSQQAASAFAKQLSDA




VAKYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTALRA




NMPDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYYGT




WQVPGIALPKAQLSPAAVEIGRTSRSTVADLARRTVDEGY




GVYLTYNLDGGDRTADVSAFTRELYGSEAVRTP





Sed1 from
SEQ ID NO: 3
QFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGT



Saccharomyces


STAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEA



cerevisiae


PTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGT




TSAFPPTTSLPPSNTTTTPPYNPSTDYTTDYTVVTEYTTY




CPEPTTFTTNGKTYTVTEPTTLTITDCPCTIEKPTTTSTT




EYTVVTEYTTYCPEPTTFTTNGKTYTVTEPTTLTITDCPC




TIEKSEAPESSVPVTESKGTTTKETGVTTKQTTANPSLTV




STVVPVSSSASSHSVVINSNGANVVVPGALGLAGVAMLFL





Sed1 from
SEQ ID NO: 4

MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTS




Saccharomyces


SGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGT



cerevisiae


STEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEA


(underlined

PTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYN


is signal peptide, not

PSTDYTTDYTVVTEYTTYCPEPTTFTTNGKTYTVTEPTTL


utilized in design)

TITDCPCTIEKPTTTSTTEYTVVTEYTTYCPEPTTFTTNG




KTYTVTEPTTLTITDCPCTIEKSEAPESSVPVTESKGTTT




KETGVTTKQTTANPSLTVSTVVPVSSSASSHSVVINSNGA




NVVVPGALGLAGVAMLFL





Flo5-2 from
SEQ ID NO: 5
DESGNGDESDTAYGCDITSNAFDGFDATIYEYNANDLKLI



Komagataella phaffii


RDPVFMSTGYLGRNVLNKISGVTVPGFNIWNPRSRTATVY




GVQNVNYYNMVLELKGYFKAAVSGDYKLTLSNIDDSSMLF




FGKNTAFQCCDTGSIPVDQAPTDYSLFTIKPSNQVNSEVI




SSTQYLEAGKYYPVRIVFVNALERALFNFKLTIPSGTVLD




DFQDYIYQFGALDENSCYETTVSKITEWTTYTTPWTGTFE




TTRTITPTGTEGTVVIETPESYVTTTQPWTGTYETTYTVP




PTGTEPGTVIIETPEIIDCEAVCCGPFLTAFSFRKREECQ




CENICCPGDTNCETYVTTTQPWTGTYETTYTVPPTGTEPG




TVIIETPESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIE




TPESYVTTTQPWTGTYETTYTVPPSGTEPGTVVIETPEIV




DCEAYCCASVAIKKRELCQCENFCCSWDQSCQTYVTTTQP




WTGTYETTYTVPPTGTEPGTVIIETPESYVTTTQPWTGTY




ETTYTVPPTGTEPGTVIIETPESYVTTTQPWTGTYETTYT




VPPTGTEPGTVIIETPEIIDCEAVCCGPFLTAFSFRKREE




CQCENICCPGDTNCETYVTTTQPWTGTYETTYTVPPTGTE




PGTVIIETPESYVTTTQPWTGTYETTYTVPPTGTEPGTVI




IETPESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPE




IINCEAVCCGPFLTAFSFRKREECQCENICCPGDTNCETY




VTTTQPWTGTYETTYTVPPTGTEPGTVIIETPESYVTTTQ




PWTGTYETTYTVPSTGTEPGTVIIETPESYVTTTQPWTGT




YETTFTVPPTGTEPGTVVIETPESYVTTTQPWTGTYETTY




SVPPSGTEPGTVVIETPESYVTTTQPWTGTYETTYSVPPS




GTEPGTVVIETPEASTARTKFTTVTSSWTGVFTTTKTLPA




SGTEPATIVIQTPTGYFNTSSLVSTRTKTNVDTVTRVIPC




PICTAPKTITVVPEEPNESVSVIISQPQSSSTDTTLSKPD




SVRVISQPETASQMDTSLSKTDSAVISTETAGNNIIPLAG




SHSYNTIVTTVTDSPQVAQSTTATSSSNVHLTISTQTTTP




SLVYSSSLSTVHQVSPSNGGFRSSITVHPLLSVIGAIFGA




LFM





Flo5-2 from
SEQ ID NO: 6

MKFPVPLLFLLQLFFIIATQGDESGNGDESDTAYGCDITS




Komagataella phaffii


NAFDGFDATIYEYNANDLKLIRDPVFMSTGYLGRNVLNKI


(underlined is signal

SGVTVPGFNIWNPRSRTATVYGVQNVNYYNMVLELKGYFK


peptide, used in some

AAVSGDYKLTLSNIDDSSMLFFGKNTAFQCCDTGSIPVDQ


versions and not

APTDYSLFTIKPSNQVNSEVISSTQYLEAGKYYPVRIVFV


others)

NALERALFNFKLTIPSGTVLDDFQDYIYQFGALDENSCYE




TTVSKITEWTTYTTPWTGTFETTRTITPTGTEGTVVIETP




ESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPEIIDC




EAVCCGPFLTAFSFRKREECQCENICCPGDTNCETYVTTT




QPWTGTYETTYTVPPTGTEPGTVIIETPESYVTTTQPWTG




TYETTYTVPPTGTEPGTVIIETPESYVTTTQPWTGTYETT




YTVPPSGTEPGTVVIETPEIVDCEAYCCASVAIKKRELCQ




CENFCCSWDQSCQTYVTTTQPWTGTYETTYTVPPTGTEPG




TVIIETPESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIE




TPESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPEII




DCEAVCCGPFLTAFSFRKREECQCENICCPGDTNCETYVT




TTQPWTGTYETTYTVPPTGTEPGTVIIETPESYVTTTQPW




TGTYETTYTVPPTGTEPGTVIIETPESYVTTTQPWTGTYE




TTYTVPPTGTEPGTVIIETPEIINCEAVCCGPFLTAFSFR




KREECQCENICCPGDTNCETYVTTTQPWTGTYETTYTVPP




TGTEPGTVIIETPESYVTTTQPWTGTYETTYTVPSTGTEP




GTVIIETPESYVTTTQPWTGTYETTFTVPPTGTEPGTVVI




ETPESYVTTTQPWTGTYETTYSVPPSGTEPGTVVIETPES




YVTTTQPWTGTYETTYSVPPSGTEPGTVVIETPEASTART




KFTTVTSSWTGVFTTTKTLPASGTEPATIVIQTPTGYFNT




SSLVSTRTKTNVDTVTRVIPCPICTAPKTITVVPEEPNES




VSVIISQPQSSSTDTTLSKPDSVRVISQPETASQMDTSLS




KTDSAVISTETAGNNIIPLAGSHSYNTIVTTVTDSPQVAQ




STTATSSSNVHLTISTQTTTPSLVYSSSLSTVHQVSPSNG




GFRSSITVHPLLSVIGAIFGALFM





Flo11 from
SEQ ID NO: 7
SSGKTCPTSEVSPACYANQWETTFPPSDIKITGATWVQDN



Komagataella phaffii


IYDVTLSYEAESLELENLTELKIIGLNSPTGGTKLVWSLN


(no signal sequence)

SKVYDIDNPAKWTTTLRVYTKSSADDCYVEMYPFQIQVDW




CEAGASTDGCSAWKWPKSYDYDIGCDNMQDGVSRKHHPVY




KWPKKCSSNCGVEPTTSDEPEEPTTSEEPEEPTTSEEPEE




PTSSDEEPTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEE




PEEPTTSEEPTTSEEPEEPTSSDEEPTTSDEPEEPTTSDE




PEEPTTSEEPTTSEEPEEPTTSSEEPTPSEEPEGPTCPTS




EVSPACYADQWETTFPPSDIKITGATWVEDNIYDVTLSYE




AESLELENLTELKIIGLNSPTGGTKVVWSLNSGIYDIDNP




AKWTTTLRVYTKSSADDCYVEMYPFQIQVDWCEAGASTDG




CSAWKWPKSYDYDIGCDNMQDGVSRKHHPVYKWPKKCSSD




CGVEPTTSDEPEEPTTSEEPVEPTSSDEEPTTSEEPTTSE




EPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTTSEEPTT




SEEPEEPTSSDEEPTTSDEPEEPTTSEEPEEPTTSEEPEE




PTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTSS




DEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEP




TSSDEEPTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEP




EEPTSSDEEPTTSEEPEEPTTSDEPEEPTTSEEPEEPTTS




EEPEEPTTSEEPEEPTTSEEPEEPTSSDEEPTTSEEPEEP




TTSDEPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTTSD




EEPGTTEEPLVPTTKTETDVSTTLLTVTDCGTKTCTKSLV




ITGVTKETVTTHGKTTVITTYCPLPTETVTPTPVTVTSTI




YADESVTKTTVYTTGAVEKTVTVGGSSTVVVVHTPLTTAV




VQSQSTDEIKTVVTARPSTTTIVRDVCYNSVCSVATIVTG




VTEKTITFSTGSITVVPTYVPLVESEEHQRTASTSETRAT




SVVVPTVVGQSSSASATSSIFPSVTIHEGVANTVKNSMIS




GAVALLFNALFL





Flo11 from
SEQ ID NO: 8

MVSLRSIFTSSILAAGLTRAHGSSGKTCPTSEVSPACYAN



Komagataella phaffii

QWETTFPPSDIKITGATWVQDNIYDVTLSYEAESLELENL


(with signal sequence)

TELKIIGLNSPTGGTKLVWSLNSKVYDIDNPAKWTTTLRV




YTKSSADDCYVEMYPFQIQVDWCEAGASTDGCSAWKWPKS




YDYDIGCDNMQDGVSRKHHPVYKWPKKCSSNCGVEPTTSD




EPEEPTTSEEPEEPTTSEEPEEPTSSDEEPTTSEEPEEPT




TSDEPEEPTTSEEPEEPTTSEEPEEPTTSEEPTTSEEPEE




PTSSDEEPTTSDEPEEPTTSDEPEEPTTSEEPTTSEEPEE




PTTSSEEPTPSEEPEGPTCPTSEVSPACYADQWETTFPPS




DIKITGATWVEDNIYDVTLSYEAESLELENLTELKIIGLN




SPTGGTKVVWSLNSGIYDIDNPAKWTTTLRVYTKSSADDC




YVEMYPFQIQVDWCEAGASTDGCSAWKWPKSYDYDIGCDN




MQDGVSRKHHPVYKWPKKCSSDCGVEPTTSDEPEEPTTSE




EPVEPTSSDEEPTTSEEPTTSEEPEEPTTSDEPEEPTTSE




EPEEPTTSEEPEEPTTSEEPTTSEEPEEPTSSDEEPTTSD




EPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTTSDEPEE




PTTSEEPEEPTTSEEPEEPTSSDEEPTTSEEPEEPTTSEE




PEEPTTSEEPEEPTTSEEPEEPTSSDEEPTTSEEPEEPTT




SDEPEEPTTSEEPEEPTTSEEPEEPTSSDEEPTTSEEPEE




PTTSDEPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTTS




EEPEEPTSSDEEPTTSEEPEEPTTSDEPEEPTTSEEPEEP




TTSEEPEEPTTSEEPEEPTTSDEEPGTTEEPLVPTTKTET




DVSTTLLTVTDCGTKTCTKSLVITGVTKETVTTHGKTTVI




TTYCPLPTETVTPTPVTVTSTIYADESVTKTTVYTTGAVE




KTVTVGGSSTVVVVHTPLTTAVVQSQSTDEIKTVVTARPS




TTTIVRDVCYNSVCSVATIVTGVTEKTITFSTGSITVVPT




YVPLVESEEHQRTASTSETRATSVVVPTVVGQSSSASATS




SIFPSVTIHEGVANTVKNSMISGAVALLFNALFL





EndoH-Sed1 fusion
SEQ ID NO: 9
EAEAAPAPVKQGPTSVAYVEVNNNSMLNVGKYTLADGGGN


(partial ORF, without

AFDVAVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQI


peptides that are

RPLQQQGIKVLLSVLGNHQGAGFANFPSQQAASAFAKQLS


cleaved off post-

DAVAKYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTAL


translationally)

RANMPDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYY




GTWQVPGIALPKAQLSPAAVEIGRTSRSTVADLARRTVDE




GYGVYLTYNLDGGDRTADVSAFTRELYGSEAVRTPGSSGS




SGSSGSSGSSGSSGSSGSSEAAAREAAAREAAAREAAARG




GGGSGGGGSGGGGSQFSNSTSASSTDVTSSSSISTSSGSV




TITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEA




PTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDT




TTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYNPSTD




YTTDYTVVTEYTTYCPEPTTFTTNGKTYTVTEPTTLTITD




CPCTIEKPTTTSTTEYTVVTEYTTYCPEPTTFTTNGKTYT




VTEPTTLTITDCPCTIEKSEAPESSVPVTESKGTTTKETG




VTTKQTTANPSLTVSTVVPVSSSASSHSVVINSN





EndoH-Sedl fusion
SEQ ID NO: 10

MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG



(full ORF, including

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


peptides that are

SLDKREAEAAPAPVKQGPTSVAYVEVNNNSMLNVGKYTLA


cleaved off post-

DGGGNAFDVAVIFAANINYDTGTKTAYLHFNENVQRVLDN


translationally)

AVTQIRPLQQQGIKVLLSVLGNHQGAGFANFPSQQAASAF




AKQLSDAVAKYGLDGVDFDDEYAEYGNNGTAQPNDSSFVH




LVTALRANMPDKIISLYNIGPAASRLSYGGVDVSDKFDYA




WNPYYGTWQVPGIALPKAQLSPAAVEIGRTSRSTVADLAR




RTVDEGYGVYLTYNLDGGDRTADVSAFTRELYGSEAVRTP




GSSGSSGSSGSSGSSGSSGSSGSSEAAAREAAAREAAARE




AAARGGGGSGGGGSGGGGSQFSNSTSASSTDVTSSSSIST




SSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNG




TSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTE




APTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPY




NPSTDYTTDYTVVTEYTTYCPEPTTFTTNGKTYTVTEPTT




LTITDCPCTIEKPTTTSTTEYTVVTEYTTYCPEPTTFTTN




GKTYTVTEPTTLTITDCPCTIEKSEAPESSVPVTESKGTT




TKETGVTTKQTTANPSLTVSTVVPVSSSASSHSVVINSNG




ANVVVPGALGLAGVAMLFL





EndoH-Flo5-2 fusion
SEQ ID NO: 11
APAPVKQGPTSVAYVEVNNNSMLNVGKYTLADGGGNAFDV


(partial ORF, without

AVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQIRPLQ


signal peptide that is

QQGIKVLLSVLGNHQGAGFANFPSQQAASAFAKQLSDAVA


cleaved off post-

KYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTALRANM


translationally)

PDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYYGTWQ




VPGIALPKAQLSPAAVEIGRTSRSTVADLARRTVDEGYGV




YLTYNLDGGDRTADVSAFTRELYGSEAVRTPGSSGSSGSS




GSSGSSGSSGSSGSSEAAAREAAAREAAAREAAARGGGGS




GGGGSGGGGSDESGNGDESDTAYGCDITSNAFDGFDATIY




EYNANDLKLIRDPVFMSTGYLGRNVLNKISGVTVPGFNIW




NPRSRTATVYGVQNVNYYNMVLELKGYFKAAVSGDYKLTL




SNIDDSSMLFFGKNTAFQCCDTGSIPVDQAPTDYSLFTIK




PSNQVNSEVISSTQYLEAGKYYPVRIVFVNALERALFNFK




LTIPSGTVLDDFQDYIYQFGALDENSCYETTVSKITEWTT




YTTPWTGTFETTRTITPTGTEGTVVIETPESYVTTTQPWT




GTYETTYTVPPTGTEPGTVIIETPEIIDCEAVCCGPFLTA




FSFRKREECQCENICCPGDTNCETYVTTTQPWTGTYETTY




TVPPTGTEPGTVIIETPESYVTTTQPWTGTYETTYTVPPT




GTEPGTVIIETPESYVTTTQPWTGTYETTYTVPPSGTEPG




TVVIETPEIVDCEAYCCASVAIKKRELCQCENFCCSWDQS




CQTYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPESYV




TTTQPWTGTYETTYTVPPTGTEPGTVIIETPESYVTTTQP




WTGTYETTYTVPPTGTEPGTVIIETPEIIDCEAVCCGPFL




TAFSFRKREECQCENICCPGDTNCETYVTTTQPWTGTYET




TYTVPPTGTEPGTVIIETPESYVTTTQPWTGTYETTYTVP




PTGTEPGTVIIETPESYVTTTQPWTGTYETTYTVPPTGTE




PGTVIIETPEIINCEAVCCGPFLTAFSFRKREECQCENIC




CPGDTNCETYVTTTQPWTGTYETTYTVPPTGTEPGTVIIE




TPESYVTTTQPWTGTYETTYTVPSTGTEPGTVIIETPESY




VTTTQPWTGTYETTFTVPPTGTEPGTVVIETPESYVTTTQ




PWTGTYETTYSVPPSGTEPGTVVIETPESYVTTTQPWTGT




YETTYSVPPSGTEPGTVVIETPEASTARTKFTTVTSSWTG




VFTTTKTLPASGTEPATIVIQTPTGYFNTSSLVSTRTKTN




VDTVTRVIPCPICTAPKTITVVPEEPNESVSVIISQPQSS




STDTTLSKPDSVRVISQPETASQMDTSLSKTDSAVISTET




AGNNIIPLAGSHSYNTIVTTVTDSPQVAQSTTATSSSNVH




LTISTQTTTPSLVYSSSLSTVHQVSPSNGGFRSSITVHPL




LSVIGAIFGALFM





EndoH-Flo5-2 fusion
SEQ ID NO: 12

MKFPVPLLFLLQLFFIIATQGAPAPVKQGPTSVAYVEVNN



(full ORF, including

NSMLNVGKYTLADGGGNAFDVAVIFAANINYDTGTKTAYL


signal peptide that is

HFNENVQRVLDNAVTQIRPLQQQGIKVLLSVLGNHQGAGF


cleaved off post-

ANFPSQQAASAFAKQLSDAVAKYGLDGVDFDDEYAEYGNN


translationally)

GTAQPNDSSFVHLVTALRANMPDKIISLYNIGPAASRLSY




GGVDVSDKFDYAWNPYYGTWQVPGIALPKAQLSPAAVEIG




RTSRSTVADLARRTVDEGYGVYLTYNLDGGDRTADVSAFT




RELYGSEAVRTPGSSGSSGSSGSSGSSGSSGSSGSSEAAA




REAAAREAAAREAAARGGGGSGGGGSGGGGSDESGNGDES




DTAYGCDITSNAFDGFDATIYEYNANDLKLIRDPVFMSTG




YLGRNVLNKISGVTVPGFNIWNPRSRTATVYGVQNVNYYN




MVLELKGYFKAAVSGDYKLTLSNIDDSSMLFFGKNTAFQC




CDTGSIPVDQAPTDYSLFTIKPSNQVNSEVISSTQYLEAG




KYYPVRIVFVNALERALFNFKLTIPSGTVLDDFQDYIYQF




GALDENSCYETTVSKITEWTTYTTPWTGTFETTRTITPTG




TEGTVVIETPESYVTTTQPWTGTYETTYTVPPTGTEPGTV




IIETPEIIDCEAVCCGPFLTAFSFRKREECQCENICCPGD




TNCETYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPES




YVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPESYVTTT




QPWTGTYETTYTVPPSGTEPGTVVIETPEIVDCEAYCCAS




VAIKKRELCQCENFCCSWDQSCQTYVTTTQPWTGTYETTY




TVPPTGTEPGTVIIETPESYVTTTQPWTGTYETTYTVPPT




GTEPGTVIIETPESYVTTTQPWTGTYETTYTVPPTGTEPG




TVIIETPEIIDCEAVCCGPFLTAFSFRKREECQCENICCP




GDTNCETYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETP




ESYVTTTQPWTGTYETTYTVPPTGTEPGTVIIETPESYVT




TTQPWTGTYETTYTVPPTGTEPGTVIIETPEIINCEAVCC




GPFLTAFSFRKREECQCENICCPGDTNCETYVTTTQPWTG




TYETTYTVPPTGTEPGTVIIETPESYVTTTQPWTGTYETT




YTVPSTGTEPGTVIIETPESYVTTTQPWTGTYETTFTVPP




TGTEPGTVVIETPESYVTTTQPWTGTYETTYSVPPSGTEP




GTVVIETPESYVTTTQPWTGTYETTYSVPPSGTEPGTVVI




ETPEASTARTKFTTVTSSWTGVFTTTKTLPASGTEPATIV




IQTPTGYFNTSSLVSTRTKTNVDTVTRVIPCPICTAPKTI




TVVPEEPNESVSVIISQPQSSSTDTTLSKPDSVRVISQPE




TASQMDTSLSKTDSAVISTETAGNNIIPLAGSHSYNTIVT




TVTDSPQVAQSTTATSSSNVHLTISTQTTTPSLVYSSSLS




TVHQVSPSNGGFRSSITVHPLLSVIGAIFGALFM





EndoH-Flo11 fusion
SEQ ID NO: 13
APAPVKQGPTSVAYVEVNNNSMLNVGKYTLADGGGNAFDV


(partial ORF, without

AVIFAANINYDTGTKTAYLHFNENVQRVLDNAVTQIRPLQ


signal peptide that is

QQGIKVLLSVLGNHQGAGFANFPSQQAASAFAKQLSDAVA


cleaved off post-

KYGLDGVDFDDEYAEYGNNGTAQPNDSSFVHLVTALRANM


translationally)

PDKIISLYNIGPAASRLSYGGVDVSDKFDYAWNPYYGTWQ




VPGIALPKAQLSPAAVEIGRTSRSTVADLARRTVDEGYGV




YLTYNLDGGDRTADVSAFTRELYGSEAVRTPGSSGSSGSS




GSSGSSGSSGSSGSSEAAAREAAAREAAAREAAARGGGGS




GGGGSGGGGSSSGKTCPTSEVSPACYANQWETTFPPSDIK




ITGATWVQDNIYDVTLSYEAESLELENLTELKIIGLNSPT




GGTKLVWSLNSKVYDIDNPAKWTTTLRVYTKSSADDCYVE




MYPFQIQVDWCEAGASTDGCSAWKWPKSYDYDIGCDNMQD




GVSRKHHPVYKWPKKCSSNCGVEPTTSDEPEEPTTSEEPE




EPTTSEEPEEPTSSDEEPTTSEEPEEPTTSDEPEEPTTSE




EPEEPTTSEEPEEPTTSEEPTTSEEPEEPTSSDEEPTTSD




EPEEPTTSDEPEEPTTSEEPTTSEEPEEPTTSSEEPTPSE




EPEGPTCPTSEVSPACYADQWETTFPPSDIKITGATWVED




NIYDVTLSYEAESLELENLTELKIIGLNSPTGGTKVVWSL




NSGIYDIDNPAKWTTTLRVYTKSSADDCYVEMYPFQIQVD




WCEAGASTDGCSAWKWPKSYDYDIGCDNMQDGVSRKHHPV




YKWPKKCSSDCGVEPTTSDEPEEPTTSEEPVEPTSSDEEP




TTSEEPTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPE




EPTTSEEPTTSEEPEEPTSSDEEPTTSDEPEEPTTSEEPE




EPTTSEEPEEPTTSEEPEEPTTSDEPEEPTTSEEPEEPTT




SEEPEEPTSSDEEPTTSEEPEEPTTSEEPEEPTTSEEPEE




PTTSEEPEEPTSSDEEPTTSEEPEEPTTSDEPEEPTTSEE




PEEPTTSEEPEEPTSSDEEPTTSEEPEEPTTSDEPEEPTT




SEEPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTSSDEE




PTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTTS




EEPEEPTTSDEEPGTTEEPLVPTTKTETDVSTTLLTVTDC




GTKTCTKSLVITGVTKETVTTHGKTTVITTYCPLPTETVT




PTPVTVTSTIYADESVTKTTVYTTGAVEKTVTVGGSSTVV




VVHTPLTTAVVQSQSTDEIKTVVTARPSTTTIVRDVCYNS




VCSVATIVTGVTEKTITFSTGSITVVPTYVPLVESEEHQR




TASTSETRATSVVVPTVVGQSSSASATSSIFPSVTIHEGV




ANTVKNSMISGAVALLFNALFL





EndoH-Flo11 fusion
SEQ ID NO: 14

MVSLRSIFTSSILAAGLTRAHGAPAPVKQGPTSVAYVEVN



(full ORF, including

NNSMLNVGKYTLADGGGNAFDVAVIFAANINYDTGTKTAY


signal peptide that is

LHFNENVQRVLDNAVTQIRPLQQQGIKVLLSVLGNHQGAG


cleaved off post-

FANFPSQQAASAFAKQLSDAVAKYGLDGVDFDDEYAEYGN


translationally)

