This disclosure generally relates to illumination of light modulation devices, and more specifically relates to light guides for providing large area illumination from localized light sources for use in 2D, 3D, and/or autostereoscopic display devices.
Spatially multiplexed autostereoscopic displays typically align a parallax component such as a lenticular screen or parallax barrier with an array of images arranged as at least first and second sets of pixels on a spatial light modulator, for example an LCD. The parallax component directs light from each of the sets of pixels into different respective directions to provide first and second viewing windows in front of the display. An observer with an eye placed in the first viewing window can see a first image with light from the first set of pixels; and with an eye placed in the second viewing window can see a second image, with light from the second set of pixels.
Such displays have reduced spatial resolution compared to the native resolution of the spatial light modulator and further, the structure of the viewing windows is determined by the pixel aperture shape and parallax component imaging function. Gaps between the pixels, for example for electrodes, typically produce non-uniform viewing windows. Undesirably such displays exhibit image flicker as an observer moves laterally with respect to the display and so limit the viewing freedom of the display. Such flicker can be reduced by defocusing the optical elements; however such defocusing results in increased levels of image cross talk and increases visual strain for an observer. Such flicker can be reduced by adjusting the shape of the pixel aperture, however such changes can reduce display brightness and can comprise addressing electronics in the spatial light modulator.
According to the present disclosure, a directional illumination apparatus may include an imaging directional backlight for directing light, an illuminator array for providing light to the imaging directional backlight. The imaging directional backlight may include a waveguide for guiding light. The waveguide may include a first light guiding surface and a second light guiding surface, opposite the first light guiding surface.
Display backlights in general employ waveguides and edge emitting sources. Certain imaging directional backlights have the additional capability of directing the illumination through a display panel into viewing windows. An imaging system may be formed between multiple sources and the respective window images. One example of an imaging directional backlight is an optical valve that may employ a folded optical system and hence may also be an example of a folded imaging directional backlight. Light may propagate substantially without loss in one direction through the optical valve while counter-propagating light may be extracted by reflection off tilted facets as described in U.S. Patent Publ. No. 2012/0127573, which is herein incorporated by reference in its entirety.
Directional backlights provide illumination through a waveguide with directions within the waveguide imaged to viewing windows. Diverging light from light sources at the input end and propagating within the waveguide is provided with reduced divergence, and typically collimated, by a curved reflecting mirror at a reflecting end of the waveguide and is imaged towards a viewing window by means of curved light extraction features or a lens such as a Fresnel lens. For the on-axis viewing window, the collimated light is substantially parallel to the edges of a rectangular shaped waveguide and so light is output across the entire area of the waveguide towards the viewing window. For off-axis positions, the direction of the collimated light is not parallel to the edges of a rectangular waveguide but is inclined at a non-zero angle. Thus a non-illuminated (or void) outer portion (that may be triangular in shape) is formed between one edge of the collimated beam and the respective edge of the waveguide. No light is directed to the respective viewing window from within the outer portion and the display will appear dark in this region. It may be desirable to reduce the appearance of the dark outer portions for off-axis viewing positions so that more of the area of the waveguide can be used to illuminate a spatial light modulator, advantageously reducing system size and cost.
In general with this and related imaging directional backlight systems, not all the backlight area may be useable due to vignetting at high angles. Modification of the system may overcome this limitation by introducing light into regions that are void. Such modified illumination apparatus embodiments may lead to increased brightness, local independent illumination and directional capabilities.
According to a first aspect of the present disclosure there is provided a directional backlight comprising: a waveguide comprising first and second, opposed guide surfaces for guiding light along the waveguide and an input surface extending between the first and second guide surfaces; and an array of light sources arranged at different input positions along the input surface of the waveguide and arranged to input input light into the waveguide, the light sources having light emitting regions that are spaced apart, the waveguide further comprising a reflective end for reflecting input light from the light sources back along the waveguide, the second guide surface being arranged to deflect the reflected input light through the first guide surface as output light, and the directional backlight being arranged to direct the output light into optical windows in output directions that are distributed laterally in dependence on the input positions along the input surface of the light sources that inputted the input light, wherein the waveguide further comprises at least one surface relief feature formed either on at least one of the first and second guide surfaces in a location adjacent the input surface and intermediate the light emitting regions of the light sources, or on the input surface intermediate the light emitting regions of the light sources.