NGTAQPNDSSFVHLVTALRANMPDKIISLYNIGPAASRLS




YGGVDVSDKFDYAWNPYYGTWQVPGIALPKAQLSPAAVEI




GRTSRSTVADLARRTVDEGYGVYLTYNLDGGDRTADVSAF




TRELYGSEAVRTPGSSGSSGSSGSSGSSGSSGSSGSSEAA




AREAAAREAAAREAAARGGGGSGGGGSGGGGSSSGKTCPT




SEVSPACYANQWETTFPPSDIKITGATWVQDNIYDVTLSY




EAESLELENLTELKIIGLNSPTGGTKLVWSLNSKVYDIDN




PAKWTTTLRVYTKSSADDCYVEMYPFQIQVDWCEAGASTD




GCSAWKWPKSYDYDIGCDNMQDGVSRKHHPVYKWPKKCSS




NCGVEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTSSDEEP




TTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTTSE




EPTTSEEPEEPTSSDEEPTTSDEPEEPTTSDEPEEPTTSE




EPTTSEEPEEPTTSSEEPTPSEEPEGPTCPTSEVSPACYA




DQWETTFPPSDIKITGATWVEDNIYDVTLSYEAESLELEN




LTELKIIGLNSPTGGTKVVWSLNSGIYDIDNPAKWTTTLR




VYTKSSADDCYVEMYPFQIQVDWCEAGASTDGCSAWKWPK




SYDYDIGCDNMQDGVSRKHHPVYKWPKKCSSDCGVEPTTS




DEPEEPTTSEEPVEPTSSDEEPTTSEEPTTSEEPEEPTTS




DEPEEPTTSEEPEEPTTSEEPEEPTTSEEPTTSEEPEEPT




SSDEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTTSEEPE




EPTTSDEPEEPTTSEEPEEPTTSEEPEEPTSSDEEPTTSE




EPEEPTTSEEPEEPTTSEEPEEPTTSEEPEEPTSSDEEPT




TSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTSSDE




EPTTSEEPEEPTTSDEPEEPTTSEEPEEPTTSEEPEEPTT




SEEPEEPTTSEEPEEPTSSDEEPTTSEEPEEPTTSDEPEE




PTTSEEPEEPTTSEEPEEPTTSEEPEEPTTSDEEPGTTEE




PLVPTTKTETDVSTTLLTVTDCGTKTCTKSLVITGVTKET




VTTHGKTTVITTYCPLPTETVTPTPVTVTSTIYADESVTK




TTVYTTGAVEKTVTVGGSSTVVVVHTPLTTAVVQSQSTDE




IKTVVTARPSTTTIVRDVCYNSVCSVATIVTGVTEKTITF




STGSITVVPTYVPLVESEEHQRTASTSETRATSVVVPTVV




GQSSSASATSSIFPSVTIHEGVANTVKNSMISGAVALLFN




ALFL





FLO5 Saccharomyces
SEQ ID NO: 20
MTIAHHCIFLVILAFLALINVASGATEACLPAGQRKSGMN



cerevisiae


INFYQYSLKDSSTYSNAAYMAYGYASKTKLGSVGGQTDIS




IDYNIPCVSSSGTFPCPQEDSYGNWGCKGMGACSNSQGIA




YWSTDLFGFYTTPTNVTLEMTGYFLPPQTGSYTFSFATVD




DSAILSVGGSIAFECCAQEQPPITSTNFTINGIKPWDGSL




PDNITGTVYMYAGYYYPLKVVYSNAVSWGTLPISVELPDG




TTVSDNFEGYVYSFDDDLSQSNCTIPDPSIHTTSTITTTT




EPWTGTFTSTSTEMTTITDTNGQLTDETVIVIRTPTTAST




ITTTTEPWTGTFTSTSTEMTTVTGTNGQPTDETVIVIRTP




TSEGLITTTTEPWTGTFTSTSTEMTTVTGTNGQPTDETVI




VIRTPTSEGLITTTTEPWTGTFTSTSTEVTTITGTNGQPT




DETVIVIRTPTSEGLITTTTEPWTGTFTSTSTEMTTVTGT




NGQPTDETVIVIRTPTSEGLISTTTEPWTGTFTSTSTEVT




TITGTNGQPTDETVIVIRTPTSEGLITTTTEPWTGTFTST




STEMTTVTGTNGQPTDETVIVIRTPTSEGLITRTTEPWTG




TFTSTSTEVTTITGTNGQPTDETVIVIRTPTTAISSSLSS




SSGQITSSITSSRPIITPFYPSNGTSVISSSVISSSVTSS




LVTSSSFISSSVISSSTTTSTSIFSESSTSSVIPTSSSTS




GSSESKTSSASSSSSSSSISSESPKSPTNSSSSLPPVTSA




TTGQETASSLPPATTTKTSEQTTLVTVTSCESHVCTESIS




SAIVSTATVTVSGVTTEYTTWCPISTTETTKQTKGTTEQT




KGTTEQTTETTKQTTVVTISSCESDICSKTASPAIVSTST




ATINGVTTEYTTWCPISTTESKQQTTLVTVTSCESGVCSE




TTSPAIVSTATATVNDVVTVYPTWRPQTTNEQSVSSKMNS




ATSETTTNTGAAETKTAVTSSLSRFNHAETQTASATDVIG




HSSSVVSVSETGNTMSLTSSGLSTMSQQPRSTPASSMVGS




STASLEISTYAGSANSLLAGSGLSVFIASLLLAII





N-terminal addition
SEQ ID NO: 21
EAEA


EAEA







GGGS linker
SEQ ID NO: 22
GGGGS





GSS linker
SEQ ID NO: 23
GSS





A rigid linker that
SEQ ID NO: 24
EAAAREAAAREAAAREAAAR


forms 4 turns of an




alpha helix







Full linker
SEQ ID NO: 25
GSSGSSGSSGSSGSSGSSGSSGSSEAAAREAAAREAAARE




AAARGGGGSGGGGSGGGGS





AOX1 promoter
SEQ ID NO: 26
GATCTAACATCCAAAGACGAAAGGTTGAATGAAACCTTTT




TGCCATCCGACATCCACAGGTCCATTCTCACACATAAGTG




CCAAACGCAACAGGAGGGGATACACTAGCAGCAGACCGTT




GCAAACGCAGGACCTCCACTCCTCTTCTCCTCAACACCCA




CTTTTGCCATCGAAAAACCAGCCCAGTTATTGGGCTTGAT




TGGAGCTCGCTCATTCCAATTCCTTCTATTAGGCTACTAA




CACCATGACTTTATTAGCCTGTCTATCCTGGCCCCCCTGG




CGAGGTTCATGTTTGTTTATTTCCGAATGCAACAAGCTCC




GCATTACACCCGAACATCACTCCAGATGAGGGCTTTCTGA




GTGTGGGGTCAAATAGTTTCATGTTCCCCAAATGGCCCAA




AACTGACAGTTTAAACGCTGTCTTGGAACCTAATATGACA




AAAGCGTGATCTCATCCAAGATGAACTAAGTTTGGTTCGT




TGAAATGCTAACGGCCAGTTGGTCAAAAAGAAACTTCCAA




AAGTCGGCATACCGTTTGTCTTGTTTGGTATTGATTGACG




AATGCTCAAAAATAATCTCATTAATGCTTAGCGCAGTCTC




TCTATCGCTTCTGAACCCCGGTGCACCTGTGCCGAAACGC




AAATGGGGAAACACCCGCTTTTTGGATGATTATGCATTGT




CTCCACATTGTATGCTTCCAAGATTCTGGTGGGAATACTG




CTGATAGCCTAACGTTCATGATCAAAATTTAACTGTTCTA




ACCCCTACTTGACAGCAATATATAAACAGAAGGAAGCTGC




CCTGTCTTAAACCTTTTTTTTTATCATCATTATTAGCTTA




CTTTCATAATTGCGACTGGTTCCAATTGACAAGCTTTTGA




TTTTAACGACTTTTAACGACAACTTGAGAAGATCAAAAAA




CAACTAATTATTGGATCCCGA





DAK2 promoter
SEQ ID NO: 27
AAATAAGCATGTTTGTTTCAGATCAAAGATTAGCGTTTCA




AAGTTGTGGAAAAGTGACCATGCAACAATATGCAACACAT




TCGGATTATCTGATAAGTTTCAAAGCTACTAAGTAAGCCC




GTTTCAAGTCTCCAGACCGACATCTGCCATCCAGTGATTT




TCTTAGTCCTGAAAAATACGATGTGTAAACATAAACCACA




AAGATCGGCCTCCGAGGTTGAACCCTTACGAAAGAGACAT




CTGGTAGCGCCAATGCCAAAAAAAAATCACACCAGAAGGA




CAATTCCCTTCCCCCCCAGCCCATTAAAGCTTACCATTTC




CTATTCCAATACGTTCCATAGAGGGCATCGCTCGGCTCAT




TTTCGCGTGGGTCATACTAGAGCGGCTAGCTAGTCGGCTG




TTTGAGCTCTCTAATCGAGGGGTAAGGATGTCTAATATGT




CATAATGGCTCACTATATAAAGAACCCGCTTGCTCAACCT




TCGACTCCTTTCCCGATCCTTTGCTTGTTGCTTCTTCTTT




TATAACAGGAAACAAAGGAATTTATACACTTTAAGAATT





PEX11 promoter
SEQ ID NO: 28
CTTCCCCATTTCACTGACAGTTTGTAGAAATAGGGCAACA




ATTGATGCAAATCGATTTTCAACGCATTGGTTTTGATAGC




ATTGATGATCTTGGAGCTGTAAAAGTCCGGCTGGATAAGC




TCAATGAAATAGGTTGGTTGATCTGGATCTTCTTTTGGGT




CATTTTGTTCGCTCTGTATTTCACAAATTGCCAGAATCTC




TGCCAACCACAGTGGTAGGTCCAACTTGGTGTTCTGAATC




ACAGGCTTCCCCGGGTTGTTCTCTAAATAACCGAGGCCCG




GCACAGAAATCGTAAACCGACACGGTATCTTTTGTCCGTC




CGCCAGTATCTCATCAAGGTCGTAGTAGCCCATGATGAGT




ATCAAAGGGGATTTGGTTATGCGATGCAACGAGAGATTGT




TTATCCCAGATGCTGATGTAAAAACCTTAACCAGCGTGAC




AGTAGAAATAAGACACGTTAAAATTACCCGCGCTTCCCTA




ACAATTGGCTCTGCCTTTCGGCAAGTTTCTAACTGCCCTC




CCCTCTCACATGCACCACGAACTTACCGTTCGCTCCTAGC




AGAACCACCCCAAAGTTTAATCAGGACCGCATTTTAGCCT




ATTGCTGTAGAACCCCACAACATAACCTGGTCCAGAGCCA




GCCCTTTATATATGGTAAATCCCGTTTGAACTTCGAAGTG




GAATCGGAATTTTTACATCAAAGAAACTGATACTGAAACT




TTTGGCTTCGACTTGGACTTTCTCTTAATC





FLD1 promoter
SEQ ID NO: 29
AAATCAGCCATTAATCTCACCTCAGTTTTTGAATCAGTAG




AATTTTCAATGAAACAAACGGTTGGTATATTATTTGATAG




GGTAGCCAAATTTCCAAAAATGAACTTTTCATCAGGTAAT




ATCTTGAATACCGTAATGTAGTGACTATTGGAAGAAACTG




CTATCAAATTATATTTCGGATAGAAATCCAAACCCCAGAC




TGATCTCTTGAGTCTCAACTCTAAGTCAGCCGCGACTCTA




ATTATCTGTGGATTAGGAGTTAGTGTGGACAAAGCATCAG




TATAGTATAACTTTACGGTTCCATTATCAGACGCTATTGC




AAGAACTTCCTTTCCATTGATCTCTCCAATTCGACAGTAA




TTGATATCATAAGGTAGGTCTGGAAACACACTGGCGCTTG




TATCCCATTCTGCAGGAATTTCTGGAACGGTGGTAATGGT




AGTTATCCAACGGAGTTGGGGTAGTTGGTATATCTGGATA




TGCCGCCTATAGGATAAAAACAGGAGAGAGTGAACCTTGC




TTACGGCTACTAGATTGTTCTTGTACTCGGAATTGTCGTT




ATCGGAAACTAGACTAATCTCATCTGTGTGTTGCAGTACT




ATTGAGTCGTTGTAGTATCTACCAGGAGGGCATTCCATGA




ACTAGTGAGACAAATGAGTTGGATTTTCTCAATAGACATA




TGCAAGAATGCTACACAACGGATGTCGCACTCTTTTTCTT




AGTTGATAATATCATCCAATCAGAAGACACGGGCTAGAAG




GACTTGCTCCCGAAGGATAATCCACTGCTACTATCTCCCT




TCCTCACATATAGTCTTGCAGGGCTCATGCCCCTTTCTCC




TTCGAACTGCCCGATGAGGAAGTCTTTAGCCTATCAAGGA




ATTCGGGACCATCATCAATTTTTAGAGCCTTACCTGATCG




CAATCAGGATTTCACTACTCATATAAATACATCACTCAAA




CTCCAACTTTGCTTGTTCATACAATTCTTGATATTCACAG




GATC





FGH1 promoter
SEQ ID NO: 30
GTGAATTTGTCACGGAATTGACCAAGAGGTCAGACGATCC




TGTATCCCATTGAGCCGTTATGCTTTGTGGGGGAAACCCT




ATTTCTATCGTACTAAGAAAACCAATGGTGAACTCATATT




CGGTATCAATGGCGACGATTCCAGCATAGCCTGTAGACAG




TAACAACACTAGGGCAACAGCAACTAACATATCTTCATTG




ATGAAACGTTGTGATCGGTGTGACTTTTATAGTAAAAGCT




ACAACTGTTTGAAATACCAAGATATCATTGTGAATGGCTC




AAAAGGGTAATACATCTGAAAAACCTGAAGTGTGGAAAAT




TCCGATGGAGCCAACTCATGATAACGCAGAAGTCCCATTT




TGCCATCTTCTCTTGGTATGAAACGGTAGAAAATGATCCG




AGTATGCCAATTGATACTCTTGATTCATGCCCTATAGTTT




GCGTAGGGTTTAATTGATCTCCTGGTCTATCGATCTGGGA




CGCAATGTAGACCCCATTAGTGGAAACACTGAAAGGGATC




CAACACTCTAGGCGGACCCGCTCACAGTCATTTCAGGACA




ATCACCACAGGAATCAACTACTTCTCCCAGTCTTCCTTGC




GTGAAGCTTCAAGCCTACAACATAACACTTCTTACTTAAT




CTTTGATTCTCGAATTGTTTACCCAATCTTGACAACTTAG




CCTAAGCAATACTCTGGGGTTATATATAGCAATTGCTCTT




CCTCGCTGTAGCGTTCATTCCATCTTTCTAGAATTCGT





DAS2 promoter
SEQ ID NO: 31
CCTGTTGATAAGACGCATTCTAGAGTTGTTTCATGAAAGG




GTTACGGGTGTTGATTGGTTTGAGATATGCCAGAGGACAG




ATCAATCTGTGGTTTGCTAAACTGGAAGTCTGGTAAGGAC




TCTAGCAAGTCCGTTACTCAAAAAGTCATACCAAGTAAGA




TTACGTAACACCTGGGCATGACTTTCTAAGTTAGCAAGTC




ACCAAGAGGGTCCTATTTAACGTTTGGCGGTATCTGAAAC




ACAAGACTTGCCTATCCCATAGTACATCATATTACCTGTC




AAGCTATGCTACCCCACAGAAATACCCCAAAAGTTGAAGT




GAAAAAATGAAAATTACTGGTAACTTCACCCCATAACAAA




CTTAATAATTTCTGTAGCCAATGAAAGTAAACCCCATTCA




ATGTTCCGAGATTTAGTATACTTGCCCCTATAAGAAACGA




AGGATTTCAGCTTCCTTACCCCATGAACAGAAATCTTCCA




TTTACCCCCCACTGGAGAGATCCGCCCAAACGAACAGATA




ATAGAAAAAAGAAATTCGGACAAATAGAACACTTTCTCAG




CCAATTAAAGTCATTCCATGCACTCCCTTTAGCTGCCGTT




CCATCCCTTTGTTGAGCAACACCATCGTTAGCCAGTACGA




AAGAGGAAACTTAACCGATACCTTGGAGAAATCTAAGGCG




CGAATGAGTTTAGCCTAGATATCCTTAGTGAAGGGTTGTT




CCGATACTTCTCCACATTCAGTCATAGATGGGCAGCTTTG




TTATCATGAAGAGACGGAAACGGGCATTAAGGGTTAACCG




CCAAATTATATAAAGACAACATGTCCCCAGTTTAAAGTTT




TTCTTTCCTATTCTTGTATCCTGAGTGACCGTTGTGTTTA




ATATAACAAGTTCGTTTTAACTTAAGACCAAAACCAGTTA




CAACAAATTATAACCCCTCTAAACACTAAAGTTCACTCTT




ATCAAACTATCAAACATCAAAAGAATTCGCG





CAT1 promoter
SEQ ID NO: 32
TAATCGAACTCCGAATGCGGTTCTCCTGTAACCTTAATTG




TAGCATAGATCACTTAAATAAACTCATGGCCTGACATCTG




TACACGTTCTTATTGGTCTTTTAGCAATCTTGAAGTCTTT




CTATTGTTCCGGTCGGCATTACCTAATAAATTCGAATCGA




GATTGCTAGTACCTGATATCATATGAAGTAATCATCACAT




GCAAGTTCCATGATACCCTCTACTAATGGAATTGAACAAA




GTTTAAGCTTCTCGCACGAGACCGAATCCATACTATGCAC




CCCTCAAAGTTGGGATTAGTCAGGAAAGCTGAGCAATTAA




CTTCCCTCGATTGGCCTGGACTTTTCGCTTAGCCTGCCGC




AATCGGTAAGTTTCATTATCCCAGCGGGGTGATAGCCTCT




GTTGCTCATCAGGCCAAAATCATATATAAGCTGTAGACCC




AGCACTTCAATTACTTGAAATTCACCATAACACTTGCTCT




AGTCAAGACTTACAATTAAA





MDH3 promoter
SEQ ID NO: 33
TAGCTTGGGTAGGACTTGACAAGTACGGCTTCCGTGGTCA




TACCAAACGCCTTTGTTACCGTTGGCTATACCTAATGACC




AAGGCATTTGTGGATTATAACGGTATCGTAGTTGAAAAAT




ATGACGTAACCACTGGTACTAGCCCCCACAAGGTTGATGC




TGAATACGGGAATCAAGGTGCCGATTTTAAAGGAGTAGCC




ACTGAAGGGTTTGGCTGGGTCAATGCCTCTTTTATTTTGG




GATTAACCTACTTAGATGTCCAAGGCATCCGTGCGATAGG




CGCCGTTACGTCCCCTGATGTATTTTTCAGGAAGCTCAAA




CCTTGGGAACGCGCAAGTTATGGCCTAAGGCCATGTAACG




AGATAGTCAAGTCAAACTAGAAGTATACGGTTTCCCCGCA




GAAATAGCAGAAATAGGCGACAAATACATACAACATTTTC




ATTGTGATAGGGGGCGGCGGTTCCTAGGAGGGACAACCCC




CAGAAACCTTGTAGACTACGTTTTCACGACGATGGGTTAT




TACTGTAAAGGAAGAATATACTACCCACCAGTTGAATGTT




TGAACGGATCAAAGGTCGAAGGGAGTACACGGCCCAACCA




ACGTAGCTACCGGAGAAAGCAAGACTTTCCCAAACCAAAT




AGCTCCGGGTTTCTTCTCCGGCAACCCGTCAGTTTTTGTG




TGGCCGGACAAAAATTCGCACCCTCAGTCTAATTGAAAGG




TCGGGCTCCGAGCTCTAGGCGTTTGCGCATGTAATATTGC




ATCCCCTCCCATAGATAATACTGCGCGAACACAGGGTGCA




AATTATGATGACCACACATGCCAGTGACCAAAACAGTTTT




TTAGTCTTTAAAAACCCTCGGAACTTCTGAGTATATAAAG




GCTTCTCATTTCCTACAAGCAAACAAAGAAGAAACTTCCA




CTTTCTAACTTTTTATCTATAGACTTTAGAGTTACAACCA




ACGAACAATAACAAA





HAC1 promoter
SEQ ID NO: 34
TGAAGCTTATCTGCTGAGCAAGTTGTTTGACCAAACTTGA




GTCAACAGTGGTTAACTATATCCTCTATTATTTTAGATGG




GAGCACATCAAGTGTACGGGAACAATGCAATCGACAACCT




GTAGCCTGACATACATAGCCATCTTGAATTGACAAAACTT




AGAATGTCTTGAATGTGATAGATATGAGTTCCCAAAAATC




TCTTTTACGATTTCCCAGTTGCGGTGTACTATTACACAGA




GGATATCATAGCAGACTTACAATCCTCAGGCATAAAACGA




GCTTTCTTATCAAAGTGTATTCAAATGGACCATTTGATTG




CACCAAGGCATTAGCCCCAAACCATACCACACAGTAACTT




GATATTCTCAGCATGCATGGAAATTCCACTCATAACGCGC




TATTCACCGCGAATACTTATCTATGAAACTGGGTTCTTTA




GTATTCTTTGCCAAATTTCACCGATTAGAAATTATTAGGT




AATATAATTTCTTTGGGGAACCCCTTCCCGTTACGCCCGC




TGCGGCTTTGTGGTTCTTTTCCAGTCTTGAGCAAATTACA




TCTGGTCTAGACAGTTCTTCCGTGCCCCAGTATGCGAGCG




CAAACTTTCAATCAAACCTCGTAGCAAATTGGTACTTGAA




CTTCGTATTTAACCGCTATTAAATGTACTGACTCTTACAT




TATGAAAAATTTTGATAAAGATTTTATATTTCATCTCAGT




TAATCTCCTAATAATAATAGTCTGCATAACTCAAACGGTA




CTTCCTTTTCGGAACGCGAAGAGTAGTCTCTATGTCATTC




TCACACTATCCGCAGCGCAATAGAGAACGAGCATGTTACC




CGACTCATCCCTTGTCGATTCGGAAACGATTTATAAATAC




AATTAGATCGCCACCGATCTTCTTTTGTCAATATTATAAA




AATAGTACAGATTTTCCTTAGTCGAATCAGATCGCAGAAA





BiP promoter
SEQ ID NO: 35
AGATCTGAGGGTGTATACGATGTATCGTGCCGAACACATG




CACTTGACGGCACAGCAAATGGTATTCAAGAAGACCACTT




TAGAATGGGAGTTAATAGGGATGGTTTCATGGAGGTTAAA




ACACTTCAAGGAGGCATCTGAAGCATTCAAGTATGCACTA




GGTCTGAGGTTTTCGGTCAAGGCATGCAAGAAATTAATTG




TATTCTATCTGAACGAACGCTCCAGAATGAACCAGCCAGA




AACCTCAATTGCCCTCAACAACTTAAATCAATCCACATTA




TCCATCCAAGAGATTCTCAAGTATCGTTCGTTCCTCGATA




TCAACCTAATTTCAAACTTGGTCAAACTAGGAGTTTGGAA




TCACCGCTGGTATGCTGAGTTTTCTCCAAAACTCATAGAA




AGCCTTGCGGTTGTTGTGGAGAACGGAGGGCTTATCAAGG




TAGAAAACGAGGTTAAGGCTACCTATTTCGATTCACAAGA




TGGAGTTTACGACTTGATGAACGAGGTATTCAAGTTCATG




AAGCATTACGATTATCCTGGGACTGACAACTAAGAGCTCC




TAGTGAAGACTTGAGATGGACATGATAAACAATTATAGTG




AAAATAGAAACCATAATACAATATTCTAATAGAGGAACCG




TTTACCTGTGGTTCCTATTGTGGCCTACTGTTACTAGCTA




GTGTAATACACCCTTGCCTCAGCTTTGCAAGTTGACAACT




CAGCCAAATGATCTTTGAATGCGCGAAACCTCAAGGTCCA




TCGAATTTTCTCGAATTTTCAGTGTTTTCATACAGCGTGT




CATCTTCTTTCGCGTACTTATTAAAATCGTACCCAGATCC




CTTCTTCTTCCTTAATTTCAATTCCAACACTCAAGA





RAD30 promoter
SEQ ID NO: 36
AGATCTTGCAAAATACCTTTCCAGCTTTCCAGCTTCCTAG




CACTCATCTTGAAGATATCAAATATTCTCCATTCAAACCA




ACATCAAAAAATAGAATAATTATAATCAGTTTGAAGAGCA




AGAGTAATTTTAAAGGAAACACATTCATGGTCAGCTAGAA




GGTTGACTGAAGAGTCGCAAGATATCTGAGAATAAAAAAG




AGCATAGCTAACAAGATGAGTAAACACGGCAAACAGATTT




AGGAACAGGTGAAGGGTTTCTGGCTCTTCAATGTATATCC




TGCTAGCCACCCATTCAGAAATAACACAAAGTAGGACCCT




ACTGAAAAATAAATTTAATACATCTTCATCCTCTCATTAA




ACCACCGACCACTCAAACCATACCAGCCTTGTCCAATTCC




ATGCATCGTGCTATCCGTCAGAATTTTCAGTGTTAATCGA




ATCGGTCATTATAGCTCCGTCTGGGGCGACAACTTGTCAT




CACAGAATAGCACAATTATGCGTTGGAATCGTCAAAAAAT




CACCTCCAGGTCTGTATACATACAGAACTGGTTGTAACGA




CAACCTTGTTTGATTGAGGTGACTGGAAGGTGGAAAGAAA




GGGAGGAAATAAATATTGCAAGGAAAGAAAAAAAAATTGT




TCACAGTCACCTCTTCACCTTCGCGATTTCATGTTTCTTT




CATGTGCTAACTGATCCCAGGGCTTCTCCAGCGCCCTTAT




CTGTTAG





RVS161-2 promoter
SEQ ID NO: 37
CTGCCCATCTATGACTGAATGTGGAGAAGTATCGGAACAA




CCCTTCACTAAGGATATCTAGGCTAAACTCATTCGCGCCT




TAGATTTCTCCAAGGTATCGGTTAAGTTTCCTCTTTCGTA




CTGGCTAACGATGGTGTTGCTCAACAAAGGGATGGAACGG




CAGCTAAAGGGAGTGCATGGAATGACTTTAATTGGCTGAG




AAAGTGTTCTATTTGTCCGAATTTCTTTTTTCTATTATCT




GTTCGTTTGGGCGGATCTCTCCAGTGGGGGGTAAATGGAA




GATTTCTGTTCATGGGGTAAGGAAGCTGAAATCCTTCGTT




TCTTATAGGGGCAAGTATACTAAATCTCGGAACATTGAAT




GGGGTTTACTTTCATTGGCTACAGAAATTATTAAGTTTGT




TATGGGGTGAAGTTACCAGTAATTTTCATTTTTTCACTTC




AACTTTTGGGGTATTTCTGTGGGGTAGCATAGCTTGACAG




GTAATATGATGTACTATGGGATAGGCAAGTCTTGTGTTTC




AGATACCGCCAAACGTTAAATAGGACCCTCTTGGTGACTT




GCTAACTTAGAAAGTCATGCCCAGGTGTTACGTAATCTTA




CTTGGTATGACTTTTTGAGTAACGGACTTGCTAGAGTCCT




TACCAGACTTCCAGTTTAGCAAACCACAGATTGATCTGTC




CTCTGGCATATCTCAAACCAATCAACACCCGTAACCCTTT




CATGAAACAACTCTAGAATGCGTCTTATCAACAGGATTGC




CCAAAACAGTAATTGGGGCGGTGGAATCTACATGGGAGTT




CCATCGTTGTCTCGGTTTTTCTCCCTATAAGCTACTCTGG




AGACGAAGTAACTAACACCCTCAAATATCATT





MPP10 promoter
SEQ ID NO: 38
TCTGAATCCGACCTCCTCTAATCTACCACTGAAGAGAAGC




AGTGTATTGTTCGTCTACGTAAATTTGAATGTGTAAATGG




CAAACATGGCTTCGGGGATGATTTGGCATATATATTATTG




TAGCATCGTCTGTGGCTCTATGAGTTGTGTGGCGGATGAT




GAAAAGTTTCGTGCTGATCCCACAATGCGGCATTTACCAA




ATGGGGAAAGACCAGATTTCTTCGCTGCGCCAGCTAGGGA




CAGCATAATGTTCCAAGAAGAAGCGATTACAGGTGGATTA




CAAAGCGTTCGTCTGCAGTTGATGTTCTACGTGATGGGTA




TGAGTTGTAGTGCTACGCTCCATGAATACTTCTAATTTGT




CGTTGACAATCCATGAATAATTTAAGTTTGCTTCCCAAGA




GTCTATTGCGAAGGGTGAGCCGAATCTCTTGGCGTATGCA




CCCGACTCGTCGGCTTTTGTGCGTTCCTTGCAAAGCTCGG




TAGCAATCCGTTGGTGGGAGAAATTTGTCTCACGAATTTC




AGTTGGGAGTAGCTGTTCCTGGTAGCAAGTTCGAGGGGAT




CTGTGCTCATAAAACGTGCTCACGCCAAAAATATTCTTAC




AAAATCTTCGCGGGGTGTTTGTCTTACATAATCGATTGGA




TATTTTCTTCAAATTTTTTTTTCTTACTGAAGTCCCCTAT




AGAG





THP3 promoter
SEQ ID NO: 39
TCTTGCCAGTTGTCTCCTAAGATGTCATCGGAGTAGGCTC




GGCTAAAGAGTAGTAATGCATCAAGACCAACCAAAACACC




TTCCACGAGTTCAGATGAACC




TTTTAATAACTTCAGGTCACTTTGATGCCGGCACAACTGG




GCGAGTTTCGTATAGTTAACTCTGATCTTGCACTCCAGAA




CGGGAATAGGATTGACTTTTTGCTTCCGAGAAACGATTTG




CTCTCTCTTCGTCTGGCTTTTCACTTTATATCGCACGGAA




TCAATGGATGGAACTCCTAAAGCTCCTAACTTCGATGATT




TGCTAGCCATGACTCTGTGGGACATTTTCTTGCATCTCGT




TTGTAACCTGTCTGTTCCTACACTAAGTTTATGAGAGGCT




ACTTTGGATTCTAGCCTCGGTGGTAAAGTGGGAGATAACA




ACGGCATAAGGCAAGAACCAGAAGTACCATAACGGTCTGG




TAAAGTTGGTGATAACTTAATTGGAAGAGTGTAAGTAAGA




CGTGGCTTGTAATAAGGCTTTCCATCAAAAAGGTTCTCCG




GGTTGGAGTTTGTGAGGCTCACATCTTTGATCAGTCTTTC




AATATAAATTGGTAACGTTGATGACAATGCCGGAGGTAAT




TTCTGTAGTTGTTGATATACGCAGATAACAGATTCAAATC




TCCATTGGTTTTCATCATTGTGGCTTAAATTAGATCAGAA




CATGGTAGTATTTAAAAATGGATCTCTTTGCAGATTTACT




CAATATAGCGAAAAAAGGAGACATTCGTTACAAAATATGA




AGATAATTCGCCTCATAACTCGATTAATCAAAACAGACGG




TCCAGTTCTTCTTTTGGTAGT





GBP2 promoter
SEQ ID NO: 40
ATCTGTACTGGTACTGACAAAGGTTATCCAGAATCCGAGA




CATTTCAACAACAGAGATTCCAGGCTTCAAAACATCCATT




TTATCACCAATATCTAGTAATGCTTGCAACAATTCTGGAT




ACTTCTTCTGTGTAACCAAATCTCTTATAAACTGAACAGC




TTTCTGTACGTTGTCGTCAGTAGTTGGATCAACCTCAGTG




GTGACCTGGCCTATCGGTTTTCCAAAAGACTTGTTTATCA




CGTCCGAAAGCTCCCATTTTTGCAGATGCGCAACTTTAAA




AGGCCTGGCTTGAACATTTGCATCTCTTGTTGTGTGTTCT




TTGAGAAAATATTCATCGATCTGGGTGCTTCCAACGACAG




AAGATACTCTTCTGAGACCAGAAAGTCCCCAGCCATGCTT




CCTAATTACAAAATATTTGTAGGAAGATCCCTGATTAGGA




CAAAGTTGTCTTCTCATGAGTTCAACTGAAACTGGGGCTC




AAACGGATTATGAAAGGGGTGATTAAAGGTTTTCCTAGCC




TTACTTTCCAAATGTCGACCGAGACGAACATTTAAAATCC




TAACATCAGAAATTTCTATCCTTAATCTCATTGATGGTTA




GTACACTTCGCAGAGTCTCCACATTTGCAGACCCTCCTGG




ATAACCAAAGCTTATCTAACAGCGGCATTGGACCTTTGAA




AAGACCCTC





DAS1 promoter
SEQ ID NO: 41
AAATCTGAACACGATGAAACCTCCCCGTAGATTCCACCGC




CCCGTTACTTTTTTGGGCAATCCCGTTGATAAGATCCATT




TTAGAGTTGTTTCTGAAAGGATTACAGGCGTTGAAGGGTC




AGAGAGATGCCAGAGAACAGACCAATTGGTAGTTTGCTAA




AGTGGACGTCTGGCAGGTGCTCTATCGTGTTCTTTATTTA




GGGCGTTACACTTAGTAGGATTACGTAACAATTTGGCTTA




ACCTTCTAAGTTAGAAAGAAACCAAGAGGGGTCCTCTTTA




ACGTTCAGCAGTATCTAAAACACAAAACCTGCCCTCATAA




TACATCATTCTATCTGTCAAGCTGTGCTACCCCACAGAAA




TACCCCCAAGAGTTAAAGTGAAAAGAAAAGCTAAATCTGT




TAGACTTCACCCCATAACAAACTTGATAGTTCCTGTAGCC




AATGAAAGTTAACCCCATTCAATGTTCCGAGATCTAGTAT




GCTTGCTCCTATAAGGAACGAAGGGTTCCAGCTTCCTTAC




CCCATCAATGGAAATCTCCTATTTACCCCCCACTGGAA




AGATCCGTCCGAACGAACGGATAATAGAAAAAAGAAATTC




GGACAAAATAGAACACTTATTTAGCCAATGAAATCCATTT




CCAGCATCTCCTTCAACTGCCGTTCCATCCCCTTTGTTGA




GCTACACCATCGTCAGCCAGTACCGAATAGGAAACTTAAC




CGATATCTTGGAGAATTCTAATGCGCGAATGAGTTTAGCC




TAGATATCCTTAGTGAAGGGTTGTTCCGATACTTCTCCAC




ATTCAGTCATTTCAGATGGGCAGCATTGTTATCATGAAGA




AACGGAAACGGGCAGTAAGGGTTAACCGCCAAATTATATA




AAGACAACATGTCCCCAGTTTAAAGTTTTTCTTTCCTATT




CTTGTATCCTGAGTGACCGTTGTGTTTAAAATAACAAGTT




CGTTTTAACTTAAGACCAAAACCAGTTACAACAAATTATT




CCCCAACTAAACACTAAAGTTCACTCTTATCAAACTATCA




AACATCAAAG





Methanol inducible
SEQ ID NO: 42
CTTCCCCATTTCACTGACAGTTTGTAGAAA


promoter

TAGGGCAACAATTGATGCAAATCGATTTTCAACGCATTGG




TTTTGATAGCATTGATGATCTTGGAGCTGTAAAAGTCCGG




CTGGATAAGCTCAATGAAATAGGTTGGTTGATCTGGATCT




TCTTTTGGGTCATTTTGTTCGCTCTGTATTTCACAAATTG




CCAGAATCTCTGCCAACCACAGTGGTAGGTCCAACTTGGT




GTTCTGAATCACAGGCTTCCCCGGGTTGTTCTCTAAATAA




CCGAGGCCCGGCACAGAAATCGTAAACCGACACGGTATCT




TTTGTCCGTCCGCCAGTATCTCATCAAGGTCGTAGTAGCC




CATGATGAGTATCAAAGGGGATTTGGTTATGCGATGCAAC




GAGAGATTGTTTATCCCAGATGCTGATGTAAAAACCTTAA




CCAGCGTGACAGTAGAAATAAGACACGTTAAAATTACCCG




CGCTTCCCTAACAATTGGCTCTGCCTTTCGGCAAGTTTCT




AACTGCCCTCCCCTCTCACATGCACCACGAACTTACCGTT




CGCTCCTAGCAGAACCACCCCAAAGTTTAATCAGGACCGC




ATTTTAGCCTATTGCTGTAGAACCCCACAACATAACCTGG




TCCAGAGCCAGCCCTTTATATATGGTAAATCCCGTTTGAA




CTTCGAAGTGGAATCGGAATTTTTACATCAAAGAAACTGA




TACTGAAACTTTTGGCTTCGACTTGGACTTTCTCTTAATC




GAATTCGT


GCW14 promoter
SEQ ID NO: 43
CAGGTGAACCCACCTAACTATTTTTAACTGGCATCCAGTG




AGCTCGCTGGGTGAAAGCCAACCATCTTTTGTTTCGGGGA




ACCGTGCTCGCCCCGTAAAGTTAATTTTTTTTTCCCGCGC




AGCTTTAATCTTTCGGCAGAGAAGGCGTTTTCATCGTAGC




GTGGGAACAGAATAATCAGTTCATGTGCTATACAGGCACA




TGGCAGCAGTCACTATTTTGCTTTTTAACCTTAAAGTCGT




TCATCAATCATTAACTGACCAATCAGATTTTTTGCATTTG




CCACTTATCTAAAAATACTTTTGTATCTCGCAGATACGTT




CAGTGGTTTCCAGGACAACACCCAAAAAAAGGTATCAATG




CCACTAGGCAGTCGGTTTTATTTTTGGTCACCCACGCAAA




GAAGCACCCACCTCTTTTAGGTTTTAAGTTGTGGGAACAG




TAACACCGCCTAGAGCTTCAGGAAAAACCAGTACCTGTGA




CCGCAATTCACCATGATGCAGAATGTTAATTTAAACGAGT




GCCAAATCAAGATTTCAACAGACAAATCAATCGATCCATA




GTTACCCATTCCAGCCTTTTCGTCGTCGAGCCTGCTTCAT




TCCTGCCTCAGGTGCATAACTTTGCATGAAAAGTCCAGAT




TAGGGCAGATTTTGAGTTTAAAATAGGAAATATAAACAAA




TATACCGCGAAAAAGGTTTGTTTATAGCTTTTCGCCTGGT




GCCGTACGGTATAAATACATACTCTCCTCCCCCCCCTGGT




TCTCTTTTTCTTTTGTTACTTACATTTTACCGTTCCGT





FDH1 promoter
SEQ ID NO: 44
AAATAAATGGCAGAAGGATCAGCCTGGACGAAGCAACCAG




TTCCAACTGCTAAGTAAAGAAGATGCTAGACGAAGGAGAC




TTCAGAGGTGAAAAGTTTGCAAGAAGAGAGCTGCGGGAAA




TAAATTTTCAATTTAAGGACTTGAGTGCGTCCATATTCGT




GTACGTGTCCAACTGTTTTCCATTACCTAAGAAAAACATA




AAGATTAAAAAGATAAACCCAATCGGGAAACTTTAGCGTG




CCGTTTCGGATTCCGAAAAACTTTTGGAGCGCCAGATGAC




TATGGAAAGAGGAGTGTACCAAAATGGCAAGTCGGGGGCT




ACTCACCGGATAGCCAATACATTCTCTAGGAACCAGGGAT




GAATCCAGGTTTTTGTTGTCACGGTAGGTCAAGCATTCAC




TTCTTAGGAATATCTCGTTGAAAGCTACTTGAAATCCCAT




TGGGTGCGGAACCAGCTTCTAATTAAATAGTTCGATGATG




TTCTCTAAGTGGGACTCTACGGCTCAAACTTCTACACAGC




ATCATCTTAGTAGTCCCTTCCCAAAACACCATTCTAGGTT




TCGGAACGTAACGAAACAATGTTCCTCTCTTCACATTGGG




CCGTTACTCTAGCCTTCCGAAGAACCAATAAAAGGGACCG




GCTGAAACGGGTGTGGAAACTCCTGTCCAGTTTATGGCAA




AGGCTACAGAAATCCCAATCTTGTCGGGATGTTGCTCCTC




CCAAACGCCATATTGTACTGCAGTTGGTGCGCATTTTAGG




GAAAATTTACCCCAGATGTCCTGATTTTCGAGGGCTACCC




CCAACTCCCTGTGCTTATACTTAGTCTAATTCTATTCAGT




GTGCTGACCTACACGTAATGATGTCGTAACCCAGTTAAAT




GGCCGAAAAACTATTTAAGTAAGTTTATTTCTCCTCCAGA




TGAGACTCTCCTTCTTTTCTCCGCTAGTTATCAAACTATA




AACCTATTTTACCTCAAATACCTCCAACATCACCCACTTA




AACAGAATT





FBA1 promoter
SEQ ID NO: 45
TGCTTAAGTAATTGAAAACAGTGTTGTGATTATATAAGCA




TGGTATTTGAATAGAACTACTGGGGTTAACTTATCTAGTA




GGATGGAAGTTGAGGGAGATCAAGATGCTTAAAGAAAAGG




ATTGGCCAATATGAAAGCCATAATTAGCAATACTTATTTA




ATCAGATAATTGTGGGGCATTGTGACTTGACTTTTACCAG




GACTTCAAACCTCAACCATTTAAACAGTTATAGAAGACGT




ACCGTCACTTTTGCTTTTAATGTGATCTAAATGTGATCAC




ATGAACTCAAACTAAAATGATATCTTTTACTGGACAAAAA




TGTTATCCTGCAAACAGAAAGCTTTCTTCTATTCTAAGAA




GAACATTTACATTGGTGGGAAACCTGAAAACAGAAAATAA




ATACTCCCCAGTGACCCTATGAGCAGGATTTTTGCATCCC




TATTGTAGGCCTTTCAAACTCACACCTAATATTTCCCGCC




ACTCACACTATCAATGATCACTTCCCAGTTCTCTTCTTCC




CCTATTCGTACCATGCAACCCTTACACGCCTTTTCCATTT




CGGTTCGGATGCGACTTCCAGTCTGTGGGGTACGTAGCCT




ATTCTCTTAGCCGGTATTTAAACATACAAATTCACCCAAA




TTCTACCTTGATAAGGTAATTGATTAATTTCATAAATGAA




TTCGCG





GAP promoter
SEQ ID NO: 46
TTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTA




GCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACG




ACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAA




TGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTC




TCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTC




TGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCT




CTTCCCAGCATTACGTTGCGGGTAAAACGGAGGTCGTGTA




CCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTC




GCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTAT




TGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTT




CCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTA




ATTTATTTGTCCCTATTTCAATCAATTGAACAACTAT





PGK promoter
SEQ ID NO: 47
AAATAGCAGTTTGCGGTTTCTTGATTTCATGGGGGGAACA




AACAATAGTGTTGCCTTAATTCTAATTGGCATTGTTGCTT




GGAATCGAAATTGGGGGATAACGTCATATCTGAAAAGTAA




ACAACTTCGGGAAATCAGGCTGTTTGAATGGCTTGGAAGC




GAGATAGAAAGGGGATAGCGAGATAGAGGGGGCGGAGTAG




ACGAAGGGTGTTAAACTGCTGAAATCTCTCAATCTGGAAG




AAACGGAATAAATTAACTCCTTGCGATAATAAAATCCGAG




TCCGTTATGACCCCACACCGTGTTGACCACGGCATACCCC




ATGGAATCTGGTACAAAGCGTCAGTCTTGAAGACACCATC




ACGTGTAGGAGACTGATTGTCTGACCGTCCAGCAAAAAGG




GCATTATAAATCTTGCTGTTAAAGGGGTGAGGGGAGATGC




AGGTTGTTCTTTTATTCGCCTTGAACTTTTTAATTTTCCC




GGGGTTGCGGAGCGTGAACAGTTAGCCCGATCTGATAGCT




TGCAAGATTCAACAGTTTATCCACTACAGGTCAGAGAGAT




CGCCGCAGAAGAAATGCTCGTCTCGTGTTCCAGCACACAT




ACTGGTGAAGTCGTTATTTTGCCGAAGGGGGGGTAATAAG




GTTATGCACCCCCTCTCCACACCCCAGAATCATTTTTTAG




CTGGGTTCAAGGCATTAGACTTTGCACATTTTTCCCTTAA




ACACCCTTGAAACGCGGATAAACAGTTGCATGTGCATCCT




AAAACTAGGTGAGATGCGTACTCCGTGCTCCGATAATAAC




AGTGGTGTTGGGGTTGCTGCTAGCTCACGCACTCCGTTCT




TTTTTTTCAACCAGCAAAATTCGATGGGGAGAAACTTGGG




GTACTTTGCCGACTCCTCCACCATGCTGGTATATAAATAA




TACTCGCCCACTTTTCGTTTGCTGCTTTTATATTTCATAG




ACTGAAAAAGACTCTTCTTCTACTTTTTCATAATATATCT




CAGATATCACTACTATAG





TEFg_ promoter
SEQ ID NO: 48
GCGATTTAAATTCGCGAAAGAACAGCCTAATAAACTCCGA




AGCATGATGGCCTCTATCCGGAAAACGTTAAGAGATGTGG




CAACAGGAGGGCACATAGAATTTTTAAAGACGCTGAAGAA




TGCTATCATAGTCCGTAAAAATGTGATAGTACTTTGTTTA




GTGCGTACGCCACTTATTCGGGGCCAATAGCTAAACCCAG




GTTTGCTGGCAGCAAATTCAACTGTAGATTGAATCTCTCT




AACAATAATGGTGTTCAATCCCCTGGCTGGTCACGGGGAG




GACTATCTTGCGTGATCCGCTTGGAAAATGTTGTGTATCC




CTTTCTCAATTGCGGAAAGCATCTGCTACTTCCCATAGGC




ACCAGTTACCCAATTGATATTTCCAAAAAAGATTACCATA




TGTTCATCTAGAAGTATAAATACAAGTGGACATTCAATGA




ATATTTCATTCAATTAGTCATTGACACTTTCATCAACTTA




CTACGTCTTATTCAACAATGAATTCGCG





AOX1 terminator
SEQ ID NO: 53
TCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAG




GCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGT




ATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGC




TTGCTCCTGATCAGCCTATCTCGCAGCAGATGAATATCTT




GTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTT




TCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTA




AGTGAAACCTTCGTTTGTGCG





TDH3 terminator
SEQ ID NO: 54
TCGATTTGTATGTGAAATAGCTGAAATTCGAAAATTTCAT




TATGGCTGTATCTACTTTAGCGTATTAGGCATTTGAGCAT




TGGCTTGAACAATGCGGGCTGTAGTGTGTCACCAAAGAAA




CCATTCGGGTTCGGATCTGGAAGTCCTCATCACGTGATGC




CGATCTCGTGTATTTTATTTTCAGATAACACCTGAAGACT




TT





RPS25A terminator
SEQ ID NO: 55
ATTAGTGTACATCTGATAATATAGTACTACCACGTATGAT




AATGTAGAGAATAGTCTTCCTTGTCGAGTGTGTTTGCAGT




TTTCTTGAGTTTCAAGGTTTAAATGCTGGTATATTAGTTC




ATCGAAGGTTTCAGCCAATAGCACCTTAAATCAATCAAAC




TAATTCGACTCTTACGAAAGAGCCTACTGTGTTTAGTATC




GAAGTCGTTTACCTTTCATGTTGAATAGCTTCCTCTCTGA




CCCTAACATTTCAAGATCCTCCTAAAGTTACCCGGATTGT




GAAATTCTAATGATCCACCTGCCCAATGCATTTTTTCTTT




ATTCAGTTTACCTTTTTTACCTAATATACGAGCTTGTTAA




AGTAAGTGGCACTGCAATACTAGGCTTATTGTTGATATTA




TGATGAATCGTTTTCACAAACTTGATTTCCTGTGAACTCA




CCATGTACTAAGGAAAAAAACATGCATCACCATCTGAATA




TTTGAC





RPL2A terminator
SEQ ID NO: 56
ACTATGTAACTAACGAAACAGCATGTACTAATAGAACCGT




ATCGAGAATATTTATTTAGGTGAGTAGTAGGAGTGAACCA




GACAGTCAATTTAGTGAGCTGTCCCAGCTTTTGTGCATTC




CAGAATTGCCGGTCAAATTGGTTATGGGTTATGGGGCTTT




TCCGATTGAGGTTCAGTTTCTGCGGTTATCTCTTTCTTGA




CCTGGTCTTTTACAGGCTGTTCTTTCTCCCCATGATTATT




CTTTAGCTGAAGATACCGCTTAGCCTGATAATGTCGTCGT




TTTGTAATCAAAATCTTTAGTTGGGCATCGTCTGAGGTTT




CCTTTGGCTTCTGGGGTTGTTAGTAGGAACGTAGGAACCA




TAGTAACTTTTACACATACATTCTTATGATTGCGAAGTAA




GCTGAGTCTGCTGCTTGGCTCCCGAAGTACTTTCTCTTTC




TCTACCGGTTGATTCTCCTTCTGGTGCTCCTAAACGATTG




TGTTAGAAGGGATTGAC





Signal Peptide
SEQ ID NO: 57
MFTPVRRRVRTAALALSAAAALVLGSTAASGASATPSPAP




AP





Signal Peptide
SEQ ID NO: 58
MKLSTVLLSAGLASTTLA





Signal Peptide
SEQ ID NO: 59
MRFPSIFTAVLFAASSALA





Signal Peptide
SEQ ID NO: 60
MVSLRSIFTSSILAAGLTRAHG





Signal Peptide
SEQ ID NO: 61
MKFPVPLLFLLQLFFIIATQG





Signal Peptide
SEQ ID NO: 62
MQVKSIVNLLLACSLAVA





Signal Peptide
SEQ ID NO: 63
MQFNWNIKTVASILSALTLAQA





Signal Peptide
SEQ ID NO: 64
MYRNLIIATALTCGAYSAYVPSEPWSTLTPDASLESALKD




YSQTFGIAIKSLDADKIKR





Signal Peptide
SEQ ID NO: 65
MNLYLITLLFASLCSAITLPKR





Signal Peptide
SEQ ID NO: 66
MFEKSKFVVSFLLLLQLFCVLGVHG





Signal Peptide
SEQ ID NO: 67
MQFNSVVISQLLLTLASVSMG





Signal Peptide
SEQ ID NO: 68
MKSQLIFMALASLVASAPLEHQQQHHKHEKR





Signal Peptide
SEQ ID NO: 69
MKFAISTLLIILQAAAVFA





Signal Peptide
SEQ ID NO: 70
MKLLNFLLSFVTLFGLLSGSVFA





Signal Peptide
SEQ ID NO: 71
MIFNLKTLAAVAISISQVSA





Signal Peptide
SEQ ID NO: 72
MKISALTACAVTLAGLAIAAPAPKPEDCTTTVQKRHQHKR





Signal Peptide
SEQ ID NO: 73
MSYLKISALLSVLSVALA





Signal Peptide
SEQ ID NO: 74
MLSTILNIFILLLFIQASLQ





Signal Peptide
SEQ ID NO: 75
MKLSTNLILAIAAASAVVSAAPVAPAEEAANHLHKR





Signal Peptide
SEQ ID NO: 76
MFKSLCMLIGSCLLSSVLA





Signal Peptide
SEQ ID NO: 77
MKLAALSTIALTILPVALA





Signal Peptide
SEQ ID NO: 78
MSFSSNVPQLFLLLVLLTNIVSG





Signal Peptide
SEQ ID NO: 79
MQLQYLAVLCALLLNVQSKNVVDFSRFGDAKISPDDTDLE




SRERKR





Signal Peptide
SEQ ID NO: 80
MKIHSLLLWNLFFIPSILG





Signal Peptide
SEQ ID NO: 81
MSTLTLLAVLLSLQNSALA





Signal Peptide
SEQ ID NO: 82
MINLNSFLILTVTLLSPALALPKNVLEEQQAKDDLAKR





Signal Peptide
SEQ ID NO: 83
MFSLAVGALLLTQAFG





Signal Peptide
SEQ ID NO: 84
MKILSALLLLFTLAFA





Signal Peptide
SEQ ID NO: 85
MKVSTTKFLAVFLLVRLVCA





Signal Peptide
SEQ ID NO: 86
MQFGKVLFAISALAVTALG





Signal Peptide
SEQ ID NO: 87
MWSLFISGLLIFYPLVLG





Signal Peptide
SEQ ID NO: 88
MRNHLNDLVVLFLLLTVAAQA





Signal Peptide
SEQ ID NO: 89
MFLKSLLSFASILTLCKA





Signal Peptide
SEQ ID NO: 90
MFVFEPVLLAVLVASTCVTA





Signal Peptide
SEQ ID NO: 91
MFSPILSLEIILALATLQSVFA





Signal Peptide
SEQ ID NO: 92
MIINHLVLTALSIALA





Signal Peptide
SEQ ID NO: 93
MLALVRISTLLLLALTASA





Signal Peptide
SEQ ID NO: 94
MRPVLSLLLLLASSVLA





Signal Peptide
SEQ ID NO: 95
MVLIQNFLPLFAYTLFFNQRAALA





Signal Peptide
SEQ ID NO: 96
MVSLTRLLITGIATALQVNA





Signal Peptide
SEQ ID NO: 97
MIFDGTTMSIAIGLLSTLGIGAEA





Signal Peptide
SEQ ID NO: 98
MVLVGLLTRLVPLVLLAGTVLLLVFVVLSGG





Signal Peptide
SEQ ID NO: 99
MLSILSALTLLGLSCA





Signal Peptide
SEQ ID NO: 100
MRLLHISLLSIISVLTKANA





Signal Peptide
SEQ ID NO: 101
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG




YLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV




SLDKREAEA





Signal Peptide
SEQ ID NO: 102
MFKSVVYSILAASLANA





Signal Peptide
SEQ ID NO: 103
MLLQAFLFLLAGFAAKISA





Signal Peptide
SEQ ID NO: 104
MASSNLLSLALFLVLLTHANS





Signal Peptide
SEQ ID NO: 105
MNIFYIFLFLLSFVQGLEHTHRRGSLVKR





Signal Peptide
SEQ ID NO: 106
MLIIVLLFLATLANSLDCSGDVFFGYTRGDKTDVHKSQAL




TAVKNIKR





Signal Peptide
SEQ ID NO: 107
MESVSSLFNIFSTIMVNYKSLVLALLSVSNLKYARGMPTS




ERQQGLEER





Signal Peptide
SEQ ID NO: 108
MFAFYFLTACISLKGVFG





Signal Peptide
SEQ ID NO: 109
MRFSTTLATAATALFFTASQVSA





Signal Peptide
SEQ ID NO: 110
MKFAYSLLLPLAGVSASVINYKR





Signal Peptide
SEQ ID NO: 111
MKFFAIAALFAAAAVAQPLEDR





Signal Peptide
SEQ ID NO: 112
MQFFAVALFATSALA





Signal Peptide
SEQ ID NO: 113
MKWVTFISLLFLFSSAYSRGVFRR





Signal Peptide
SEQ ID NO: 114
MRSLLILVLCFLPLAALG





Signal Peptide
SEQ ID NO: 115
MKVLILACLVALALA





Signal Peptide
SEQ ID NO: 116
MFNLKTILISTLASIAVA





Signal Peptide
SEQ ID NO: 117
MYRKLAVISAFLATARAQSA





WT
SEQ ID NO: 118
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG




YLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV




QLDKR





App3
SEQ ID NO: 119
MRFPPIFTAALFAASSALAAPANTTTEDETAQIPAEAVIG




YLDSEGDSDVAVLPFSNSTNNGLSFINTTIASIAAKEEGV




QLDKR





App8
SEQ ID NO: 120
MRFPSIFTAVLFAASSALAAPANTTTEDETAQIPAEAVIS




YSDLEGDFDAAALPLSNSTNNGLSSTNTTIASIAAKEEGV




QLDKR





App9
SEQ ID NO: 121
MRPPSIFTAVLFAASSALAAPANTTTEDETTQIPAEAVAT




YLDLEGDVDVAVLPFSSSTNNGLSFINTTIASIAAKEEGV




QLDKR





App10
SEQ ID NO: 122
MRFPSIFTAALFAASSALAAPANTTTEGETAQTPAEAVIG




YRDLEGDFDVAVLPFPNSTNNGLLFTNTTTASIAAKEEGV




QLDKR





appS1
SEQ ID NO: 123
MRFPSIFTAVLLAAPSALAAPANATTEDEAAQIPAEAVIG




YLDLEGDFDAAVLPFSNSTNNGLLSINTTIASIAAKEEGV




QLDKR





appS4
SEQ ID NO: 124
MRFPSIFTAVVFAASSALAAPANTTAEDETAQIPAEAVIG




YLGLEGDSDVAALPLSDSTNNGSLSTNTTIASIAAKEEGV




QLDKR





appS6
SEQ ID NO: 125
MRLPSIFTAAVFAASSALAAPANTTTEDETAQIPAEAAIG




YLDLEGDSDVAVLPLSNSTNNGLLFINTTIASIAAKEEGV




QLDKR





appS8
SEQ ID NO: 126
MRFPSIFTAVLFAASSALAAPANTTTEDETAQIPAEAVIG




YLDLEGDFDVAVLPFSNSTNDGLSFINTTTASIAAKEEGV




QLDKR





a-Factor
SEQ ID NO: 127
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPA





PpScw11p
SEQ ID NO: 128
MLSTILNIFILLLFIQASLQAPIPVVTKYVTEGIAVV





PpDse4p
SEQ ID NO: 129
MSFSSNVPQLFLLLVLLTNIVSGAVISVWSTSKVTK





PpExg1p
SEQ ID NO: 130
MNLYLITLLFASLCSAITLPKRDIIWDYSSEKIMG





a-EGFP
SEQ ID NO: 131
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPA





S-EGFP
SEQ ID NO: 132
MLSTILNIFILLLFIQASLQEFDYKDDDDKMVSKG





D-EGFP
SEQ ID NO: 133
MSFSSNVPQLFLLLVLLTNIVSGEFDYKDDDDKMV





E-EGFP
SEQ ID NO: 134
MNLYLITLLFASLCSAEFDYKDDDDKMVSKGEELF





a-CALB
SEQ ID NO: 135
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPA





S-CALB
SEQ ID NO: 136
MLSTILNIFILLLFIQASLQEFLPSGSDPAFSQPK





D-CALB
SEQ ID NO: 137
MSFSSNVPQLFLLLVLLTNIVSGEFLPSGSDPAFS





E-CALB
SEQ ID NO: 138
MNLYLITLLFASLCSAEFLPSGSDPAFSQPKSVLD





Amylase (AA)
SEQ ID NO: 139
MVAWWSLFLYGLQVAAPALAAEVDCSRFPNATDKEGKDVL




VCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDG




ECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGV




TYDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSE




YPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTL




SHFGKC





Alpha K (AK)
SEQ ID NO: 140
MRFPSIFTAVLFAASSALAAPVNTTTEDELEGDFDVAVLP




FSASIAAKEEGVSLEKRAEVDCSRFPNATDKEGKDVLVCN




KDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGECK




ETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVTYD




NECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEYPK




PDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSHF




GKC





Alpha T (AT)
SEQ ID NO: 141
MRFPSIFTAVLFAASSALAAEVDCSRFPNATDKEGKDVLV




CNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGE




CKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVT




YDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEY




PKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLS




HFGKC





Lysozyme (LZ)
SEQ ID NO: 142
MLGKNDPMCLVLVLLGLTALLGICQGAEVDCSRFPNATDK




EGKDVLVCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNI




SKEHDGECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPV




CGTDGVTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAV




SVDCSEYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVES




NGTLTLSHFGKC





Killer Protein (KP)
SEQ ID NO: 143
MTKPTQVLVRSVSILFFITLLHLVVAAEVDCSRFPNATDK




EGKDVLVCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNI




SKEHDGECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPV




CGTDGVTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAV




SVDCSEYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVES




NGTLTLSHFGKC





Invertase (IV)
SEQ ID NO: 144
MLLQAFLFLLAGFAAKISAAEVDCSRFPNATDKEGKDVLV




CNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGE




CKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVT




YDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEY




PKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLS




HFGKC





Serum Albumin (SA)
SEQ ID NO: 145
MKWVTFISLLFLFSSAYSAEVDCSRFPNATDKEGKDVLVC




NKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGEC




KETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVTY




DNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEYP




KPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSH




FGKC





Glucoamyl (GA)
SEQ ID NO: 146
MSFRSLLALSGLVCSGLAAEVDCSRFPNATDKEGKDVLVC




NKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGEC




KETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVTY




DNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEYP




KPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSH




FGKC





Inulase (IN) - IC
SEQ ID NO: 147
MKLAYSLLLPLAGVSAAEVDCSRFPNATDKEGKDVLVCNK




DLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGECKE




TVPMNCSSYANTTSEDGKVMVLCN




RAFNPVCGTDGVTYDNECLLCAHKVEQGASVDKRHDGGCR




KELAAVSVDCSEYPKPDCTAEDRPLCGSDNKTYGNKCNFC




NAVVESNGTLTLSHFGKC





Alpha KS (AKS)
SEQ ID NO: 148
MRFPSIFTAVLFAASSALAAPVNTTTEDELEGDFDVAVLP




FSASIAAKEEGVSLEKREAEAAEVDCSRFPNATDKEGKDV




LVCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISKEHD




GECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCGTDG




VTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSVDCS




EYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTLT




LSHFGKC





Ovomucoid signal
SEQ ID NO: 149
MAMAGVFVLFSFVLCGFLPDAAFG


peptide







Lysozyme signal
SEQ ID NO: 150
MRSLLILVLCFLPLAALG


peptide







Ovalbumin Signal
SEQ ID NO: 151
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


Peptide

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV




SLDKREAEA





Ovotransferrin Signal
SEQ ID NO: 152
MKLILCTVLSLGIAAVCFA


Peptide







Bovine Lactoferrin
SEQ ID NO: 153
MKLFVPALLSLGALGLCLA


Signal Peptide







Porcine Lactoferrin
SEQ ID NO: 154
MKLFIPALLFLGTLGLCLA


Signal Peptide







Kid Lipase Signal
SEQ ID NO: 155
MESKALLLLALSVWLQSLTVSHG


Peptide







Porcine Lipase
SEQ ID NO: 156
MLLIWTLSLLLGAVLG


Signal Peptide







Ovomucoid
SEQ ID NO: 157
AEVDCSRFPNATDKEGKDVLVCNKDLRPICGTDGVTYTND


(canonical)

CLLCAYSIEFGTNISKEHDGECKETVPMNCSSYANTTSED




GKVMVLCNRAFNPVCGTDGVTYDNECLLCAHKVEQGASVD




KRHDGGCRKELAAVSVDCSEYPKPDCTAEDRPLCGSDNKT




YGNKCNFCNAVVESNGTLTLSHFGKC*





Ovomucoid
SEQ ID NO: 158
AEVDCSRFPNATDMEGKDVLVCNKDLRPICGTDGVTYTND




CLLCAYSVEFGTNISKEHDGECKETVPMNCSSYANTTSED




GKVMVLCNRAFNPVCGTDGVTYDNECLLCAHKVEQGASVD




KRHDGGCRKELAAVSVDCSEYPKPDCTAEDRPLCGSDNKT




YGNKCNFCNAVVESNGTLTLSHFGKC*





Ovomucoid
SEQ ID NO: 159
AEVDCSRFPNATDMEGKDVLVCNKDLRPICGTDGVTYTND


G162M F167A

CLLCAYSVEFGTNISKEHDGECKETVPMNCSSYANTTSED




GKVMVLCNRAFNPVCGTDGVTYDNECLLCAHKVEQGASVD




KRHDGGCRKELAAVSVDCSEYPKPDCTAEDRPLCGSDNKT




YMNKCNACNAVVESNGTLTLSHFGKC*





Ovomucoid isoform 1
SEQ ID NO: 160
MAMAGVFVLFSFVLCGFLPDAAFGAEVDCSRFPNATDKEG


precursor full length

KDVLVCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISK




EHDGECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCG




TDGVTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSV




DCSEYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNG




TLTLSHFGKC





Ovomucoid [Gallus
SEQ ID NO: 161
MAMAGVFVLFSFVLCGFLPDAVFGAEVDCSRFPNATDMEG



gallus]


KDVLVCNKDLRPICGTDGVTYTNDCLLCAYSVEFGTNISK




EHDGECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCG




TDGVTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAVSV




DCSEYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNG




TLTLSHFGKC





Ovomucoid isoform 2
SEQ ID NO: 162
MAMAGVFVLFSFVLCGFLPDAAFGAEVDCSRFPNATDKEG


precursor [Gallus

KDVLVCNKDLRPICGTDGVTYTNDCLLCAYSIEFGTNISK



gallus]


EHDGECKETVPMNCSSYANTTSEDGKVMVLCNRAFNPVCG




TDGVTYDNECLLCAHKVEQGASVDKRHDGGCRKELAAVDC




SEYPKPDCTAEDRPLCGSDNKTYGNKCNFCNAVVESNGTL




TLSHFGKC





Ovomucoid [Gallus
SEQ ID NO: 163
AEVDCSRFPNATDKEGKDVLVCNKDLRPICGTDGVTYNNE



gallus]


CLLCAYSIEFGTNISKEHDGECKETVPMNCSSYANTTSED




GKVMVLCNRAFNPVCGTDGVTYDNECLLCAHKVEQGASVD




KRHDGECRKELAAVSVDCSEYPKPDCTAEDRPLCGSDNKT




YGNKCNFCNAVVESNGTLTLSHFGKC





Ovomucoid [Numida
SEQ ID NO: 164
MAMAGVFVLFSFALCGFLPDAAFGVEVDCSRFPNATNEEG



meleagris]


KDVLVCTEDLRPICGTDGVTYSNDCLLCAYNIEYGTNISK




EHDGECREAVPVDCSRYPNMTSEEGKVLILCNKAFNPVCG




TDGVTYDNECLLCAHNVEQGTSVGKKHDGECRKELAAVDC




SEYPKPACTMEYRPLCGSDNKTYDNKCNFCNAVVESNGTL




TLSHFGKC





PREDICTED:
SEQ ID NO: 165
MQTITWRQPQGDHLRSRAPAATCRAGQYLTMAMAGIFVLF


Ovomucoid isoform

SFALCGFLPDAAFGVEVDCSRFPNTTNEEGKDVLVCTEDL


X1 [Meleagris

RPICGTDGVTHSECLLCAYNIEYGTNISKEHDGECREAVP



gallopavo]


MDCSRYPNTTNEEGKVMILCNKALNPVCGTDGVTYDNECV




LCAHNLEQGTSVGKKHDGGCRKELAAVSVDCSEYPKPACT




LEYRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSHFGKC





Ovomucoid
SEQ ID NO: 166
VEVDCSRFPNTTNEEGKDVLVCTEDLRPICGTDGVTHSEC


[Meleagris gallopavo]

LLCAYNIEYGTNISKEHDGECREAVPMDCSRYPNTTSEEG




KVMILCNKALNPVCGTDGVTYDNECVLCAHNLEQGTSVGK




KHDGECRKELAAVSVDCSEYPKPACTLEYRPLCGSDNKTY




GNKCNFCNAVVESNGTLTLSHFGKC





PREDICTED:
SEQ ID NO: 167
MQTITWRQPQGDHLRSRAPAATCRAGQYLTMAMAGIFVLF


Ovomucoid isoform

SFALCGFLPDAAFGVEVDCSRFPNTTNEEGKDVLVCTEDL


X2 [Meleagris

RPICGTDGVTHSECLLCAYNIEYGTNISKEHDGECREAVP



gallopavo]


MDCSRYPNTTNEEGKVMILCNKALNPVCGTDGVTYDNECV




LCAHNLEQGTSVGKKHDGGCRKELAAVDCSEYPKPACTLE




YRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSHFGKC





Ovomucoid
SEQ ID NO: 168
EYGTNISIKHNGECKETVPMDCSRYANMTNEEGKVMMPCD


[Bambusicola

RTYNPVCGTDGVTYDNECQLCAHNVEQGTSVDKKHDGVCG



thoracicus]


KELAAVSVDCSEYPKPECTAEERPICGSDNKTYGNKCNFC




NAVVYVQP





Ovomucoid
SEQ ID NO: 169
VDCSRFPNTTNEEGKDVLACTKELHPICGTDGVTYSNECL


[Callipepla squamata]

LCYYNIEYGTNISKEHDGECTEAVPVDCSRYPNTTSEEGK




VLIPCNRDFNPVCGSDGVTYENECLLCAHNVEQGTSVGKK




HDGGCRKEFAAVSVDCSEYPKPDCTLEYRPLCGSDNKTYA




SKCNFCNAVVIWEQEKNTRHHASHSVFFISARLVC





Ovomucoid [Colinus
SEQ ID NO: 170
MLPLGLREYGTNTSKEHDGECTEAVPVDCSRYPNTTSEEG



virginianus]


KVRILCKKDINPVCGTDGVTYDNECLLCSHSVGQGASIDK




KHDGGCRKEFAAVSVDCSEYPKPACMSEYRPLCGSDNKTY




VNKCNFCNAVVYVQPWLHSRCRLPPTGTSFLGSEGRETSL




LTSRATDLQVAGCTAISAMEATRAAALLGLVLLSSFCELS




HLCFSQASCDVYRLSGSRNLACPRIFQPVCGTDNVTYPNE




CSLCRQMLRSRAVYKKHDGRCVKVDCTGYMRATGGLGTAC




SQQYSPLYATNGVIYSNKCTFCSAVANGEDIDLLAVKYPE




EESWISVSPTPWRMLSAGA





Ovomucoid-like
SEQ ID NO: 171
MSWWGIKPALERPSQEQSTSGQPVDSGSTSTTTMAGIFVL


isoform X2 [Anser

LSLVLCCFPDAAFGVEVDCSRFPNTTNEEGKEVLLCTKDL


cygnoides domesticus]

SPICGTDGVTYSNECLLCAYNIEYGTNISKDHDGECKEAV




PVDCSTYPNMTNEEGKVMLVCNKMFSPVCGTDGVTYDNEC




MLCAHNVEQGTSVGKKYDGKCKKEVATVDCSDYPKPACTV




EYMPLCGSDNKTYDNKCNFCNAVVDSNGTLTLSHFGKC





Ovomucoid-like
SEQ ID NO: 172
MSSQNQLHRRRRPLPGGQDLNKYYWPHCTSDRFSWLLHVT


isoform X1 [Anser

AEQFRHCVCIYLQPALERPSQEQSTSGQPVDSGSTSTTTM



cygnoides domesticus]


AGIFVLLSLVLCCFPDAAFGVEVDCSRFPNTTNEEGKEVL




LCTKDLSPICGTDGVTYSNECLLCAYNIEYGTNISKDHDG




ECKEAVPVDCSTYPNMTNEEGKVMLVCNKMFSPVCGTDGV




TYDNECMLCAHNVEQGTSVGKKYDGKCKKEVATVDCSDYP




KPACTVEYMPLCGSDNKTYDNKCNFCNAVVDSNGTLTLSH




FGKC





Ovomucoid [Coturnix
SEQ ID NO: 173
VEVDCSRFPNTTNEEGKDEVVCPDELRLICGTDGVTYNHE



japonica]


CMLCFYNKEYGTNISKEQDGECGETVPMDCSRYPNTTSED




GKVTILCTKDFSFVCGTDGVTYDNECMLCAHNVVQGTSVG




KKHDGECRKELAAVSVDCSEYPKPACPKDYRPVCGSDNKT




YSNKCNFCNAVVESNGTLTLNHFGKC





Ovomucoid [Coturnix
SEQ ID NO: 174
MAMAGVFLLFSFALCGFLPDAAFGVEVDCSRFPNTTNEEG



japonica]


KDEVVCPDELRLICGTDGVTYNHECMLCFYNKEYGTNISK




EQDGECGETVPMDCSRYPNTTSEDGKVTILCTKDFSFVCG




TDGVTYDNECMLCAHNIVQGTSVGKKHDGECRKELAAVSV




DCSEYPKPACPKDYRPVCGSDNKTYSNKCNFCNAVVESNG




TLTLNHFGKC





Ovomucoid [Anas
SEQ ID NO: 175
MAGVFVLLSLVLCCFPDAAFGVEVDCSRFPNTTNEEGKDV



platyrhynchos]


LLCTKELSPVCGTDGVTYSNECLLCAYNIEYGTNISKDHD




GECKEAVPADCSMYPNMTNEEGKMTLLCNKMFSPVCGTDG




VTYDNECMLCAHNVEQGTSVGKKYDGKCKKEVATVDCSGY




PKPACTMEYMPLCGSDNKTYGNKCNFCNAVVDSNGTLTLS




HFGEC





Ovomucoid, partial
SEQ ID NO: 176
QVDCSRFPNTTNEEGKEVLLCTKELSPVCGTDGVTYSNEC


[Anas platyrhynchos]

LLCAYNIEYGTNISKDHDGECKEAVPADCSMYPNMTNEEG




KMTLLCNKMFSPVCGTDGVTYDNECMLCAHNVEQGTSVGK




KYDGKCKKEVATVSVDCSGYPKPACTMEYMPLCGSDNKTY




GNKCNFCNAVV





Ovomucoid-like [Tyto
SEQ ID NO: 177
MTMPGAFVVLSFVLCCFPDATFGVEVDCSTYPNTTNEEGK



alba]


EVLVCSKILSPICGTDGVTYSNECLLCANNIEYGTNISKY




HDGECKEFVPVNCSRYPNTTNEEGKVMLICNKDLSPVCGT




DGVTYDNECLLCAHNLEPGTSVGKKYDGECKKEIATVDCS




DYPKPVCSLESMPLCGSDNKTYSNKCNFCNAVVDSNETLT




LSHFGKC





Ovomucoid [Balearica
SEQ ID NO: 178
MTMAGVFVLLSFALCCFPDAAFGVEVDCSTYPNTTNEEGK



regulorum


EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD



gibbericeps]


HDGECKEVVPVDCSRYPNSTNEEGKVVMLCSKDLNPVCGT




DGVTYDNECVLCAHNVESGTSVGKKYDGECKKETATVDCS




DYPKPACTLEYMPFCGSDSKTYSNKCNFCNAVVDSNGTLT




LSHFGKC





Turkey vulture
SEQ ID NO: 179
MTTAGVFVLLSFALCSFPDAAFGVEVDCSTYPNTTNEEGK


[Cathartes aura] OVD

EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD


(native sequence)

HDGECKEFVPVDCSRYPNTTNEDGKVVLLCNKDLSPICGT


bolded is native signal

DGVTYDNECLLCARNLEPGTSVGKKYDGECKKEIATVDCS


sequence

DYPKPVCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLT




LSHFGKC





Ovomucoid-like
SEQ ID NO: 180
MTTAGVFVLLSFTLCSFPDAAFGVEVDCSPYPNTTNEEGK


[Cuculus canorus]

EVLVCNKILSPICGTDGVTYSNECLLCAYNLEYGTNISKD




YDGECKEVAPVDCSRHPNTTNEEGKVELLCNKDLNPICGT




NGVTYDNECLLCARNLESGTSIGKKYDGECKKEIATVDCS




DYPKPVCTLEEMPLCGSDNKTYGNKCNFCNAVVDSNGTLT




LSHFGKC





Ovomucoid
SEQ ID NO: 181
MTTAVVFVLLSFALCCFPDAAFGVEVDCSTYPNSTNEEGK


[Antrostomus

DVLVCPKILGPICGTDGVTYSNECLLCAYNIQYGTNVSKD



carolinensis]


HDGECKEIVPVDCSRYPNTTNEEGKVVFLCNKNFDPVCGT




DGDTYDNECMLCARSLEPGTTVGKKHDGECKREIATVDCS




DYPKPTCSAEDMPLCGSDSKTYSNKCNFCNAVVDSNGTLT




LSRFGKC





Ovomucoid [Cariama
SEQ ID NO: 182
MTMTGVFVLLSFAICCFPDAAFGVEVDCSTYPNTTNEEGK



cristata]


EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD




HDGECKEVVPVDCSKYPNTTNEEGKVVLLCSKDLSPVCGT




DGVTYDNECLLCARNLEPGSSVGKKYDGECKKEIATIDCS




DYPKPVCSLEYMPLCGSDSKTYDNKCNFCNAVVDSNGTLT




LSHFGKC





Ovomucoid-like
SEQ ID NO: 183
MTTAGVFVLLSFVLCCFPDAVFGVEVDCSTYPNTTNEEGK


isoform X2

EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD


[Pygoscelis adeliae]

HDGECKEVVPVNCSRYPNTTNEEGKVVLRCSKDLSPVCGT




DGVTYDNECLMCARNLEPGAVVGKNYDGECKKEIATVDCS




DYPKPVCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLT




LSHFGKC





Ovomucoid-like
SEQ ID NO: 184
MTTAGVFVLLSIALCCFPDAAFGVEVDCSAYSNTTSEEGK


[Nipponia nippon]

EVLSCTKILSPICGTDGVTYSNECLLCAYNIEYGTNISKD




HDGECKEVVSVDCSRYPNTTNEEGKAVLLCNKDLSPVCGT




DGVTYDNECLLCAHNLEPGTSVGKKYDGACKKEIATVDCS




DYPKPVCTLEYLPLCGSDSKTYSNKCDFCNAVVDSNGTLT




LSHFGKC





Ovomucoid-like
SEQ ID NO: 185
MTTAGVFVLLSFALCCFPDAAFGVEVDCSTYPNTTNEEGK


[Phaethon lepturus]

EVLVCTKILSPICGTDGTTYSNECLLCAYNIEYGTNVSKD




HDGECKVVPVDCSKYPNTTNEDGKVVLLCNKALSPICGTD




RVTYDNECLMCAHNLEPGTSVGKKHDGECQKEVATVDCSD




YPKPVCSLEYMPLCGSDGKTYSNKCNFCNAVVNSNGTLTL




SHFEKC





Ovomucoid-like
SEQ ID NO: 186
MTTAGVFVLLSFVLCCFFPDAAFGVEVDCSTYPNTTNEEG


isoform X1

KEVLVCAKILSPVCGTDGVTYSNECLLCAHNIENGTNVGK


[Melopsittacus

DHDGKCKEAVPVDCSRYPNTTDEEGKVVLLCNKDVSPVCG



undulatus]


TDGVTYDNECLLCAHNLEAGTSVDKKNDSECKTEDTTLAA




VSVDCSDYPKPVCTLEYLPLCGSDNKTYSNKCRFCNAVVD




SNGTLTLSRFGKC





Ovomucoid [Podiceps
SEQ ID NO: 187
MTTAGVFVLLSFALCCSPDAAFGVEVDCSTYPNTTNEEGK



cristatus]


EVLACTKILSPICGTDGVTYSNECLLCAYNMEYGTNVSKD




HDGKCKEVVPVDCSRYPNTTNEEGK




VVLLCNKDLSPVCGTDGVTYDNECLLCARNLEPGASVGKK




YDGECKKEIATVDCSDYPKPVCSLEHMPLCGSDSKTYSNK




CTFCNAVVDSNGTLTLSHFGKC





Ovomucoid-like
SEQ ID NO: 188
MTTAGVFVLLSFALCCFPDAAFGVEVDCSTYPNTTNEEGR


[Fulmarus glacialis]

EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD




HDGECKEVAPVGCSRYPNTTNEEGKVVLLCNKDLSPVCGT




DGVTYDNECLLCARHLEPGTSVGKKYDGECKKEIATVDCS




DYPKPVCSLEYMPLCGSDSKTYSNKCNFCNAVLDSNGTLT




LSHFGKC





Ovomucoid
SEQ ID NO: 189
MTTAGVFVLLSFALCCFPDAVFGVEVDCSTYPNTTNEEGK


[Aptenodytes forsteri]

EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD




HDGECKEVVPVDCSRYPNTTNEEGKVVLRCNKDLSPVCGT




DGVTYDNECLMCARNLEPGAIVGKKYDGECKKEIATVDCS




DYPKPVCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLI




LSHFGKC





Ovomucoid-like
SEQ ID NO: 190
MTTAGVFVLLSFVLCCFPDAVFGVEVDCSTYPNTTNEEGK


isoform X1

EVLVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKD


[Pygoscelis adeliae]

HDGECKEVVPVDCSRYPNTTNEEGKVVLRCSKDLSPVCGT




DGVTYDNECLMCARNLEPGAVVGKNYDGECKKEIATVDCS




DYPKPVCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLT




LSHFGKC





Ovomucoid isoform
SEQ ID NO: 191
MSSQNQLPSRCRPLPGSQDLNKYYQPHCTGDRFCWLFYVT


X1 [Aptenodytes

VEQFRHCICIYLQLALERPSHEQSGQPADSRNTSTMTTAG


forsteri]

VFVLLSFALCCFPDAVFGVEVDCSTYPNTTNEEGKEVLVC




TKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKDHDGEC




KEVVPVDCSRYPNTTNEEGKVVLRCNKDLSPVCGTDGVTY




DNECLMCARNLEPGAIVGKKYDGECKKEIATVDCSDYPKP




VCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLILSHFG




KC





Ovomucoid, partial
SEQ ID NO: 192
MTTAVVFVLLSFALCCFPDAAFGVEVDCSTYPNSTNEEGK


[Antrostomus

DVLVCPKILGPICGTDGVTYSNECLLCAYNIQYGTNVSKD


carolinensis]

HDGECKEIVPVDCSRYPNTTNEEGKVVFLCNKNFDPVCGT




DGDTYDNECMLCARSLEPGTTVGKKHDGECKREIATVDCS




DYPKPTCSAEDMPLCGSDSKTYSNKCNFCNAVV





rOVD as expressed in
SEQ ID NO: 193
EAEAAEVDCSRFPNATDKEGKDVLVCNKDLRPICGTDGVT


pichia

YTNDCLLCAYSIEFGTNISKEHDGECKETVPMNCSSYANT


secreted form 1

TSEDGKVMVLCNRAFNPVCGTDGVTYDNECLLCAHKVEQG




ASVDKRHDGGCRKELAAVSVDCSEYPKPDCTAEDRPLCGS




DNKTYGNKCNFCNAVVESNGTLTLSHFGKC





rOVD as expressed in
SEQ ID NO: 194
EEGVSLEKREAEAAEVDCSRFPNATDKEGKDVLVCNKDLR


pichia secreted form 2

PICGTDGVTYTNDCLLCAYSIEFGTNISKEHDGECKETVP




MNCSSYANTTSEDGKVMVLCNRAFNPVCGTDGVTYDNECL




LCAHKVEQGASVDKRHDGGCRKELAAVSVDCSEYPKPDCT




AEDRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSHFGKC





rOVD [gallus] coding
SEQ ID NO: 195
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


sequence containing

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


an alpha mating factor

SLEKREAEAAEVDCSRFPNATDKEGKDVLVCNKDLRPICG


signal sequence

TDGVTYTNDCLLCAYSIEFGTNISKEHDGECKETVPMNCS


(bolded) as expressed

SYANTTSEDGKVMVLCNRAFNPVCGTDGVTYDNECLLCAH


in pichia

KVEQGASVDKRHDGGCRKELAAVSVDCSEYPKPDCTAEDR




PLCGSDNKTYGNKCNFCNAVVESNGTLTLSHFGKC





Turkey vulture OVD
SEQ ID NO: 196
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


coding sequence

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


containing secretion

SLEKREAEAVEVDCSTYPNTTNEEGKEV


signals as expressed in

LVCTKILSPICGTDGVTYSNECLLCAYNIEYGTNVSKDHD


pichia

GECKEFVPVDCSRYPNTTNEDGKVVLLCNKDLSPICGTDG


bolded is an alpha

VTYDNECLLCARNLEPGTSVGKKYDGECKKEIATVDCSDY


mating factor signal

PKPVCSLEYMPLCGSDSKTYSNKCNFCNAVVDSNGTLTLS


sequence

HFGKC





Turkey vulture OVD
SEQ ID NO: 197
EAEAVEVDCSTYPNTTNEEGKEVLVCTKILSPICGTDGVT


in secreted form

YSNECLLCAYNIEYGTNVSKDHDGECKEFVPVDCSRYPNT


expressed in Pichia

TNEDGKVVLLCNKDLSPICGTDGVTYDNECLLCARNLEPG




TSVGKKYDGECKKEIATVDCSDYPKPVCSLEYMPLCGSDS




KTYSNKCNFCNAVVDSNGTLTLSHFGKC





Humming bird
SEQ ID NO: 198
MTMAGVFVLLSFILCCFPDTAFGVEVDCSIYPNTTSEEGK


OVD (native

EVLVCTETLSPICGSDGVTYNNECQLCAYNVEYGTNVSKD


sequence)

HDGECKEIVPVDCSRYPNTTEEGRVVMLCNKALSPVCGTD


bolded is the native

GVTYDNECLLCARNLESGTSVGKKFDGECKKEIATVDCTD


signal sequence

YPKPVCSLDYMPLCGSDSKTYSNKCNFCNAVMDSNGTLTL




NHFGKC





Humming bird OVD
SEQ ID NO: 199
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


coding sequence as

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


expressed in Pichia

SLDKREAEAVEVDCSIYPNTTSEEGKEVLVCTETLSPICG


bolded is an alpha

SDGVTYNNECQLCAYNVEYGTNVSKDHDGECKEIVPVDCS


mating factor signal

RYPNTTEEGRVVMLCNKALSPVCGTDGVTYDNECLLCARN


sequence

LESGTSVGKKFDGECKKEIATVDCTDYPKPVCSLDYMPLC




GSDSKTYSNKCNFCNAVMDSNGTLTLNHFGKC





Humming bird OVD
SEQ ID NO: 200
EAEAVEVDCSIYPNTTSEEGKEVLVCTETLSPICGSDGVT


in secreted form from

YNNECQLCAYNVEYGTNVSKDHDGECKEIVPVDCSRYPNT


Pichia

TEEGRVVMLCNKALSPVCGTDGVTYDNECLLCARNLESGT




SVGKKFDGECKKEIATVDCTDYPKPVCSLDYMPLCGSDSK




TYSNKCNFCNAVMDSNGTLTLNHFGKC





Ovalbumin related
SEQ ID NO: 201
MFFYNTDFRMGSISAANAEFCFDVFNELKVQHTNENILYS


protein X

PLSIIVALAMVYMGARGNTEYQMEKALHFDSIAGLGGSTQ




TKVQKPKCGKSVNIHLLFKELLSDITASKANYSLRIANRL




YAEKSRPILPIYLKCVKKLYRAGLETVNFKTASDQARQLI




NSWVEKQTEGQIKDLLVSSSTDLDTTLVLVNAIYFKGMWK




TAFNAEDTREMPFHVTKEESKPVQMMCMNNSFNVATLPAE




KMKILELPFASGDLSMLVLLPDEVSGLERIEKTINFEKLT




EWTNPNTMEKRRVKVYLPQMKIEEKYNLTSVLMALGMTDL




FIPSANLTGISSAESLKISQAVHGAFMELSEDGIEMAGST




GVIEDIKHSPELEQFRADHPFLFLIKHNPTNTIVYFGRYW




SP*





Ovalbumin related
SEQ ID NO: 202
MDSISVTNAKFCFDVFNEMKVHHVNENILYCPLSILTALA


protein Y

MVYLGARGNTESQMKKVLHFDSITGAGSTTDSQCGSSEYV




HNLFKELLSEITRPNATYSLEIADKLYVDKTFSVLPEYLS




CARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNGQIKD




LLVSSSIDFGTTMVFINTIYFKGIWKIAFNTEDTREMPFS




MTKEESKPVQMMCMNNSFNVATLPAEKMKILELPYASGDL




SMLVLLPDEVSGLERIEKTINFDKLREWTSTNAMAKKSMK




VYLPRMKIEEKYNLTSILMALGMTDLFSRSANLTGIS




SVDNLMISDAVHGVFMEVNEEGTEATGSTGAIGNIKHSLE




LEEFRADHPFLFFIRYNPTNAILFFGRYWSP*





Ovalbumin
SEQ ID NO: 203
MGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSALA




MVYLGAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTSVNV




HSSLRDILNQITKPNDVYSFSLASRLYAEERYPILPEYLQ




CVKELYRGGLEPINFQTAADQARELINSWVESQINGIIRN




VLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAMPFR




VTEQESKPVQMMYQIGLFRVASMASEKMKILELPFASGTM




SMLVLLPDEVSGLEQLESIINFEKLTEWTSSNVMEERKIK




VYLPRMKMEEKYNLTSVLMAMGITDVFSSSANLSGISSAE




SLKISQAVHAAHAEINEAGREVVGSAEAGVDAASVSEEFR




ADHPFLFCIKHIATNAVLFFGRCVSP*





Chicken Ovalbumin
SEQ ID NO: 204
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


with bolded signal

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


sequence

SLDKREAEAGSIGAASMEFCFDVFKELKVHHANENIFYCP




IAIMSALAMVYLGAKDSTRTQINKVVRFDKLPGFGDSIEA




QCGTSVNVHSSLRDILNQITKPNDVYSFSLASRLYAEERY




PILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVES




QTNGIIRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDE




DTQAMPFRVTEQESKPVQMMYQIGLFRVASMASEKMKILE




LPFASGTMSMLVLLPDEVSGLEQLESIINFEKLTEWTSSN




VMEERKIKVYLPRMKMEEKYNLTSVLMAMGITDVFSSSAN




LSGISSAESLKISQAVHAAHAEINEAGREVVGSAEAGVDA




ASVSEEFRADHPFLFCIKHIATNAVLFFGRCVSP





Chicken OVA
SEQ ID NO: 205
EAEAGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMS


sequence as secreted

ALAMVYLGAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTS


from pichia

VNVHSSLRDILNQITKPNDVYSFSLASRLYAEERYPILPE




YLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNGI




IRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAM




PFRVTEQESKPVQMMYQIGLFRVASMASEKMKILELPFAS




GTMSMLVLLPDEVSGLEQLESIINFEKLTEWTSSNVMEER




KIKVYLPRMKMEEKYNLTSVLMAMGITDVFSSSANLSGIS




SAESLKISQAVHAAHAEINEAGREVVGSAEAGVDAASVSE




EFRADHPFLFCIKHIATNAVLFFGRCVSP





Predicted Ovalbumin
SEQ ID NO: 206
MRVPAQLLGLLLLWLPGARCGSIGAASMEFCFDVFKELKV


[Achromobacter

HHANENIFYCPIAIMSALAMVYLGAKDSTRTQINKVVRFD


denitrificans]

KLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPNDVYSFS




LASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTAADQ




ARELINSWVESQTNGIIRNVLQPSSVDSQTAMVLVNAIVF




KGLWEKAFKDEDTQAMPFRVTEQESKPVQMMYQIGLFRVA




SMASEKMKILELPFASGTMSMLVLLPDEVSGLEQLESIIN




FEKLTEWTSSNVMEERKIKVYLPRMKMEEKYNLTSVLMAM




GITDVFSSSANLSGISSAESLKISQAVHAAHAEINEAGRE




VVGSAEAGVDAASVSEEFRADHPFLFCIKHIATNAVLFFG




RCVSPLEIKRAAAHHHHHH





OLLAS epitope-
SEQ ID NO: 207
MTSGFANELGPRLMGKLTMGSIGAASMEFCFDVFKELKVH


tagged ovalbumin

HANENIFYCPIAIMSALAMVYLGAKDSTRTQINKVVRFDK




LPGFGDSIEAQCGTSVNVHSSLRDILNQITKPNDVYSFSL




ASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTAADQA




RELINSWVESQTNGIIRNVLQPSSVDSQTAMVLVNAIVFK




GLWEKTFKDEDTQAMPFRVTEQESKPVQMMYQIGLFRVAS




MASEKMKILELPFASGTMSMLVLLP




DEVSGLEQLESIINFEKLTEWTSSNVMEERKIKVYLPRMK




MEEKYNLTSVLMAMGITDVFSSSANLSGISSAESLKISQA




VHAAHAEINEAGREVVGSAEAGVDAASVSEEFRADHPFLF




CIKHIATNAVLFFGRCVSPSR





Serpin family protein
SEQ ID NO: 208
MGGRRVRWEVYISRAGYVNRQIAWRRHHRSLTMRVPAQLL


[Achromobacter

GLLLLWLPGARCGSIGAASMEFCFDVFKELKVHHANENIF



denitrificans]


YCPIAIMSALAMVYLGAKDSTRTQINKVVRFDKLPGFGDS




IEAQCGTSVNVHSSLRDILNQITKPNDVYSFSLASRLYAE




ERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSW




VESQTNGIIRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAF




KDEDTQAMPFRVTEQESKPVQMMYQIGLFRVASMASEKMK




ILELPFASGTMSMLVLLPDEVSGLEQLESIINFEKLTEWT




SSNVMEERKIKVYLPRMKMEEKYNLTSVLMAMGITDVFSS




SANLSGISSAESLKISQAVHAAHAEINEAGREVVGSAEAG




VDAASVSEEFRADHPFLFCIKHIATNAVLFFGRCVSPLEI




KRAAAHHHHHH





PREDICTED:
SEQ ID NO: 209
MGSIGAVSMEFCFDVFKELKVHHANENIFYSPFTIISALA


ovalbumin isoform X1

MVYLGAKDSTRTQINKVVRFDKLPGFGDSVEAQCGTSVNV


[Meleagris gallopavo]

HSSLRDILNQITKPNDVYSFSLASRLYAEETYPILPEYLQ




CVKELYRGGLESINFQTAADQARGLINSWVESQTNGMIKN




VLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAIPFR




VTEQESKPVQMMYQIGLFKVASMASEKMKILELPFASGTM




SMWVLLPDEVSGLEQLETTISFEKMTEWISSNIMEERRIK




VYLPRMKMEEKYNLTSVLMAMGITDLFSSSANLSGISSAG




SLKISQAVHAAYAEIYEAGREVIGSAEAGADATSVSEEFR




VDHPFLYCIKHNLTNSILFFGRCISP





Ovalbumin precursor
SEQ ID NO: 210
MGSIGAVSMEFCFDVFKELKVHHANENIFYSPFTIISALA


[Meleagris gallopavo]

MVYLGAKDSTRTQINKVVRFDKLPGFGDSVEAQCGTSVNV




HSSLRDILNQITKPNDVYSFSLASRLYAEETYPILPEYLQ




CVKELYRGGLESINFQTAADQARGLINSWVESQTNGMIKN




VLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAIPFR




VTEQESKPVQMMYQIGLFKVASMASEKMKILELPFASGTM




SMWVLLPDEVSGLEQLETTISFEKMTEWISSNIMEERRIK




VYLPRMKMEEKYNLTSVLMAMGITDLFSSSANLSGISSAG




SLKISQAAHAAYAEIYEAGREVIGSAEAGADATSVSEEFR




VDHPFLYCIKHNLTNSILFFGRCISP





Hypothetical protein
SEQ ID NO: 211
YYRVPCMVLCTAFHPYIFIVLLFALDNSEFTMGSIGAVSM


[Bambusicola

EFCFDVFKELRVHHPNENIFFCPFAIMSAMAMVYLGAKDS



thoracicus]


TRTQINKVIRFDKLPGFGDSTEAQCGKSANVHSSLKDILN




QITKPNDVYSFSLASRLYADETYSIQSEYLQCVNELYRGG




LESINFQTAADQARELINSWVESQTNGIIRNVLQPSSVDS




QTAMVLVNAIVFRGLWEKAFKDEDTQTMPFRVTEQESKPV




QMMYQIGSFKVASMASEKMKILELPLASGTMSMLVLLPDE




VSGLEQLETTISFEKLTEWTSSNVMEERKIKVYLPRMKME




EKYNLTSVLMAMGITDLFRSSANLSGISLAGNLKISQAVH




AAHAEINEAGRKAVSSAEAGVDATSVSEEFRADRPFLFCI




KHIATKVVFFFGRYTSP





Egg albumin
SEQ ID NO: 212
MGSIGAASMEFCFDVFKELKVHHANDNMLYSPFAILSTLA




MVFLGAKDSTRTQINKVVHFDKLPGFGDSIEAQCGTSVNV




HSSLRDILNQITKQNDAYSFSLASRLYAQETYTVVPEYLQ




CVKELYRGGLESVNFQTAADQARGLINAWVESQTNGIIRN




ILQPSSVDSQTAMVLVNAIAFKGLWEKAFKAEDTQTIPFR




VTEQESKPVQM




MYQIGSFKVASMASEKMKILELPFASGTMSMLVLLPDDVS




GLEQLESIISFEKLTEWTSSSIMEERKVKVYLPRMKMEEK




YNLTSLLMAMGITDLFSSSANLSGISSVGSLKISQAVHAA




HAEINEAGRDVVGSAEAGVDATEEFRADHPFLFCVKHIET




NAILLFGRCVSP





Ovalbumin isoform
SEQ ID NO: 213
MASIGAVSTEFCVDVYKELRVHHANENIFYSPFTIISTLA


X2 [Numida

MVYLGAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTSVNV



meleagris]


HSSLRDILNQITKPNDVYSFSLASRLYAEETYPILPEYLQ




CVKELYRGGLESINFQTAADQARELINSWVESQTSGIIKN




VLQPSSVNSQTAMVLVNAIYFKGLWERAFKDEDTQAIPFR




VTEQESKPVQMMSQIGSFKVASVASEKVKILELPFVSGTM




SMLVLLPDEVSGLEQLESTISTEKLTEWTSSSIMEERKIK




VFLPRMRMEEKYNLTSVLMAMGMTDLFSSSANLSGISSAE




SLKISQAVHAAYAEIYEAGREVVSSAEAGVDATSVSEEFR




VDHPFLLCIKHNPTNSILFFGRCISP





Ovalbumin isoform
SEQ ID NO: 214
MALCKAFHPYIFIVLLFDVDNSAFTMASIGAVSTEFCVDV


X1 [Numida

YKELRVHHANENIFYSPFTIISTLAMVYLGAKDSTRTQIN



meleagris]


KVVRFDKLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPN




DVYSFSLASRLYAEETYPILPEYLQCVKELYRGGLESINF




QTAADQARELINSWVESQTSGIIKNVLQPSSVNSQTAMVL




VNAIYFKGLWERAFKDEDTQAIPFRVTEQESKPVQMMSQI




GSFKVASVASEKVKILELPFVSGTMSMLVLLPDEVSGLEQ




LESTISTEKLTEWTSSSIMEERKIKVFLPRMRMEEKYNLT




SVLMAMGMTDLFSSSANLSGISSAESLKISQAVHAAYAEI




YEAGREVVSSAEAGVDATSVSEEFRVDHPFLLCIKHNPTN




SILFFGRCISP





PREDICTED:
SEQ ID NO: 215
MGSIGAASMEFCFDVFKELKVHHANDNMLYSPFAILSTLA


Ovalbumin isoform

MVFLGAKDSTRTQINKVVHFDKLPGFGDSIEAQCGTSANV


X2 [Coturnix

HSSLRDILNQITKQNDAYSFSLASRLYAQETYTVVPEYLQ



japonica]


CVKELYRGGLESVNFQTAADQARGLINAWVESQTNGIIRN




ILQPSSVDSQTAMVLVNAIAFKGLWEKAFKAEDTQTIPFR




VTEQESKPVQMMHQIGSFKVASMASEKMKILELPFASGTM




SMLVLLPDDVSGLEQLESTISFEKLTEWTSSSIMEERKVK




VYLPRMKMEEKYNLTSLLMAMGITDLFSSSANLSGISSVG




SLKISQAVHAAYAEINEAGRDVVGSAEAGVDATEEFRADH




PFLFCVKHIETNAILLFGRCVSP





PREDICTED:
SEQ ID NO: 216
MGLCTAFHPYIFIVLLFALDNSEFTMGSIGAASMEFCFDV


ovalbumin isoform X1

FKELKVHHANDNMLYSPFAILSTLAMVFLGAKDSTRTQIN


[Coturnix japonica]

KVVHFDKLPGFGDSIEAQCGTSANVHSSLRDILNQITKQN




DAYSFSLASRLYAQETYTVVPEYLQCVKELYRGGLESVNF




QTAADQARGLINAWVESQTNGIIRNILQPSSVDSQTAMVL




VNAIAFKGLWEKAFKAEDTQTIPFRVTEQESKPVQMMHQI




GSFKVASMASEKMKILELPFASGTMSMLVLLPDDVSGLEQ




LESTISFEKLTEWTSSSIMEERKVKVYLPRMKMEEKYNLT




SLLMAMGITDLFSSSANLSGISSVGSLKISQAVHAAYAEI




NEAGRDVVGSAEAGVDATEEFRADHPFLFCVKHIETNAIL




LFGRCVSP





Egg albumin
SEQ ID NO: 217
MGSIGAASMEFCFDVFKELKVHHANDNMLYSPFAILSTLA




MVFLGAKDSTRTQINKVVHFDKLPGFGDSIEAQCGTSANV




HSSLRDILNQITKQNDAYSFSLASRLYAQETYTVVPEYLQ




CVKELYRGGLESVNFQTAADQARGLINAWVESQINGIIRN




ILQPSSVDSQTAMVLVNAIAFKGLWEKAFKAEDTQTIPFR




VTEQESKPVQM




MHQIGSFKVASMASEKMKILELPFASGTMSMLVLLPDDVS




GLEQLESTISFEKLTEWTSSSIMEERKVKVYLPRMKMEEK




YNLTSLLMAMGITDLFSSSANLSGISSVGSLKIPQAVHAA




YAEINEAGRDVVGSAEAGVDATEEFRADHPFLFCVKHIET




NAILLFGRCVSP





ovalbumin [Anas
SEQ ID NO: 218
MGSIGAASTEFCFDVFRELRVQHVNENIFYSPFSIISALA



platyrhynchos]


MVYLGARDNTRTQIDKVVHFDKLPGFGESMEAQCGTSVSV




HSSLRDILTQITKPSDNFSLSFASRLYAEETYAILPEYLQ




CVKELYKGGLESISFQTAADQARELINSWVESQTNGIIKN




ILQPSSVDSQTTMVLVNAIYFKGMWEKAFKDEDTQAMPFR




MTEQESKPVQMMYQVGSFKVAMVTSEKMKILELPFASGMM




SMFVLLPDEVSGLEQLESTISFEKLTEWTSSTMMEERRMK




VYLPRMKMEEKYNLTSVFMALGMTDLFSSSANMSGISSTV




SLKMSEAVHAACVEIFEAGRDVVGSAEAGMDVTSVSEEFR




ADHPFLFFIKHNPTNSILFFGRWMSP





PREDICTED:
SEQ ID NO: 219
MGSIGAASTEFCFDVFRELKVQHVNENIFYSPLSIISALA


ovalbumin-like [Anser

MVYLGARDNTRTQIDQVVHFDKIPGFGESMEAQCGTSVSV



cygnoides domesticus]


HSSLRDILTEITKPSDNFSLSFASRLYAEETYTILPEYLQ




CVKELYKGGLESISFQTAADQARELINSWVESQTNGIIKN




ILQPSSVDSQTTMVLVNAIYFKGMWEKAFKDEDTQTMPFR




MTEQESKPVQMMYQVGSFKLATVTSEKVKILELPFASGMM




SMCVLLPDEVSGLEQLETTISFEKLTEWTSSTMMEERRMK




VYLPRMKMEEKYNLTSVFMALGMTDLFSSSANMSGISSTV




SLKMSEAVHAACVEIFEAGRDVVGSAEAGMDVTSVSEEFR




ADHPFLFFIKHNPSNSILFFGRWISP





PREDICTED:
SEQ ID NO: 220
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLTIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVLHFDKMPGFGDTIESQCGTSVSI


[Aquila chrysaetos

HTSLKDMFTQITKPSDNYSLSFASRLYAEETYPILPEYLQ



canadensis]


CVKELYKGGLETISFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVDPQTKMVLVNAIYFKGVWEKAFKDEDTQEVPFR




VTEQESKPVQMMYQIGSFKVAVMASEKMKILELPYASGQL




SMLVLLPDDVSGLEQLESAITFEKLMAWTSSTTMEERKMK




VYLPRMKIEEKYNLTSVLMALGVTDLFSSSANLSGISSAE




SLKISKAVHEAFVEIYEAGSEVVGSTEAGMEVTSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 221
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLTIISALS


Ovalbumin-like

MVYLGARENTRTQIDKVLHFDKMTGFGDTVESQCGTSVSI


[Haliaeetus albicilla]

HTSLKDIFTQITKPSDNYSLSLASRLYAEETYPILPEYLQ




CVKELYKGGLETVSFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVDPQTKMVLVNAIYFKGVWEKAFKDEDTQEVPFR




VTEQESKPVQMMYQIGSFKVAVMASEKMKILELPYASGQL




SMLVLLPDDVSGLEQLESAITSEKLMEWTSSTTMEERKMK




VYLPRMKIEEKYNLTSVLMALGVTDLFSSSADLSGISSAE




SLKISKAVHEAFVEIYEAGSEVVGSTEGGMEVTSVSEEFR




ADHPFLFLIKHKPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 222
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLTIISALS


Ovalbumin-like

MVYLGARENTRTQIDKVLHFDKMTGFGDTVESQCGTSVSI


[Haliaeetus

HTSLKDIFTQITKPSDNYSLSLASRLYAEETYPILPEYLQ



leucocephalus]


CVKELYKGGLETVSFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVDPQTKMVLVNAIYFKGVWEKAFKDEDTQEVPFR




VTEQESKPVQMMY




QIGSFKVAVMASEKMKILELPYASGQLSMLVLLPDDVSGL




EQLESAITSEKLMEWTSSTTMEERKMKVYLPRMKIEEKYN




LTSVLMALGVTDLFSSSADLSGISSAESLKISKAVHEAFV




EIYEAGSEVVGSTEGGMEVTSFSEEFRADHPFLFLIKHKP




TNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 223
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin [Fulmarus

MVYLGARENTRAQIDKVVHFDKITGFGETIESQCGTSVSV



glacialis]


HTSLKDMFTQITKPSDNYSLSFASRLYAEETYPILPEYLQ




CVKELYKGGLETTSFQTAADQARELINSWVESQTNGMIKN




ILQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQAVPFR




MTEQESKTVQMMYQIGSFKVAVMASEKMKILELPYASGEL




SMLVMLPDDVSGLEQLETAITFEKLMEWTSSNMMEERKMK




VYLPRMKMEEKYNLTSVLMALGVTDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVVGSTGAGMEVTSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 224
MGSIGAASTEFCFDVFKELRVQHVNENVCYSPLIIISALS


Ovalbumin-like

LVYLGARENTRAQIDKVVHFDKITGFGESIESQCGTSVSV


[Chlamydotis

HTSLKDMFNQITKPSDNYSLSVASRLYAEERYPILPEYLQ



macqueenii]


CVKELYKGGLESISFQTAADQAREAINSWVESQTNGMIKN




ILQPSSVDPQTEMVLVNAIYFKGMWQKAFKDEDTQAVPFR




ISEQESKPVQMMYQIGSFKVAVMAAEKMKILELPYASGEL




SMLVLLPDEVSGLEQLENAITVEKLMEWTSSSPMEERIMK




VYLPRMKIEEKYNLTSVLMALGITDLFSSSANLSGISAEE




SLKMSEAVHQAFAEISEAGSEVVGSSEAGIDATSVSEEFR




ADHPFLFLIKHNATNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 225
MGSISAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin like

MVYLGARENTRAQIEKVVHFDKITGFGESIESQCSTSVSV


[Nipponia nippon]

HTSLKDMFTQITKPSDNYSLSFASRFYAEETYPILPEYLQ




CVKELYKGGLETINFRTAADQARELINSWVESQTNGMIKN




ILQPGSVDPQTDMVLVNAIYFKGMWEKAFKDEDTQALPFR




VTEQESKPVQMMYQIGSFKVAVLASEKVKILELPYASGQL




SMLVLLPDDVSGLEQLETAITVEKLMEWTSSNNMEERKIK




VYLPRIKIEEKYNLTSVLMALGITDLFSSSANLSGISSAE




SLKVSEAIHEAFVEIYEAGSEVAGSTEAGIEVTSVSEEFR




ADHPFLFLIKHNATNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 226
MVSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKITGFEETIESQCSTSVSV


isoform X2 [Gavia

HTSLKDMFTQITKPSDNYSLSFASRLYAEETYPILPEYLQ



stellata]


CVKELYKGGLETISFQTAADQARELINSWVESQTDGMIKN




ILQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQAVPFR




MTEQESKPVQMMYQIGSFKVAVMASEKMKILELPYASGGM




SMLVMLPDDVSGLEQLETAITFEKLMEWTSSNMMEERKMK




VYLPRMKMEEKYNLTSVLMALGMTDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEAVGSTGAGMEVTSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 227
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin [Pelecanus

MVYLGARENTRAQIDKVVHFDKITGFGEPIESQCGISVSV



crispus]


HTSLKDMITQITKPSDNYSLSFASRLYAEETYPILPEYLQ




CVKELYKGGLETISFQTAADQARELINSWVENQTNGMIKN




ILQPGSVDPQTEMVLVNAVYFKGMWEKAFKDEDTQAVPFR




MTEQESKPVQMMYQIGSFKVAVMASEKIKILELPYASGEL




SMLVLLPDDVSGLEQLETAITLDKLTEWTSSNAMEERKMK




VYLPRMKIEKKYNLTSVLIALGMTDLFSSSANLSGISSAE




SLKMSEAIHEAFLEIYEAGSEVVGSTEAGMEVTSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCLSP





PREDICTED:
SEQ ID NO: 228
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLTIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKIPGFGDTTESQCGTSVSV


[Charadrius vociferus]

HTSLKDMFTQITKPSDNYSVSFASRLYAEETYPILPEFLE




CVKELYKGGLESISFQTAADQARELINSWVESQTNGMIKN




ILQPGSVDSQTEMVLVNAIYFKGMWEKAFKDEDTQTVPFR




MTEQETKPVQMMYQIGTFKVAVMPSEKMKILELPYASGEL




CMLVMLPDDVSGLEELESSITVEKLMEWTSSNMMEERKMK




VFLPRMKIEEKYNLTSVLMALGMTDLFSSSANLSGISSAE




PLKMSEAVHEAFIEIYEAGSEVVGSTGAGMEITSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCVSP





PREDICTED:
SEQ ID NO: 229
MGSIGAVSTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKITGSGETIEAQCGTSVSV


[Eurypyga helias]

HTSLKDMFTQITKPSENYSVGFASRLYADETYPIIPEYLQ




CVKELYKGGLEMISFQTAADQARELINSWVESQTNGMIKN




ILQPGSVDPQTEMILVNAIYFKGVWEKAFKDEDTQAVPFR




MTEQESKPVQMMYQFGSFKVAAMAAEKMKILELPYASGAL




SMLVLLPDDVSGLEQLESAITFEKLMEWTSSNMMEEKKIK




VYLPRMKMEEKYNFTSVLMALGMTDLFSSSANLSGISSAD




SLKMSEVVHEAFVEIYEAGSEVVGSTGSGMEAASVSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 230
MVSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKITGFEETIESQVQKKQCS


isoform X1 [Gavia

TSVSVHTSLKDMFTQITKPSDNYSLSFASRLYAEETYPIL



stellata]


PEYLQCVKELYKGGLETISFQTAADQARELINSWVESQTD




GMIKNILQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQ




AVPFRMTEQESKPVQMMYQIGSFKVAVMASEKMKILELPY




ASGGMSMLVMLPDDVSGLEQLETAITFEKLMEWTSSNMME




ERKMKVYLPRMKMEEKYNLTSVLMALGMTDLFSSSANLSG




ISSAESLKMSEAVHEAFVEIYEAGSEAVGSTGAGMEVTSV




SEEFRADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 231
MGSIGAASGEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin -like

MVYLGARENTRAQIDKVVHFDKIIGFGESIESQCGTSVSV


[Egretta garzetta]

HTSLKDMFAQITKPSDNYSLSFASRLYAEETFPILPEYLQ




CVKELYKGGLETLSFQTAADQARELINSWVESQTNGMIKD




ILQPGSVDPQTEMVLVNAIYFKGVWEKAFKDEDTQTVPFR




MTEQESKPVQMMYQIGSFKVAVVAAEKIKILELPYASGAL




SMLVLLPDDVSSLEQLETAITFEKLTEWTSSNIMEERKIK




VYLPRMKIEEKYNLTSVLMDLGITDLFSSSANLSGISSAE




SLKVSEAIHEAIVDIYEAGSEVVGSSGAGLEGTSVSEEFR




ADHPFLFLIKHNPTSSILFFGRCFSP





PREDICTED:
SEQ ID NO: 232
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKITGSGEAIESQCGTSVSV


[Balearica regulorum

HISLKDMFTQITKPSDNYSLSFASRLYAEETYPILPEYLQ



gibbericeps]


CVKELYKEGLATISFQTAADQAREFINSWVESQTNGMIKN




ILQPGSVDPQTQMVLVNAIYFKGVWEKAFKDEDTQAVPFR




MTKQESKPVQMMYQIGSFKVAVMASEKMKILELPYASGQL




SMLVMLPDDVSGLEQIENAITFEKLMEWTNPNMMEERKMK




VYLPRMKMEEKYNLTSVLMALGMTDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVVGSTGAGIEVTSVSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 233
MGSIGEASTEFCIDVFRELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDQVVHFDKITGFGDTVESQCGSSLSV


[Nestor notabilis]

HSSLKDIFAQITQPKDNYSLNFASRLYAEETYPILPEYLQ




CVKELYKGGLETISFQTAADQARELINSWVESQTNGMIKN




ILQPSSVDPQTEMVLVNAIYFKGVWEKAFKDEETQAVPFR




ITEQENRPVQIMYQFGSFKVAVVASEKIKILELPYASGQL




SMLVLLPDEVSGLEQLENAITFEKLTEWTSSDIMEEKKIK




VFLPRMKIEEKYNLTSVLVALGIADLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVVGSSGAGIEAASDSEEFR




ADHPFLFLIKHKPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 234
MGSIGAASTEFCFDIFNELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTKAQIDKVVHFDKITGFGESIESQCSTSASV


[Pygoscelis adeliae]

HTSFKDMFTQITKPSDNYSLSFASRLYAEETYPILPEYSQ




CVKELYKGGLESISFQTAADQARELINSWVESQTNGMIKN




ILQPGSVDPQTELVLVNAIYFKGTWEKAFKDKDTQAVPFR




VTEQESKPVQMMYQIGSYKVAVIASEKMKILELPYASGEL




SMLVLLPDDVSGLEQLETAITFEKLMEWTSSNMMEERKVK




VYLPRMKIEEKYNLTSVLMALGMTDLFSPSANLSGISSAE




SLKMSEAIHEAFVEIYEAGSEVVGSTEAGMEVTSVSEEFR




ADHPFLFLIKCNLTNSILFFGRCFSP





Ovalbumin-like
SEQ ID NO: 235
MGSISTASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


[Athene cunicularia]

MVYLGARENTRAQIEKVVHFDKITGFGESIESQCGTSVSV




HTSLKDMLIQISKPSDNYSLSFASKLYAEETYPILPEYLQ




CVKELYKGGLESINFQTAADQARQLINSWVESQTNGMIKD




ILQPSSVDPQTEMVLVNAIYFKGIWEKAFKDEDTQEVPFR




ITEQESKPVQMMYQIGSFKVAVIASEKIKILELPYASGEL




SMLIVLPDDVSGLEQLETAITFEKLIEWTSPSIMEERKTK




VYLPRMKIEEKYNLTSVLMALGMTDLFSPSANLSGISSAE




SLKMSEAIHEAFVEIYEAGSEVVGSAEAGMEATSVSEFRV




DHPFLFLIKHNPANIILFFGRCVSP





PREDICTED:
SEQ ID NO: 236
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLTIISALS


Ovalbumin-like

LVYLGARENTRAQIDKVFHFDKISGFGETTESQCGTSVSV


[Calidris pugnax]

HTSLKEMFTQITKPSDNYSVSFASRLYAEDTYPILPEYLQ




CVKELYKGGLETISFQTAADQAREVINSWVESQTNGMIKN




ILQPGSVDSQTEMVLVNAIYFKGMWEKAFKDEDTQTMPFR




ITEQERKPVQMMYQAGSFKVAVMASEKMKILELPYASGEF




CMLIMLPDDVSGLEQLENSFSFEKLMEWTTSNMMEERKMK




VYIPRMKMEEKYNLTSVLMALGMTDLFSSSANLSGISSAE




TLKMSEAVHEAFMEIYEAGSEVVGSTGSGAEVTGVYEEFR




ADHPFLFLVKHKPTNSILFFGRCVSP





PREDICTED:
SEQ ID NO: 237
MGSIGAASTEFCFDIFNELKVQHVNENIFYSPLSIISALS


Ovalbumin

MVYLGARENTKAQIDKVVHFDKITGFGETIESQCSTSVSV


[Aptenodytes forsteri]

HTSLKDTFTQITKPSDNYSLSFASRLYAEETYPILPEYSQ




CVKELYKGGLETISFQTAADQARELINSWVESQTNGMIKN




ILQPGSVDPQTELVLVNAIYFKGTWEKAFKDKDTQAVPFR




VTEQESKPVQMMYQIGSYKVAVIASEKMKILELPYASREL




SMLVLLPDDVSGLEQLETAITFEKLMEWTSSNMMEERKVK




VYLPRMKIEEKYNLTSVLMALGMTDLFSPSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVVGSTGAGMEVTSVSEEFR




ADHPFLFLIKCNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 238
MGSISAASAEFCLDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKITGSGETIEFQCGTSANI


[Pterocles gutturalis]

HPSLKDMFTQITRLSDNYSLSFASRLYAEERYPILPEYLQ




CVKELYKGGLETISFQTAADQARELINSWVESQTNGMIKN




ILQPGSVNPQTEMVLVNAIYFKGLWEKAFKDEDTQTVPFR




MTEQESKPVQMMYQVGSFKVAVMASDKIKILELPYASGEL




SMLVLLPDDVTGLEQLETSITFEKLMEWTSSNVMEERTMK




VYLPHMRMEEKYNLTSVLMALGVTDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYESGSQVVGSTGAGTEVTSVSEEFR




VDHPFLFLIKHNPTNSILFFGRCFSP





Ovalbumin-like [Falco
SEQ ID NO: 239
MGSIGAASVEFCFDVFKELKVQHVNENIFYSPLSIISALS



peregrinus]


MVYLGARENTKAQIDKVVHFDKIAGFGEAIESQCVTSASI




HSLKDMFTQITKPSDNYSLSFASRLYAEEAYSILPEYLQC




VKELYKGGLETISFQTAADQARDLINSWVESQTNGMIKNI




LQPGAVDLETEMVLVNAIYFKGMWEKAFKDEDTQTVPFRM




TEQESKPVQMMYQVGSFKVAVMASDKIKILELPYASGQLS




MVVVLPDDVSGLEQLEASITSEKLMEWTSSSIMEEKKIKV




YFPHMKIEEKYNLTSVLMALGMTDLFSSSANLSGISSAEK




LKVSEAVHEAFVEISEAGSEVVGSTEAGTEVTSVSEEFKA




DHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 240
MGSIGAASSEFCFDIFKELKVQHVNENIFYSPLSIISALS


Ovalbumin -like

MVYLGARENTRAQIDKVVPFDKITASGESIESQCSTSVSV


isoform X2

HTSLKDIFTQITKSSDNHSLSFASRLYAEETYPILPEYLQ


[Phalacrocorax carbo]

CVKELYEGGLETISFQTAADQARELINSWIESQTNGRIKN




ILQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQAVPFR




MTEQESKPVQVMHQIGSFKVAVLASEKIKILELPYASGEL




SMLVLLPDDVSGLEQLETAITFEKLMEWTSPNIMEERKIK




VFLPRMKIEEKYNLTSVLMALGITDLFSPLANLSGISSAE




SLKMSEAIHEAFVEISEAGSEVIGSTEAEVEVTNDPEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 241
MGSIGAASTEFCFDVFKELKAQYVNENIFYSPMTIITALS


Ovalbumin-like

MVYLGSKENTRAQIAKVAHFDKITGFGESIESQCGASASI


[Merops nubicus]

QFSLKDLFTQITKPSGNHSLSVASRIYAEETYPILPEYLE




CMKELYKGGLETINFQTAANQARELINSWVERQTSGMIKN




ILQPSSVDSQTEMVLVNAIYFRGLWEKAFKVEDTQATPFR




ITEQESKPVQMMHQIGSFKVAVVASEKIKILELPYASGRL




TMLVVLPDDVSGLKQLETTITFEKLMEWTTSNIMEERKIK




VYLPRMKIEEKYNLTSVLMALGLTDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVVASAEAGMDATSVSEEFR




ADHPFLFLIKDNTSNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 242
MGSIGAASTEFCFDVFKELKGQHVNENIFFCPLSIVSALS


Ovalbumin-like

MVYLGARENTRAQIVKVAHFDKIAGFAESIESQCGTSVSI


[Tauraco

HTSLKDMFTQITKPSDNYSLNFASRLYAEETYPIIPEYLQ



erythrolophus]


CVKELYKGGLETISFQTAADQAREIINSWVESQTNGMIKN




ILRPSSVHPQTELVLVNAVYFKGTWEKAFKDEDTQAVPFR




ITEQESKPVQMMYQI




GSFKVAAVTSEKMKILEVPYASGELSMLVLLPDDVSGLEQ




LETAITAEKLIEWTSSTVMEERKLKVYLPRMKIEEKYNLT




TVLTALGVTDLFSSSANLSGISSAQGLKMSNAVHEAFVEI




YEAGSEVVGSKGEGTEVSSVSDEFKADHPFLFLIKHNPTN




SIVFFGRCFSP





PREDICTED:
SEQ ID NO: 243
MGSIGAASTEFCFDVFKELKVHHVNENILYSPLAIISALS


Ovalbumin -like

MVYLGAKENTRDQIDKVVHFDKITGIGESIESQCSTAVSV


[Cuculus canorus]

HTSLKDVFDQITRPSDNYSLAFASRLYAEKTYPILPEYLQ




CVKELYKGGLETIDFQTAADQARQLINSWVEDETNGMIKN




ILRPSSVNPQTKIILVNAIYFKGMWEKAFKDEDTQEVPFR




ITEQETKSVQMMYQIGSFKVAEVVSDKMKILELPYASGKL




SMLVLLPDDVYGLEQLETVITVEKLKEWTSSIVMEERITK




VYLPRMKIMEKYNLTSVLTAFGITDLFSPSANLSGISSTE




SLKVSEAVHEAFVEIHEAGSEVVGSAGAGIEATSVSEEFK




ADHPFLFLIKHNPTNSILFFGRCFSP





Ovalbumin
SEQ ID NO: 244
MGSIGAASTEFCLDVFKELKVQHVNENIFYSPLSIISALS


[Antrostomus

MVYLGARENTRAQIDKVVHFDKITGFEDSIESQCGTSVSV



carolinensis]


HTSLKDMFTQITKPSDNYSVGFASRLYAAETYQILPEYSQ




CVKELYKGGLETINFQKAADQATELINSWVESQTNGMIKN




ILQPSSVDPQTQIFLVNAIYFKGMWQRAFKEEDTQAVPFR




ISEKESKPVQMMYQIGSFKVAVIPSEKIKILELPYASGLL




SMLVILPDDVSGLEQLENAITLEKLMQWTSSNMMEERKIK




VYLPRMRMEEKYNLTSVFMALGITDLFSSSANLSGISSAE




SLKMSDAVHEASVEIHEAGSEVVGSTGSGTEASSVSEEFR




ADHPYLFLIKHNPTDSIVFFGRCFSP





PREDICTED:
SEQ ID NO: 245
MGSIGAASTEFCFDVFKELKFQHVDENIFYSPLTIISALS


Ovalbumin-like

MVYLGARENTRAQIDKVVHFDKIAGFEETVESQCGTSVSV


[Opisthocomus

HTSLKDMFAQITKPSDNYSLSFASRLYAEETYPILPEYLQ



hoazin]


CVKELYKGGLETISFQTAADQARDLINSWVESQTNGMIKN




ILQPSSVGPQTELILVNAIYFKGMWQKAFKDEDTQEVPFR




MTEQQSKPVQMMYQTGSFKVAVVASEKMKILALPYASGQL




SLLVMLPDDVSGLKQLESAITSEKLIEWTSPSMMEERKIK




VYLPRMKIEEKYNLTSVLMALGITDLFSPSANLSGISSAE




SLKMSQAVHEAFVEIYEAGSEVVGSTGAGMEDSSDSEEFR




VDHPFLFFIKHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 246
MGSIGPLSVEFCCDVFKELRIQHPRENIFYSPVTIISALS


Ovalbumin-like

MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSI


[Lepidothrix coronata]

HTSLKDIFTQITKPSDNYTVGIASRLYAEEKYPILPEYLQ




CIKELYKGGLEPINFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVNPETDMVLVNAIYFKGLWEKAFKDEDIQTVPFR




ITEQESKPVQMMFQIGSFRVAEITSEKIRILELPYASGQL




SLWVLLPDDISGLEQLETAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




SLKVSSAFHEASVEIYEAGSKVVGSTGAEVEDTSVSEEFR




ADHPFLFLIKHNPSNSIFFFGRCFSP





PREDICTED:
SEQ ID NO: 247
MGSIGTASAEFCFDVFKELKVHHVNENIFYSPLSIISALS


Ovalbumin [Struthio

MVYLGARENTKTQMEKVIHFDKITGLGESMESQCGTGVSI



camelus australis]


HTALKDMLSEITKPSDNYSLSLASRLYAEQTYAILPEYLQ




CIKELYKESLETVSFQTAADQARELINSWIESQTNGVIKN




FLQPGSVDSQTELVLVNAIYFKGMWEKAFKDEDTQEVPFR




ITEQESRPVQMMYQ




AGSFKVATVAAEKIKILELPYASGELSMLVLLPDDISGLE




QLETTISFEKLTEWTSSNMMEDRNMKVYLPRMKIEEKYNL




TSVLIALGMTDLFSPAANLSGISAAESLKMSEAIHAAYVE




IYEADSEIVSSAGVQVEVTSDSEEFRVDHPFLFLIKHNPT




NSVLFFGRCISP





PREDICTED:
SEQ ID NO: 248
MGSIGAVSTEFSCDVFKELRIHHVQENIFYSPVTIISALS


Ovalbumin-like

MIYLGARDSTKAQIEKAVHFDKIPGFGESIESQCGTSLSI


[Acanthisitta chloris]

HTSIKDMFTKITKASDNYSIGIASRLYAEEKYPILPEYLQ




CVKELYKGGLESISFQTAAEQAREIINSWVESQTNGMIKN




ILQPSSVDPQTDIVLVNAIYFKGLWEKAFRDEDTQTVPFK




ITEQESKPVQMMYQIGSFKVAEITSEKIKILEVPYASGQL




SLWVLLPDDISGLEKLETAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTALGITDLFSSSANLSGISSAE




SLKVSEAFHEAIVEISEAGSKVVGSVGAGVDDTSVSEEFR




ADHPFLFLIKHNPTSSIFFFGRCFSP





PREDICTED:
SEQ ID NO: 249
MGSIGAASTEFCFDVFKELKVQHVNENIFYSPLSIISALS


Ovalbumin-like [Tyto

MVYLGARENTRAQIDKVVHFDKIAGFGESTESQCGTSVSA



alba]


HTSLKDMSNQITKLSDNYSLSFASRLYAEETYPILPEYSQ




CVKELYKGGLESISFQTAAYQARELINAWVESQTNGMIKD




ILQPGSVDSQTKMVLVNAIYFKGIWEKAFKDEDTQEVPFR




MTEQETKPVQMMYQIGSFKVAVIAAEKIKILELPYASGQL




SMLVILPDDVSGLEQLETAITFEKLTEWTSASVMEERKIK




VYLPRMSIEEKYNLTSVLIALGVTDLFSSSANLSGISSAE




SLRMSEAIHEAFVETYEAGSTESGTEVTSASEEFRVDHPF




LFLIKHKPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 250
MGSIGAASSEFCFDIFKELKVQHVNENIFYSPLSIISALS


Ovalbumin -like

MVYLGARENTRAQIDKVVPFDKITASGESIESQVQKIQCS


isoform X1

TSVSVHTSLKDIFTQITKSSDNHSLSFASRLYAEETYPIL


[Phalacrocorax carbo]

PEYLQCVKELYEGGLETISFQTAADQARELINSWIESQTN




GRIKNILQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQ




AVPFRMTEQESKPVQVMHQIGSFKVAVLASEKIKILELPY




ASGELSMLVLLPDDVSGLEQLETAITFEKLMEWTSPNIME




ERKIKVFLPRMKIEEKYNLTSVLMALGITDLFSPLANLSG




ISSAESLKMSEAIHEAFVEISEAGSEVIGSTEAEVEVIND




PEEFRADHPFLFLIKHNPTNSILFFGRCFSP





Ovalbumin-like [Pipra
SEQ ID NO: 251
MGSIGPLSVEFCCDVFKELRIQHARENIFYSPVTIISALS



filicauda]


MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSI




HTSLKDIFTQITKPSDNYTVGIASRLYAEEKYPILPEYLQ




CIKELYKGGLEPISFQTAAEQARELINSWVESQTNGIIKN




ILQPSSVNPETDMVLVNAIYFKGLWEKAFKDEGTQTVPFR




ITEQESKPVQMMFQIGSFRVAEIASEKIRILELPYASGQL




SLWVLLPDDISGLEQLETAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




RLKVSSAFHEASMEINEAGSKVVGAGVDDTSVSEEFRVDR




PFLFLIKHNPSNSIFFFGRCFSP





Ovalbumin [Dromaius
SEQ ID NO: 252
MGSIGAASTEFCFDMFKELKVHHVNENIIYSPLSIISILS


novaehollandiae]

MVFLGARENTKTQMEKVIHFDKITGFGESLESQCGTSVSV




HASLKDILSEITKPSDNYSLSLASKLYAEETYPVLPEYLQ




CIKELYKGSLETVSFQTAADQARELINSWVETQTNGVIKN




FLQPGSVDPQTEMVLVDAIYFKGTWEKAFKDEDTQEVPFR




ITEQESKPVQMMYQAGSFKVATVAAEKMKILELPYASGEL




SMFVLLPDDISGLEQLETTISIEKLSEWTSSNMMEDRKMK




VYLPHMKIEEKYNLTSVLVALGMTDLFSPSANLSGISTAQ




TLKMSEAIHGAYVEIYEAGSEMATSTGVLVEAASVSEEFR




VDHPFLFLIKHNPSNSILFFGRCIFP





Chain A, Ovalbumin
SEQ ID NO: 253
MGSIGAASTEFCFDMFKELKVHHVNENIIYSPLSIISILS




MVFLGARENTKTQMEKVIHFDKITGFGESLESQCGTSVSV




HASLKDILSEITKPSDNYSLSLASKLYAEETYPVLPEYLQ




CIKELYKGSLETVSFQTAADQARELINSWVETQTNGVIKN




FLQPGSVDPQTEMVLVDAIYFKGTWEKAFKDEDTQEVPFR




ITEQESKPVQMMYQAGSFKVATVAAEKMKILELPYASGEL




SMFVLLPDDISGLEQLETTISIEKLSEWTSSNMMEDRKMK




VYLPHMKIEEKYNLTSVLVALGMTDLFSPSANLSGISTAQ




TLKMSEAIHGAYVEIYEAGSEMATSTGVLVEAASVSEEFR




VDHPFLFLIKHNPSNSILFFGRCIFPHHHHHH





Ovalbumin-like
SEQ ID NO: 254
MGSIGPLSVEFCCDVFKELRIQHARENIFYSPVTIISALS


[Corapipo altera]

MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSI




HTSLKDIFTQITKPSDNYTVGIASRLYAEEKYPILPEYLQ




CIKELYKGGLEPISFQTAAEQARELINSWVESQTNGMIKN




ILQPSAVNPETDMVLVNAIYFKGLWEKAFKDEGTQTVPFR




ITEQESKPVQMMFQIGSFRVAEITSEKIRILELPYASGQL




SLWVLLPDDISGLEQLETAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




RLKVSSAFHEASMEIYEAGSKVVGSTGAGVDDTSVSEEFR




VDRPFLFLIKHNPSNSIFFFGRCFSP





Ovalbumin-like
SEQ ID NO: 255
MEDQRGNTGFTMGSIGAASTEFCIDVFRELRVQHVNENIF


protein [Amazona

YSPLTIISALSMVYLGARENTRAQIDQVVHFDKIAGFGDT



aestiva]


VESQCGSSPSVHNSLKTVXAQITQPRDNYSLNLASRLYAE




ESYPILPEYLQCVKELYNGGLETVSFQTAADQARELINSW




VESQTNGIIKNILQPSSVDPQTEMVLVNAIYFKGLWEKAF




KDEETQAVPFRITEQENRPVQMMYQFGSFKVAXVASEKIK




ILELPYASGQLSMLVLLPDEVSGLEQNAITFEKLTEWTSS




DLMEERKIKVFFPRVKIEEKYNLTAVLVSLGITDLFSSSA




NLSGISSAENLKMSEAVHEAXVEIYEAGSEVAGSSGAGIE




VASDSEEFRVDHPFLFLIXHNPTNSILFFGRCFSP





PREDICTED:
SEQ ID NO: 256
MGSIGAASTEFCIDVFRELRVQHVNENIFYSPLSIISALS


Ovalbumin-like

MVYLGARENTRAQIDEVFHFDKIAGFGDTVDPQCGASLSV


[Melopsittacus

HKSLQNVFAQITQPKDNYSLNLASRLYAEESYPILPEYLQ



undulatus]


CVKELYNEGLETVSFQTGADQARELINSWVENQTNGVIKN




ILQPSSVDPQTEMVLVNAIYFKGLWQKAFKDEETQAVPFR




ITEQENRPVQMMYQFGSFKVAVVASEKVKILELPYASGQL




SMWVLLPDEVSGLEQLENAITFEKLTEWTSSDLTEERKIK




VFLPRVKIEEKYNLTAVLMALGVTDLFSSSANFSGISAAE




NLKMSEAVHEAFVEIYEAGSEVVGSSGAGIEAPSDSEEFR




ADHPFLFLIKHNPTNSILFFGRCFSP





Ovalbumin-like
SEQ ID NO: 257
MGSIGPLSVEFCCDVFKELRIQHARDNIFYSPVTIISALS


[Neopelma

MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSV



chrysocephalum]


HTSLKDIFTQITKPRENYTVGIASRLYAEEKYPILPEYLQ




CIKELYKGGLEPISFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVNPETDMVLVNAIYFKGLWKKAFKDEGTQTVPFR




ITEQESKPVQMMFQIGSFRVAEITSEKIRILELPYASGQL




SLWVLLPDDISGLEQLESAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




KLKVSSAFHEASMEIYEAGNKVVGSTGAGVDDTSVSEEFR




VDRPFLFLIKHNPSNSIFFFGRCFSP





PREDICTED:
SEQ ID NO: 258
MGSIGAASAEFCVDVFKELKDQHVNNIVFSPLMIISALSM


Ovalbumin-like

VNIGAREDTRAQIDKVVHFDKITGYGESIESQCGTSIGIY


[Buceros rhinoceros

FSLKDAFTQITKPSDNYSLSFASKLYAEETYPILPEYLKC



silvestris]


VKELYKGGLETISFQTAADQARELINSWVESQTNGMIKNI




LQPSSVDPQTEMVLVNAIYFKGLWEKAFKDEDTQAVPFRI




TEQESKPVQMMYQIGSFKVAVIASEKIKILELPYASGQLS




LLVLLPDDVSGLEQLESAITSEKLLEWTNPNIMEERKTKV




YLPRMKIEEKYNLTSVLVALGITDLFSSSANLSGISSAEG




LKLSDAVHEAFVEIYEAGREVVGSSEAGVEDSSVSEEFKA




DRPFIFLIKHNPTNGILYFGRYISP





PREDICTED:
SEQ ID NO: 259
MGSIGAANTDFCFDVFKELKVHHANENIFYSPLSIVSALA


Ovalbumin-like

MVYLGARENTRAQIDKALHFDKILGFGETVESQCDTSVSV


[Cariama cristata]

HTSLKDMLIQITKPSDNYSFSFASKIYTEETYPILPEYLQ




CVKELYKGGVETISFQTAADQAREVINSWVESHTNGMIKN




ILQPGSVDPQTKMVLVNAVYFKGIWEKAFKEEDTQEMPFR




INEQESKPVQMMYQIGSFKLTVAASENLKILEFPYASGQL




SMMVILPDEVSGLKQLETSITSEKLIKWTSSNTMEERKIR




VYLPRMKIEEKYNLKSVLMALGITDLFSSSANLSGISSAE




SLKMSEAVHEAFVEIYEAGSEVTSSTGTEMEAENVSEEFK




ADHPFLFLIKHNPTDSIVFFGRCMSP





Ovalbumin [Manacus
SEQ ID NO: 260
MGSIGPLSVEFCCDVFKELRIQHARENIFYSPVTIISALS



vitellinus]


MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSI




HTSLKDIFTQITKPSDNYTVGIASRLYAEEKYPILPEYLQ




CIKELYKGGLEPISFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVNPETDMVLVNAIYFKGLWEKAFKDESTQTVPFR




ITEQESKPVQMMFQIGSFRVAEIASEKIRILELPYASGQL




SLWVLLPDDISGLEQLETAITFENLKEWTSSTKMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




RLKVSSAFHEASMEIYEAGSRVVEAGVDDTSVSEEFRVDR




PFLFLIKHNPSNSIFFFGRCFSP





Ovalbumin-like
SEQ ID NO: 261
MGSIGPVSTEFCCDIFKELRIQHARENIIYSPVTIISALS


[Empidonax traillii]

MVYLGARDNTKAQIEKAVHFDKIPGFGESIESQCGTSLSI




HTSLKDILTQITKPSDNYTVGIASRLYAEEKYPILSEYLQ




CIKELYKGGLEPISFQTAAEQARELINSWVESQTNGMIKN




ILQPSSVNPETDMVLVNAIYFKGLWEKAFKDEGTQTVPFR




ITEQESKPVQMMFQIGSFKVAEITSEKIRILELPYASGKL




SLWVLLPDDISGLEQLETAITFENLKEWTSSTRMEERKIK




VYLPRMKIEEKYNLTSVLTSLGITDLFSSSANLSGISSAE




RLKVSSAFHEVFVEIYEAGSKVEGSTGAGVDDTSVSEEFR




ADHPFLFLVKHNPSNSIIFFGRCYLP





PREDICTED:
SEQ ID NO: 262
MGSTGAASMEFCFALFRELKVQHVNENIFFSPVTIISALS


Ovalbumin-like

MVYLGARENTRAQLDKVAPFDKITGFGETIGSQCSTSASS


[Leptosomus discolor]

HTSLKDVFTQITKASDNYSLSFASRLYAEETYPILPEYLQ




CVKELYKGGLESISFQTAADQARELINSWVESQTNGMIKD




ILRPSSVDPQTKIILITAIYFKGMWEKAFKEEDTQAVPFR




MTEQESKPVQMMYQIGSFKVAVIPSEKLKILELPYASGQL




SMLVILPDDVSGLEQLETAITTEKLKEWTSPSMMKERKMK




VYFPRMRIEEKYNLTSVLMALGITDLFSPSANLSGISSAE




SLKVSEAVHEASVDIDEAGSEVIGSTGVGTEVTSVSEEIR




ADHPFLFLIKHKPTNSILFFGRCFSP





Hypothetical protein
SEQ ID NO: 263
MEHAQLTQLVNSNMTSNTCHEADEFENIDFRMDSISVTNT


H355_008077

KFCFDVFNEMKVHHVNENILYSPLSILTALAMVYLGARGN


[Colinus virginianus]

TESQMKKALHFDSITGAGSTTDSQCGSSEYIHNLFKEFLT




EITRTNATYSLEIADKLYVDKTFTVLPEYINCARKFYTGG




VEEVNFKTAAEEARQLINSWVEKETNGQIKDLLVPSSVDF




GTMMVFINTIYFKGIWKTAFNTEDTREMPFSMTKQESKPV




QMMCLNDTFNMATLPAEKMRILELPYASGELSMLVLLPDE




VSGLEQIEKAINFEKLREWTSTNAMEKKSMKVYLPRMKIE




EKYNLTSTLMALGMTDLFSRSANLTGISSVENLMISDAVH




GAFMEVNEEGTEAAGSTGAIGNIKHSVEFEEFRADHPFLF




LIRYNPTNVILFFDNSEFTMGSIGAVSTEFCFDVFKELRV




HHANENIFYSPFTVISALAMVYLGAKDSTRTQINKVVRFD




KLPGFGDSIEAQCGTSANVHSSLRDILNQITKPNDIYSFS




LASRLYADETYTILPEYLQCVKELYRGGLESINFQTAADQ




ARELINSWVESQTSGIIRNVLQPSSVDSQTAMVLVNAIYF




KGLWEKGFKDEDTQAMPFRVTEQENKSVQMMYQIGTFKVA




SVASEKMKILELPFASGTMSMWVLLPDEVSGLEQLETTIS




IEKLTEWTSSSVMEERKIKVFLPRMKMEEKYNLTSVLMAM




GMTDLFSSSANLSGISSTLQKKGFRSQELGDKYAKPMLES




PALTPQVTAWDNSWIVAHPAAIEPDLCYQIMEQKWKPFDW




PDFRLPMRVSCRFRTMEALNKANTSFALDFFKHECQEDDD




ENILFSPFSISSALATVYLGAKGNTADQMAKTEIGKSGNI




HAGFKALDLEINQPTKNYLLNSVNQLYGEKSLPFSKEYLQ




LAKKYYSAEPQSVDFLGKANEIRREINSRVEHQTEGKIKN




LLPPGSIDSLTRLVLVNALYFKGNWATKFEAEDTRHRPFR




INMHTTKQVPMMYLRDKFNWTYVESVQTDVLELPYVNNDL




SMFILLPRDITGLQKLINELTFEKLSAWTSPELMEKMKME




VYLPRFTVEKKYDMKSTLSKMGIEDAFTKVDSCGVTNVDE




ITTHIVSSKCLELKHIQINKKLKCNKAVAMEQVSASIGNF




TIDLFNKLNETSRDKNIFFSPWSVSSALALTSLAAKGNTA




REMAEDPENEQAENIHSGFKELMTALNKPRNTYSLKSANR




IYVEKNYPLLPTYIQLSKKYYKAEPYKVNFKTAPEQSRKE




INNWVEKQTERKIKNFLSSDDVKNSTKSILVNAIYFKAEW




EEKFQAGNTDMQPFRMSKNKSKLVKMMYMRHTFPVLIMEK




LNFKMIELPYVKRELSMFILLPDDIKDSTTGLEQLERELT




YEKLSEWADSKKMSVTLVDLHLPKFSMEDRYDLKDALKSM




GMASAFNSNADFSGMTGFQAVPMESLSASTNSFTLDLYKK




LDETSKGQNIFFASWSIATALAMVHLGAKGDTATQVAKGP




EYEETENIHSGFKELLSAINKPRNTYLMKSANRLFGDKTY




PLLPKFLELVARYYQAKPQAVNFKTDAEQARAQINSWVEN




ETESKIQNLLPAGSIDSHTVLVLVNAIYFKGNWEKRFLEK




DTSKMPFRLSKTETKPVQMMFLKDTFLIHHERTMKFKIIE




LPYVGNELSAFVLLPDDISDNTTGLELVERELTYEKLAEW




SNSASMMKAKVELYLPKLKMEENYDLKSVLSDMGIRSAFD




PAQADFTRMSEKKDLFISKVIHKAFVEVNEEDRIVQLASG




RLTGRCRTLANKELSEKNRTKNLFFSPFSISSALSMILLG




SKGNTEAQIAKVLSLSKAEDAHNGYQSLLSEINNPDTKYI




LRTANRLYGEKTFEFLSSFIDSSQKFYHAGLEQTDFKNAS




EDSRKQINGWVEEKTEGKIQKLLSEGIINSMTKLVLVNAI




YFKGNWQEKFDKETTKEMPFKINKNETKPVQMMFRKGKYN




MTYIGDL




ETTVLEIPYVDNELSMIILLPDSIQDESTGLEKLERELTY




EKLMDWINPNMMDSTEVRVSLPRFKLEENYELKPTLSTMG




MPDAFDLRTADFSGISSGNELVLSEVVHKSFVEVNEEGTE




AAAATAGIMLLRCAMIVANFTADHPFLFFIRHNKTNSILF




CGRFCSP





PREDICTED:
SEQ ID NO: 264
MGSIGTASTEFCFDMFKEMKVQHANQNIIFSPLTIISALS


Ovalbumin isoform

MVYLGARDNTKAQMEKVIHFDKITGFGESVESQCGTSVSI


X2 [Apteryx australis

HTSLKDMLSEITKPSDNYSLSLASRLYAEETYPILPEYLQ


mantelli]

CMKELYKGGLETVSFQTAADQARELINSWVESQTNGVIKN




FLQPGSVDPQTEMVLVNAIYFKGMWEKAFKDEDTQEVPFR




ITEQESKPVQMMYQVGSFKVATVAAEKMKILEIPYTHREL




SMFVLLPDDISGLEQLETTISFEKLTEWTSSNMMEERKVK




VYLPHMKIEEKYNLTSVLMALGMTDLFSPSANLSGISTAQ




TLMMSEAIHGAYVEIYEAGREMASSTGVQVEVTSVLEEVR




ADKPFLFFIRHNPTNSMVVFGRYMSP





Hypothetical protein
SEQ ID NO: 265
MTSNTCHEADEFEN


ASZ78_006007

IDFRMDSISVTNTKFCFDVFNEMKVHHVNENILYSPLSIL


[Callipepla squamata]

TALAMVYLGARGNTESQMKKALHFDSITGGGSTTDSQCGS




SEYIHNLFKEFLTEITRTNATYSLEIADKLYVDKTFTVLP




EYINCARKFYTGGVEEVNFKTAAEEARQLMNSWVEKETNG




QIKDLLVPSSVDFGTMMVFINTIYFKGIWKTAFNTEDTRE




MPFSMTKQESKPVQMMCLNDTFNMVTLPAEKMRILELPYA




SGELSMLVLLPDEVSGLERIEKAINFEKLREWTSTNAMEK




KSMKVYLPRMKIEEKYNLTSTLMALGMTDLFSRSANLTGI




SSVDNLMISDAVHGAFMEVNEEGTEAAGSTGAIGNIKHSV




EFEEFRADHPFLFLIRYNPTNVILFFDNSEFTMGSIGAVS




TEFCFDVFKELRVHHANENIFYSPFTIISALAMVYLGAKD




STRTQINKVVRFDKLPGFGDSIEAQCGTSANVHSSLRDIL




NQITKPNDIYSFSLASRLYADETYTILPEYLQCVKELYRG




GLESINFQTAADQARELINSWVESQTSGIIRNVLQPSSVD




SQTAMVLVNAIYFKGLWEKGFKDEDTQAIPFRVTEQENKS




VQMMYQIGTFKVASVASEKMKILELPFASGTMSMWVLLPD




EVSGLEQLETTISIEKLTEWTSSSVMEERKIKVFLPRMKM




EEKYNLTSVLMAMGMTDLFSSSANLSGISSTLQKKGFRSQ




ELGDKYAKPMLESPALTPQATAWDNSWIVAHPPAIEPDLY




YQIMEQKWKPFDWPDFRLPMRVSCRFRTMEALNKANTSFA




LDFFKHECQEDDSENILFSPFSISSALATVYLGAKGNTAD




QMAKVLHFNEAEGARNVTTTIRMQVYSRTDQQRLNRRACF




QKTEIGKSGNIHAGFKGLNLEINQPTKNYLLNSVNQLYGE




KSLPFSKEYLQLAKKYYSAEPQSVDFVGTANEIRREINSR




VEHQTEGKIKNLLPPGSIDSLTRLVLVNALYFKGNWATKF




EAEDTRHRPFRINTHTTKQVPMMYLSDKFNWTYVESVQTD




VLELPYVNNDLSMFILLPRDITGLQKLINELTFEKLSAWT




SPELMEKMKMEVYLPRFTVEKKYDMKSTLSKMGIEDAFTK




VDNCGVTNVDEITIHVVPSKCLELKHIQINKELKCNKAVA




MEQVSASIGNFTIDLFNKLNETSRDKNIFFSPWSVSSALA




LTSLAAKGNTAREMAEDPENEQAENIHSGFNELLTALNKP




RNTYSLKSANRIYVEKNYPLLPTYIQLSKKYYKAEPHKVN




FKTAPEQSRKEINNWVEKQTERKIKNFLSSDDVKNSTKLI




LVNAIYFKAEWEEKFQAGNTDMQPFRMSKNKSKLVKMMYM




RHTFPVLIMEKLNFKMIELPYVKRELSMFILLPDDIKDST




TGLEQLERELTYEKLSEWADSKKMSVTLVDLHLPKFSMED




RYDLKDALRSMGMASAFNSNADFSG




MTGERDLVISKVCHQSFVAVDEKGTEAAAATAVIAEAVPM




ESLSASTNSFTLDLYKKLDETSKGQNIFFASWSIATALTM




VHLGAKGDTATQVAKGPEYEETENIHSGFKELLSALNKPR




NTYSMKSANRLFGDKTYPLLPTKTKPVQMMFLKDTFLIHH




ERTMKFKIIELPYMGNELSAFVLLPDDISDNTTGLELVER




ELTYEKLAEWSNSASMMKVKVELYLPKLKMEENYDLKSAL




SDMGIRSAFDPAQADFTRMSEKKDLFISKVIHKAFVEVNE




EDRIVQLASGRLTGNTEAQIAKVLSLSKAEDAHNGYQSLL




SEINNPDTKYILRTANRLYGEKTFEFLSSFIDSSQKFYHA




GLEQTDFKNASEDSRKQINGWVEEKTEGKIQKLLSEGIIN




SMTKLVLVNAIYFKGNWQEKFDKETTKEMPFKINKNETKP




VQMMFRKGKYNMTYIGDLETTVLEIPYVDNELSMIILLPD




SIQDESTGLEKLERELTYEKLMDWINPNMMDSTEVRVSLP




RFKLEENYELKPTLSTMGMPDAFDLRTADFSGISSGNELV




LSEVVHKSFVEVNEEGTEAAAATAGIMLLRCAMIVANFTA




DHPFLFFIRHNKTNSILFCGRFCSP





PREDICTED:
SEQ ID NO: 266
MASIGAASTEFCFDVFKELKTQHVKENIFYSPMAIISALS


Ovalbumin-like

MVYIGARENTRAEIDKVVHFDKITGFGNAVESQCGPSVSV


[Mesitornis unicolor]

HSSLKDLITQISKRSDNYSLSYASRIYAEETYPILPEYLQ




CVKEVYKGGLESISFQTAADQARENINAWVESQTNGMIKN




ILQPSSVNPQTEMVLVNAIYLKGMWEKAFKDEDTQTMPFR




VTQQESKPVQMMYQIGSFKVAVIASEKMKILELPYTSGQL




SMLVLLPDDVSGLEQVESAITAEKLMEWTSPSIMEERTMK




VYLPRMKMVEKYNLTSVLMALGMTDLFTSVANLSGISSAQ




GLKMSQAIHEAFVEIYEAGSEAVGSTGVGMEITSVSEEFK




ADLSFLFLIRHNPTNSIIFFGRCISP





Ovalbumin, partial
SEQ ID NO: 267
MGSIGAASTEFCFDVFRELRVQHVNENIFYSPFSIISALA


[Anas platyrhynchos]

MVYLGARDNTRTQIDKISQFQALSDEHLVLCIQQLGEFFV




CTNRERREVTRYSEQTEDKTQDQNTGQIHKIVDTCMLRQD




ILTQITKPSDNFSLSFASRLYAEETYAILPEYLQCVKELY




KGGLESISFQTAADQARELINSWVESQTNGIIKNILQPSS




VDSQTTMVLVNAIYFKGMWEKAFKDEDTQAMPFRMTEQES




KPVQMMYQVGSFKVAMVTSEKMKILELPFASGMMSMFVLL




PDEVSGLEQLESTISFEKLTEWTSSTMMEERRMKVYLPRM




KMEEKYNLTSVFMALGMTDLFSSSANMSGISSTVSLKMSE




AVHAACVEIFEAGRDVVGSAEAGMDVTSVSEEFRADHPFL




FFIKHNPTNSILFFGRWMSP





PREDICTED:
SEQ ID NO: 268
MGSIGAASAEFCLDIFKELKVQHVNENIIFSPMTIISALS


Ovalbumin-like

LVYLGAKEDTRAQIEKVVPFDKIPGFGEIVESQCPKSASV


[Chaetura pelagica]

HSSIQDIFNQIIKRSDNYSLSLASRLYAEESYPIRPEYLQ




CVKELDKEGLETISFQTAADQARQLINSWVESQTNGMIKN




ILQPSSVNSQTEMVLVNAIYFRGLWQKAFKDEDTQAVPFR




ITEQESKPVQMMQQIGSFKVAEIASEKMKILELPYASGQL




SMLVLLPDDVSGLEKLESSITVEKLIEWTSSNLTEERNVK




VYLPRLKIEEKYNLTSVLAALGITDLFSSSANLSGISTAE




SLKLSRAVHESFVEIQEAGHEVEGPKEAGIEVTSALDEFR




VDRPFLFVTKHNPTNSILFLGRCLSP





PREDICTED:
SEQ ID NO: 269
MGSISAASGEFCLDIFKELKVQHVNENIFYSPMVIVSALS


Ovalbumin-like

LVYLGARENTRAQIDKVIPFDKITGSSEAVESQCGTPVGA


[Apaloderma vittatum]

HISLKDVFAQIAKRSDNYSLSFVNRLYAEETYPILPEYLQ




CVKELYKGGLETISFQTAADQAREIINSWVESQTDGKIKN




ILQPSSVDPQTKMVLVSAIYFKGLWEKSFKDEDTQAVPFR




VTEQESKPVQMMYQIGSFKVAAIAAEKIKILELPYASEQL




SMLVLLPDDVSGLEQLEKKISYEKLTEWTSSSVMEEKKIK




VYLPRMKIEEKYNLTSILMSLGITDLFSSSANLSGISSTK




SLKMSEAVHEASVEIYEAGSEASGITGDGMEATSVFGEFK




VDHPFLFMIKHKPTNSILFFGRCISP





Ovalbumin-like
SEQ ID NO: 270
MGSIGPVSTEVCCDIFRELRSQSVQENVCYSPLLIISTLS


[Corvus cornix cornix]

MVYIGAKDNTKAQIEKAIHFDKIPGFGESTESQCGTSVSI




HTSLKDIFTQITKPSDNYSISIARRLYAEEKYPILPEYIQ




CVKELYKGGLESISFQTAAEKSRELINSWVESQTNGTIKN




ILQPSSVSSQTDMVLVSAIYFKGLWEKAFKEEDTQTIPFR




ITEQESKPVQMMSQIGTFKVAEIPSEKCRILELPYASGRL




SLWVLLPDDISGLEQLETAITFENLKEWTSSSKMEERKIR




VYLPRMKIEEKYNLTSVLKSLGITDLFSSSANLSGISSAE




SLKVSAAFHEASVEIYEAGSKGVGSSEAGVDGTSVSEEIR




ADHPFLFLIKHNPSDSILFFGRCFSP





PREDICTED:
SEQ ID NO: 271
MGSIGAASTEFCFDVFKELKVQHVNENIIISPLSIISALS


Ovalbumin-like

MVYLGAREDTRAQIDKVVHFDKITGFGEAIESQCPTSESV


[Calypte anna]

HASLKETFSQLTKPSDNYSLAFASRLYAEETYPILPEYLQ




CVKELYKGGLETINFQTAAEQARQVINSWVESQTDGMIKS




LLQPSSVDPQTEMILVNAIYFRGLWERAFKDEDTQELPFR




ITEQESKPVQMMSQIGSFKVAVVASEKVKILELPYASGQL




SMLVLLPDDVSGLEQLESSITVEKLIEWISSNTKEERNIK




VYLPRMKIEEKYNLTSVLVALGITDLFSSSANLSGISSAE




SLKISEAVHEAFVEIQEAGSEVVGSPGPEVEVTSVSEEWK




ADRPFLFLIKHNPTNSILFFGRYISP





PREDICTED:
SEQ ID NO: 272
MGSIGPVSTEVCCDIFRELRSQSVQENVCYSPLLIISTLS


Ovalbumin [Corvus

MVYIGAKDNTKAQIEKAIHFDKIPGFGESTESQCGTSVSI



brachyrhynchos]


HTSLKDIFTQITKPSDNYSISIARRLYAEEKYPILQEYIQ




CVKELYKGGLESISFQTAAEKSRELINSWVESQTNGTIKN




ILQPSSVSSQTDMVLVSAIYFKGLWEKAFKEEDTQTIPFR




ITEQESKPVQMMSQIGTFKVAEIPSEKCRILELPYASGRL




SLWVLLPDDISGLEQLETSITFENLKEWTSSSKMEERKIR




VYLPRMKIEEKYNLTSVLKSLGITDLFSSSANLSGISSAE




SLKVSAVFHEASVEIYEAGSKGVGSSEAGVDGTSVSEEIR




ADHPFLFLIKHNPSDSILFFGRCFSP





Hypothetical protein
SEQ ID NO: 273
MLNLMHPKQFCCTMGSIGPVSTEVCCDIFRELRSQSVQEN


DUI87_08270

VCYSPLLIISTLSMVYIGAKDNTKAQIEKAIHFDKIPGFG


[Hirundo rustica

ESTESQCGTSVSIHTSLKDIFTQITKPSDNYSISIASRLY



rustica]


AEEKYPILPEYIQCVKELYKGGLESISFQTAAEKSRELIN




SWVESQTNGTIKNILQPSSVSSQTDMVLVSAIYFKGLWEK




AFKEEDTQTVPFRITEQESKPVQMMSQIGTFKVAEIPSEK




CRILELPYASGRLSLWVLLPDDISGLEQLETAITSENLKE




WTSSSKMEERKIKVYLPRMKIEEKYNLTSVLKSLGITDLF




SSSANLSGISSAESLKVSGAFHEAFVEIYEAGSKAVGSSG




AGVEDTSVSEEIRADHPFLFFIKHNPSDSILFFGRCFSP





Ostrich OVA
SEQ ID NO: 274
EAEAGSIGTASAEFCFDVFKELKVHHVNENIFYSPLSIIS


sequence as secreted

ALSMVYLGARENTKTQMEKVIHFDKITGLGESMESQCGTG


from pichia

VSIHTALKDMLSEITKPSDNYSLSLASRLYAEQTYAILPE




YLQCIKELYKESLETVSFQTAADQARELINSWIESQTNGV




IKNFLQPGSVDSQTELVLVNAIYFKGMWEKAFKDEDTQEV




PFRITEQESRPVQMMYQAGSFKVATVAAEKIKILELPYAS




GELSMLVLLPDDISGLEQLETTISFEKLTEWTSSNMMEDR




NMKVYLPRMKIEEKYNLTSVLIALGMTDLFSPAANLSGIS




AAESLKMSEAIHAAYVEIYEADSEIVSSAGVQVEVTSDSE




EFRVDHPFLFLIKHNPTNSVLFFGRCISP





Ostrich construct
SEQ ID NO: 275
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


(secretion signal 

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


mature protein)

SLEKREAEAGSIGTASAEFCFDVFKELKVHHVNENIFYSP




LSIISALSMVYLGARENTKTQMEKVIHFDKITGLGESMES




QCGTGVSIHTALKDMLSEITKPSDNYSLSLASRLYAEQTY




AILPEYLQCIKELYKESLETVSFQTAADQARELINSWIES




QTNGVIKNFLQPGSVDSQTELVLVNAIYFKGMWEKAFKDE




DTQEVPFRITEQESRPVQMMYQAGSFKVATVAAEKIKILE




LPYASGELSMLVLLPDDISGLEQLETTISFEKLTEWTSSN




MMEDRNMKVYLPRMKIEEKYNLTSVLIALGMTDLFSPAAN




LSGISAAESLKMSEAIHAAYVEIYEADSEIVSSAGVQVEV




TSDSEEFRVDHPFLFLIKHNPTNSVLFFGRCISP





Duck OVA sequence
SEQ ID NO: 276
EAEAGSIGAASTEFCFDVFRELRVQHVNENIFYSPFSIIS


as secreted from pichia

ALAMVYLGARDNTRTQIDKVVHFDKLPGFGESMEAQCGTS




VSVHSSLRDILTQITKPSDNFSLSFASRLYAEETYAILPE




YLQCVKELYKGGLESISFQTAADQARELINSWVESQINGI




IKNILQPSSVDSQTTMVLVNAIYFKGMWEKAFKDEDTQAM




PFRMTEQESKPVQMMYQVGSFKVAMVTSEKMKILELPFAS




GMMSMFVLLPDEVSGLEQLESTISFEKLTEWTSSTMMEER




RMKVYLPRMKMEEKYNLTSVFMALGMTDLFSSSANMSGIS




STVSLKMSEAVHAACVEIFEAGRDVVGSAEAGMDVTSVSE




EFRADHPFLFFIKHNPTNSILFFGRWMSP





Duck construct
SEQ ID NO: 277
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIG


(secretion signal 

YSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGV


mature protein)

SLEKREAEAGSIGAASTEFCFDVFRELRVQHVNENIFYSP




FSIISALAMVYLGARDNTRTQIDKVVHFDKLPGFGESMEA




QCGTSVSVHSSLRDILTQITKPSDNFSLSFASRLYAEETY




AILPEYLQCVKELYKGGLESISFQTAADQARELINSWVES




QTNGIIKNILQPSSVDSQTTMVLVNAIYFKGMWEKAFKDE




DTQAMPFRMTEQESKPVQMMYQVGSFKVAMVTSEKMKILE




LPFASGMMSMFVLLPDEVSGLEQLESTISFEKLTEWTSST




MMEERRMKVYLPRMKMEEKYNLTSVFMALGMTDLFSSSAN




MSGISSTVSLKMSEAVHAACVEIFEAGRDVVGSAEAGMDV




TSVSEEFRADHPFLFFIKHNPTNSILFFGRWMSP





Ovoglobulin G2
SEQ ID NO: 278
TRAPDCGGILTPLGLSYLAEVSKPHAEVVLRQDLMAQRAS




DLFLGSMEPSRNRITSVKVADLWLSVIPEAGLRLGIEVEL




RIAPLHAVPMPVRISIRADLHVDMGPDGNLQLLTSACRPT




VQAQSTREAESKSSRSILDKVVDVDKLCLDVSKLLLFPNE




QLMSLTALFPVTPNCQLQYLPLAAPVFSKQGIALSLQTTF




QVAGAVVPVPVSPVPFSMPELASTSTSHLILALSEHFYTS




LYFTLERAGAFNMTIPSMLTTATLAQKITQVGSLYHEDLP




ITLSAALRSSPRVVLEEGRAALKLFLTVHIGAGSPDFQSF




LSVSADVTAGLQLSVSDTRMMISTAVIEDAELSLAASNVG




LVRAALLEELFLAPVCQQVPAWMDDVLREGVHLPHLSHFT




YTDVNVVVHKDYVLVPCKLKLRSTMA*





Ovoglobulin G3
SEQ ID NO: 279
MDSISVTNAKFCFDVFNEMKVHHVNENILYCPLSILTALA




MVYLGARGNTESQMKKVLHFDSITGAGSTTDSQCGSSEYV




HNLFKELLSEITRPNATYSLEIADKLYVDKTFSVLPEYLS




CARKFYTGGVEEVNFKTAAEEARQLINSWVEKETNGQIKD




LLVSSSIDFGTTMVFINTIYFKGIWKIAFNTEDTREMPFS




MTKEESKPVQMMCMNNSFNVATLPAEKMKILELPYASGDL




SMLVLLPDEVSGLERIEKTINFDKLREWTSTNAMAKKSMK




VYLPRMKIEEKYNLTSILMALGMTDLFSRSANLTGISSVD




NLMISDAVHGVFMEVNEEGTEATGSTGAIGNIKHSLELEE




FRADHPFLFFIRYNPTNAILFFGRYWSP*





β-ovomucin
SEQ ID NO: 280
CSTWGGGHFSTFDKYQYDFTGTCNYIFATVCDESSPDFNI




QFRRGLDKKIARIIIELGPSVIIVEKDSISVRSVGVIKLP




YASNGIQIAPYGRSVRLVAKLMEMELVVMWNNEDYLMVLT




EKKYMGKTCGMCGNYDGYELNDFVSEGKLLDTYKFAALQK




MDDPSEICLSEEISIPAIPHKKYAVICSQLLNLVSPTCSV




PKDGFVTRCQLDMQDCSEPGQKNCTCSTLSEYSRQCAMSH




QVVFNWRTENFCSVGKCSANQIYEECGSPCIKTCSNPEYS




CSSHCTYGCFCPEGTVLDDISKNRTCVHLEQCPCTLNGET




YAPGDTMKAACRTCKCTMGQWNCKELPCPGRCSLEGGSFV




TTFDSRSYRFHGVCTYILMKSSSLPHNGTLMAIYEKSGYS




HSETSLSAIIYLSTKDKIVISQNELLTDDDELKRLPYKSG




DITIFKQSSMFIQMHTEFGLELVVQTSPVFQAYVKVSAQF




QGRTLGLCGNYNGDTTDDFMTSMDITEGTASLFVDSWRAG




NCLPAMERETDPCALSQLNKISAETHCSILTKKGTVFETC




HAVVNPTPFYKRCVYQACNYEETFPYICSALGSYARTCSS




MGLILENWRNSMDNCTITCTGNQTFSYNTQACERTCLSLS




NPTLECHPTDIPIEGCNCPKGMYLNHKNECVRKSHCPCYL




EDRKYILPDQSTMTGGITCYCVNGRLSCTGKLQNPAESCK




APKKYISCSDSLENKYGATCAPTCQMLATGIECIPTKCES




GCVCADGLYENLDGRCVPPEECPCEYGGLSYGKGEQIQTE




CEICTCRKGKWKCVQKSRCSSTCNLYGEGHITTFDGQRFV




FDGNCEYILAMDGCNVNRPLSSFKIVTENVICGKSGVTCS




RSISIYLGNLTIILRDETYSISGKNLQVKYNVKKNALHLM




FDIIIPGKYNMTLIWNKHMNFFIKISRETQETICGLCGNY




NGNMKDDFETRSKYVASNELEFVNSWKENPLCGDVYFVVD




PCSKNPYRKAWAEKTCSIINSQVFSACHNKVNRMPYYEAC




VRDSCGCDIGGDCECMCDAIAVYAMACLDKGICIDWRTPE




FCPVYCEYYNSHRKTGSGGAYSYGSSVNCTWHYRPCNCPN




QYYKYVNIEGCYNCSHDEYFDYEKEKCMPCAMQPTSVTLP




TATQPTSPSTSSASTVLTETTNPPV*





Lysozyme
SEQ ID NO: 281
KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNENT




QATNRNTDGSTDYGILQINSRWWCNDGRTPGSRNLCNIPC




SALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDV




QAWIRGCRL*





Lysozyme
SEQ ID NO: 282
KVFGRCELAAAMKRHGLDNYRGYSLGNWVCVAKFESNFNT




QATNRNTDGSTDYGILQINSRWWCNDGRTPGSRNLCNIPC




SALLSSDITASVNCAKKIVSDGNGMSAWVAWRNRCKGTDV




QAWIRGCRL*





Lysozyme C (Human)
SEQ ID NO: 283
KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNT




RATNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLS




CSALLQDNIADAVACAKRVVRDPQGIRAWVAWRNRCQNRD




VRQYVQGCGV*





Lysozyme C (Bos
SEQ ID NO: 284
KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESSYNT


taurus)

KATNYNPSSESTDYGIFQINSKWWCNDGKTPNAVDGCHVS




CRELMENDIAKAVACAKHIVSEQGITAWVAWKSHCRDHDV




SSYVEGCTL*





Ovoinhibitor
SEQ ID NO: 285
IEVNCSLYASGIGKDGTSWVACPRNLKPVCGTDGSTYSNE




CGICLYNREHGANVEKEYDGECRPKHVMIDCSPYLQVVRD




GNTMVACPRILKPVCGSDSFTYDNECGICAYNAEHHTNIS




KLHDGECKLEIGSVDCSKYPSTVSKDGRTLVACPRILSPV




CGTDGFTYDNECGICAHNAEQRTHVSKKHDGKCRQEIPEI




DCDQYPTRKTTGGKLLVRCPRILLPVCGTDGFTYDNECGI




CAHNAQHGTEVKKSHDGRCKERSTPLDCTQYLSNTQNGEA




ITACPFILQEVCGTDGVTYSNDCSLCAHNIELGTSVAKKH




DGRCREEVPELDCSKYKTSTLKDGRQVVACTMIYDPVCAT




NGVTYASECTLCAHNLEQRTNLGKRKNGRCEEDITKEHCR




EFQKVSPICTMEYVPHCGSDGVTYSNRCFFCNAYVQSNRT




LNLVSMAAC*





Cystatin
SEQ ID NO: 286
MAGARGCVVLLAAALMLVGAVLGSEDRSRLLGAPVPVDEN




DEGLQRALQFAMAEYNRASNDKYSSRVVRVISAKRQLVSG




IKYILQVEIGRTTCPKSSGDLQSCEFHDEPEMAKYTTCTF




VVYSIPWLNQIKLLESKCQ*





Porcine Lipase
SEQ ID NO: 287
SEVCFPRLGCFSDDAPWAGIVQRPLKILPWSPKDVDTRFL




LYTNQNQNNYQELVADPSTITNSNFRMDRKTRFIIHGFID




KGEEDWLSNICKNLFKVESVNCICVDWKGGSRTGYTQASQ




NIRIVGAEVAYFVEVLKSSLGYSPSNVHVIGHSLGSHAAG




EAGRRTNGTIERITGLDPAEPCFQGTPELVRLDPSDAKFV




DVIHTDAAPIIPNLGFGMSQTVGHLDFFPNGGKQMPGCQK




NILSQIVDIDGIWEGTRDFVACNHLRSYKYYADSILNPDG




FAGFPCDSYNVFTANKCFPCPSEGCPQMGHYADRFPGKTN




GVSQVFYLNTGDASNFARWRYKVSVTLSGKKVTGHILVSL




FGNEGNSRQYEIYKGTLQPDNTHSDEFDSDVEVGDLQKVK




FIWYNNNVINPTLPRVGASKITVERNDGKVYDFCSQETVR




EEVLLTLNPC*





Kid Lipase
SEQ ID NO: 288
GLVAADRITGGKDFRDIESKFALRTPEDTAEDTCHLIPGV




TESVANCHFNHSSKTFVVIHGWTVTGMYESWVPKLVAALY




KREPDSNVIVVDWLSRAQQHYPVSAGYTKLVGQDVAKFMN




WMADEFNYPLGNVHLLGYSLGAHAAGIAGSLTSKKVNRIT




GLDPAGPNFEYAEAPSRLSPDDADFVDVLHTFTRGSPGRS




IGIQKPVGHVDIYPNGGTFQPGCNIGEALRVIAERGLGDV




DQLVKCSHERSVHLFIDSLLNEENPSKAYRCNSKEAFEKG




LCLSCRKNRCNNMGYEINKVRAKRSSKMYLKTRSQMPYKV




FHYQVKIHFSGTESNTYTNQAFEISLYGTVAESENIPFTL




PEVSTNKTYSFLLYTEVDIGELLMLKLKWISDSYFSWSNW




WSSPGFDIGKIRVKAGETQKKVIFCSREKMSYLQKGKSPV




IFVKCHDKSLNRKSG*





Porcine Lactoferrin
SEQ ID NO: 289
APKKGVRWCVISTAEYSKCRQWQSKIRRTNPMFCIRRASP




TDCIRAIAAKRADAVTLDGGLVFEADQYKLRPVAAEIYGT




EENPQTYYYAVAVVKKGFNFQLNQLQGRKSCHTGLGRSAG




WNIPIGLLRRFLDWAGPPEPLQKAVAKFFSQSCVPCADGN




AYPNLCQLCIGKGKDKCACSSQEPYFGYSGAFNCLHKGIG




DVAFVKESTVFENLPQKADRDKYELLCPDNTRKPVEAFRE




CHLARVPSHAVVARSVNGKENSIWELLYQSQKKFGKSNPQ




EFQLFGSPGQQKDLLFRDATIGFLKIPSKIDSKLYLGLPY




LTAIQGLRETAAEVEARQAKVVWCAVGPEELRKCRQWSSQ




SSQNLNCS




LASTTEDCIVQVLKGEADAMSLDGGFIYTAGKCGLVPVLA




ENQKSRQSSSSDCVHRPTQGYFAVAVVRKANGGITWNSVR




GTKSCHTAVDRTAGWNIPMGLLVNQTGSCKFDEFFSQSCA




PGSQPGSNLCALCVGNDQGVDKCVPNSNERYYGYTGAFRC




LAENAGDVAFVKDVTVLDNTNGQNTEEWARELRSDDFELL




CLDGTRKPVTEAQNCHLAVAPSHAVVSRKEKAAQVEQVLL




TEQAQFGRYGKDCPDKFCLFRSETKNLLFNDNTEVLAQLQ




GKTTYEKYLGSEYVTAIANLKQCSVSPLLEACAFMMR*





Bovine Lactoferrin
SEQ ID NO: 290
APRKNVRWCTISQPEWFKCRRWQWRMKKLGAPSITCVRRA




FALECIRAIAEKKADAVTLDGGMVFEAGRDPYKLRPVAAE




IYGTKESPQTHYYAVAVVKKGSNFQLDQLQGRKSCHTGLG




RSAGWIIPMGILRPYLSWTESLEPLQGAVAKFFSASCVPC




IDRQAYPNLCQLCKGEGENQCACSSREPYFGYSGAFKCLQ




DGAGDVAFVKETTVFENLPEKADRDQYELLCLNNSRAPVD




AFKECHLAQVPSHAVVARSVDGKEDLIWKLLSKAQEKFGK




NKSRSFQLFGSPPGQRDLLFKDSALGFLRIPSKVDSALYL




GSRYLTTLKNLRETAEEVKARYTRVVWCAVGPEEQKKCQQ




WSQQSGQNVTCATASTTDDCIVLVLKGEADALNLDGGYIY




TAGKCGLVPVLAENRKSSKHSSLDCVLRPTEGYLAVAVVK




KANEGLTWNSLKDKKSCHTAVDRTAGWNIPMGLIVNQTGS




CAFDEFFSQSCAPGADPKSRLCALCAGDDQGLDKCVPNSK




EKYYGYTGAFRCLAEDVGDVAFVKNDTVWENTNGESTADW




AKNLNREDFRLLCLDGTRKPVTEAQSCHLAVAPNHAVVSR




SDRAAHVKQVLLHQQALFGKNGKNCPDKFCLFKSETKNLL




FNDNTECLAKLGGRPTYEEYLGTEYVTAIANLKKCSTSPL




LEACAFLTR*






Saccharomyces

SEQ ID NO: 291
APVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNST



cerevisiae


NNGLLFINTTIASIAAKEEGVSLDKR


a-mating




factor signal peptide




and secretion signal








Saccharomyces

SEQ ID NO: 292
APVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNST



cerevisiae


NNGLLFINTTIASIAAKEEGVSLDKREAEA


a-mating




factor signal peptide




and secretion signal




ending with EAEA







EndoH-
SEQ ID NO: 293
MTIAHHCIFLVILAFLALINVASGAPAPVKQGPTSVAYVE



Saccharomyces


VNNNSMLNVGKYTLADGGGNAFDVAVIFAANINYDTGTKT



cerevisiae


AYLHFNENVQRVLDNAVTQIRPLQQQGIKVLLSVLGNHQG


Flo5 fusion

AGFANFPSQQAASAFAKQLSDAVAKYGLDGVDFDDEYAEY


(full ORF, including

GNNGTAQPNDSSFVHLVTALRANMPDKIISLYNIGPAASR


peptides that are

LSYGGVDVSDKFDYAWNPYYGTWQVPGIALPKAQLSPAAV


cleaved off post-

EIGRTSRSTVADLARRTVDEGYGVYLTYNLDGGDRTADVS


translationally)

AFTRELYGSEAVRTPGSSGSSGSSGSSGSSGSSGSSGSSE




AAAREAAAREAAAREAAARGGGGSGGGGSGGGGSATEACL




PAGQRKSGMNINFYQYSLKDSSTYSNAAYMAYGYASKTKL




GSVGGQTDISIDYNIPCVSSSGTFPCPQEDSYGNWGCKGM




GACSNSQGIAYWSTDLFGFYTTPTNVTLEMTGYFLPPQTG




SYTFSFATVDDSAILSVGGSIAFECCAQEQPPITSTNFTI




NGIKPW




DGSLPDNITGTVYMYAGYYYPLKVVYSNAVSWGTLPISVE




LPDGTTVSDNFEGYVYSFDDDLSQSNCTIPDPSIHTTSTI




TTTTEPWTGTFTSTSTEMTTITDTNGQLTDETVIVIRTPT




TASTITTTTEPWTGTFTSTSTEMTTVTGTNGQPTDETVIV




IRTPTSEGLITTTTEPWTGTFTSTSTEMTTVTGTNGQPTD




ETVIVIRTPTSEGLITTTTEPWTGTFTSTSTEVTTITGTN




GQPTDETVIVIRTPTSEGLITTTTEPWTGTFTSTSTEMTT




VTGTNGQPTDETVIVIRTPTSEGLISTTTEPWTGTFTSTS




TEVTTITGTNGQPTDETVIVIRTPTSEGLITTTTEPWTGT




FTSTSTEMTTVTGTNGQPTDETVIVIRTPTSEGLITRTTE




PWTGTFTSTSTEVTTITGTNGQPTDETVIVIRTPTTAISS




SLSSSSGQITSSITSSRPIITPFYPSNGTSVISSSVISSS




VTSSLVTSSSFISSSVISSSTTTSTSIFSESSTSSVIPTS




SSTSGSSESKTSSASSSSSSSSISSESPKSPTNSSSSLPP




VTSATTGQETASSLPPATTTKTSEQTTLVTVTSCESHVCT




ESISSAIVSTATVTVSGVTTEYTTWCPISTTETTKQTKGT




TEQTKGTTEQTTETTKQTTVVTISSCESDICSKTASPAIV




STSTATINGVTTEYTTWCPISTTESKQQTTLVTVTSCESG




VCSETTSPAIVSTATATVNDVVTVYPTWRPQTTNEQSVSS




KMNSATSETTTNTGAAETKTAVTSSLSRFNHAETQTASAT




DVIGHSSSVVSVSETGNTMSLTSSGLSTMSQQPRSTPASS




MVGSSTASLEISTYAGSANSLLAGSGLSVFIASLLLAII





A flexible GS linker
SEQ ID NO: 294
GSSGSSGSSGSSGSSGSSGSSGSS


with higher S content







A flexible GS linker
SEQ ID NO: 295
GGGGSGGGGSGGGGS


with much higher G




content








Claims
  • 1. An engineered eukaryotic cell comprising a surface displayed catalytic domain of an endoglycosidase, wherein the surface displayed catalytic domain of an endoglycosidase is a portion of a fusion protein expressed by the cell.
  • 2. The engineered eukaryotic cell of claim 2, wherein the fusion protein further comprises an anchoring domain of a cell surface protein.
  • 3. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises a portion of the endoglycosidase in addition to its catalytic domain.
  • 4. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises substantially the entire amino acid sequence of the endoglycosidase.
  • 5. The engineered eukaryotic cell of claim 1, wherein the endoglycosidase is endoglycosidase H.
  • 6. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises an amino acid sequence that is at least 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 1 or SEQ ID NO:2.
  • 7. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises a portion of the cell surface protein in addition to its anchoring domain.
  • 8. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises substantially the entire amino acid sequence of the cell surface protein.
  • 9. The engineered eukaryotic cell of claim 1, wherein the cell surface protein is selected from Sed1p, Flo5-2, or Flo11.
  • 10. The engineered eukaryotic cell of claim 1, wherein the fusion protein comprises an amino acid sequence that is at least 95% identical to one of SEQ ID NO: 3 to SEQ ID NO: 7 and SEQ ID NO: 20.
  • 11. The engineered eukaryotic cell of claim 1, wherein the anchoring domain stably attaches the fusion protein to the extracellular surface of the cell.
  • 12. The engineered eukaryotic cell of claim 1, wherein upon translation the fusion protein comprises a signal peptide and/or a secretory signal.
  • 13. The engineered eukaryotic cell of claim 1, wherein the anchoring domain is N-terminal to the catalytic domain in the fusion protein.
  • 14. The engineered eukaryotic cell of claim 13, wherein the fusion protein comprises a linker C-terminal to the anchoring domain.
  • 15. The engineered eukaryotic cell of claim 1, wherein the anchoring domain is C-terminal to the catalytic domain in the fusion protein.
  • 16. The engineered eukaryotic cell of claim 15, wherein the fusion protein comprises a linker N-terminal to the anchoring domain.
  • 17. The engineered eukaryotic cell of claim 1, wherein the cell surface protein is Sed1p and the endoglycosidase is endoglycosidase H.
  • 18. The engineered eukaryotic cell of claim 17, wherein the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 9 or SEQ ID NO:
  • 19. The engineered eukaryotic cell of claim 1, wherein the cell surface protein is Flo5-2 or Flo11 and the endoglycosidase is endoglycosidase H.
  • 20. The engineered eukaryotic cell of claim 19, wherein the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 11 or SEQ ID NO: 12.
  • 21. The engineered eukaryotic cell of claim 19, wherein the fusion protein comprises an amino acid sequence that is at least 95% identical to SEQ ID NO: 13 or SEQ ID NO: 14.
  • 22. The engineered eukaryotic cell of claim 1, wherein the engineered eukaryotic cell comprises a mutation in its AOX1 gene and/or its AOX2 gene.
  • 23. The engineered eukaryotic cell of claim 1, wherein the engineered eukaryotic cell is a yeast cell or a Pichia species.
  • 24. The engineered eukaryotic cell of claim 23, wherein the yeast cell is a Pichia species.
  • 25. The engineered eukaryotic cell of claim 1, further comprising a genomic modification that overexpresses a secretory glycoprotein.
  • 26. The engineered eukaryotic cell of claim 25, wherein the secretory glycoprotein is an animal protein, e.g., an egg protein.
  • 27. The engineered eukaryotic cell of claim 26, wherein the egg protein is selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.
  • 28. The engineered eukaryotic cell of claim 1, wherein the cell lacks a genomic modification that overexpresses a secretory glycoprotein.
  • 29. The engineered eukaryotic cell of claim 1, comprising a nucleic acid sequence that encodes the fusion protein.
  • 30. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence that encodes the fusion protein is integrated into the cell's genome.
  • 31. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence that encodes the fusion protein is extrachromosomal.
  • 32. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence comprises an inducible promoter.
  • 33. The engineered eukaryotic cell of claim 32, wherein the inducible promoter is an AOX1, DAK2, PEX11, FLD1, FGH1, DAS2, CAT1, MDH3, HAC1, BiP, RAD30, RVS161-2, MPP10, THP3, or GBP2 promoter.
  • 34. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence comprises an AOX1, TDH3, RPS25A, or RPL2A terminator.
  • 35. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence encodes a signal peptide and/or a secretory signal.
  • 36. The engineered eukaryotic cell of claim 29, wherein the nucleic acid sequence comprises codons that are optimized for the species of the engineered cell.
  • 37. A method for deglycosylating a secreted glycoprotein, the method comprising contacting a secreted protein with a fusion protein anchored to an engineered eukaryotic cell of claim 1, thereby providing a deglycosylated secreted glycoprotein.
  • 38. The method of claim 37, wherein the secreted glycoprotein is expressed by the engineered eukaryotic cell.
  • 39. The method of claim 37, wherein the fusion protein anchored to an engineered eukaryotic cell is more effective at deglycosylating the secreted protein than an intracellular endoglycosidase.
  • 40. The method of claim 39, wherein the intracellular endoglycosidase is located within a Golgi vesicle.
  • 41. The method of claim 39, wherein the intracellular endoglycosidase is linked to a membrane associating domain.
  • 42. The method of claim 41, wherein the membrane associating domain comprises an amino acid sequence of OCH1.
  • 43. The method of claim 37, wherein the secreted protein is expressed by a cell other than the engineered eukaryotic cell.
  • 44. The method of claim 37, further comprising a step of isolating the deglycosylated secreted protein.
  • 45. The method of claim 44, further comprising a step of drying the deglycosylated secreted protein.
  • 46. The method of claim 37, wherein the secreted protein is an animal protein, e.g., an egg protein.
  • 47. The method of claim 46, wherein the egg protein is selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.
  • 48. A method for deglycosylating a plurality of secreted glycoproteins, the method comprising contacting the plurality of secreted glycoproteins with a population of engineered eukaryotic cells of claim 1, thereby providing a plurality of deglycosylated secreted glycoproteins.
  • 49. The method of claim 48, wherein substantially every secreted glycoprotein in the plurality of secreted proteins is deglycosylated upon contact with the population of engineered eukaryotic cells.
  • 50. The method of claim 48, wherein the amount of deglycosylation of the secreted glycoproteins is not increased by further contacting the secreted protein with an isolated endoglycosidase.
  • 51. The method of claim 48, wherein the amount of deglycosylation of the secreted glycoproteins is more than the amount obtained from a population of cells that express an intracellular endoglycosidase.
  • 52. The method of claim 48, further comprising a step of isolating the plurality of deglycosylated secreted proteins.
  • 53. The method of claim 52, further comprising a step of drying the plurality of deglycosylated secreted proteins.
  • 54. The method of claim 48, wherein the secreted protein is an animal protein, e.g., an egg protein.
  • 55. The method of claim 54, wherein the egg protein is selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.
  • 56. A method for expressing a fusion protein comprising an anchoring domain of a cell surface protein and a catalytic domain of an endoglycosidase, the method comprising obtaining the engineered eukaryotic cell of claim 1 and culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein.
  • 57. The method of claim 56, wherein when the engineered eukaryotic cell comprises a nucleic acid sequence that encodes the fusion protein and comprises an inducible promoter, culturing the engineered eukaryotic cell under conditions that promote expression of the fusion protein comprises contacting the cell with an agent that activates the inducible promoter.
  • 58. The method of claim 57, wherein the inducible promoter is an AOX1, DAK2, PEX11 promoter and the agent that activates the inducible promoter is methanol.
  • 59. A population of engineered eukaryotic cells of claim 1.
  • 60. A bioreactor comprising the population of engineered eukaryotic cells of claim 59.
  • 61. A composition comprising an engineered eukaryotic cell of claim 1 and a secreted glycoprotein.
  • 62. The composition of claim 61, wherein the secreted glycoprotein is an animal protein, e.g., an egg protein.
  • 63. The composition of claim 62, wherein the egg protein is selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.
  • 64. A composition comprising an engineered eukaryotic cell of claim 1, a secreted protein that has been deglycosylated, and one or more oligosaccharides cleaved from the secreted protein.
  • 65. The composition of claim 64, wherein the secreted glycoprotein is an animal protein, e.g., egg protein.
  • 66. The composition of claim 65, wherein the egg protein is selected from the group consisting of ovalbumin, ovomucoid, lysozyme ovoglobulin G2, ovoglobulin G3, α-ovomucin, β-ovomucin, ovotransferrin, ovoinhibitor, ovoglycoprotein, flavoprotein, ovomacroglobulin, ovostatin, cystatin, avidin, ovalbumin related protein X, and ovalbumin related protein Y.
  • 67. An engineered eukaryotic cell which expresses a surface displayed catalytic domain of endoglycosidase H, wherein the catalytic domain is directly or indirectly tethered to the exterior surface of the cell.
CROSS-REFERENCE

This application is a continuation of International Application No. PCT/US2021/065703, filed Dec. 30, 2021, which claims priority to U.S. Application No. 63/132,408, filed Dec. 30, 2020, each of which is hereby incorporated in its entirety by reference herein.

Provisional Applications (1)
Number Date Country
63132408 Dec 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2021/065703 Dec 2021 US
Child 18346095 US