Said location of the surface relief feature may be within a region bounded by: a portion of the input surface intermediate the light emitting regions of a pair of adjacent light sources, and a pair of intersecting notional lines that extend from the respective edges of the light emitting regions of the pair of light sources that are adjacent the portion of the input surface, to the respective sides of the reflective end that extend between the first and second guide surfaces. The surface relief feature may be a mechanical fixing feature. The mechanical fixing feature may be fixed to a further component of the directional backlight.
Advantageously, mechanical registration of the waveguide to other optical and mechanical components of the system may be provided. Mechanical registration may be achieved conveniently in the region of increased thermal expansion.
A directional backlight may further comprise a rear reflector comprising a linear array of reflective facets arranged to reflect light from the light sources, that is transmitted through the plurality of facets second guide surface of the waveguide, back through the waveguide to exit through the first guide surface into said optical windows, the rear reflector being said further component to which the mechanical fixing feature is fixed.
Advantageously optical artefacts arising from movement of waveguide to the rear reflector may be reduced. Further, the rear reflector may be conveniently aligned with other components of the mechanical and optical system.
The surface relief feature may be a protrusion. Advantageously low visibility of input light coupling region and reduced cross talk for autostereoscopic and privacy modes of operation may be achieved.
The surface relief feature may be a recess. Advantageously increased mechanical strength of the mechanical alignment may be achieved.
The surface relief feature may be arranged to remove from the waveguide at least some of the reflected light that is incident thereon after reflection by the reflective end. Advantageously cross talk due to back reflections from the input surface may be further reduced.
The surface relief feature may be an identification mark. Advantageously traceability of components may be achieved without degradation to the optical path.
The input surface may be an end of the waveguide that is opposite to the reflective end. The input surface may be a side surface of the waveguide extending away from the reflective end. The first guide surface may be arranged to guide light by total internal reflection and the second guide surface may comprise a plurality of light extraction features oriented to direct light guided along the waveguide in directions allowing exit through the first guide surface as the output light and intermediate regions between the light extraction features that are arranged to guide light along the waveguide. The second guide surface may have a stepped shape in which said light extraction features are facets between the intermediate regions. The light extraction features may have positive optical power in a direction between the side surfaces of the waveguide that extend between the first and second guide surfaces. The reflective end may have positive optical power in a direction extending between the sides of the reflective end that extend between the first and second guide surfaces.
According to a second aspect of the present disclosure, a directional display device may comprise: a directional backlight according to the first aspect; and a transmissive spatial light modulator arranged to receive the output light from the waveguide and to modulate it to display an image.
According to a third aspect of the present disclosure, a directional display apparatus may comprise: a directional display device according to the second aspect; and a control system arranged to control the light sources.
Advantageously a directional display may be provided to achieve switchable directional operation including autostereoscopic, privacy, wide angle, high luminance, night-time and power savings functions.
According to a fourth aspect of the present disclosure a directional backlight may comprise: a waveguide comprising first and second, opposed guide surfaces for guiding light along the waveguide and an input surface extending between the first and second guide surfaces; an array of light sources arranged at different input positions along the input surface of the waveguide and arranged to input input light into the waveguide, the light sources having light emitting regions that are spaced apart, the waveguide further comprising a reflective end for reflecting input light from the light sources back along the waveguide, the second guide surface being arranged to deflect the reflected input light through the first guide surface as output light, and the waveguide being arranged to image the light sources so that the output light from the light sources is directed into respective optical windows in output directions that are distributed laterally in dependence on the input positions of the light sources; and at least one strip adhered to at least one of the first guide surface and the second guide surface of the waveguide and extending therealong adjacent to the input surface, the strip being arranged to reduce reflection of light incident thereon from inside the waveguide.
The light sources may have light emitting regions that are spaced apart, and the strip may extend along at least one of the first guide surface and the second guide surface across both locations adjacent to the light emitting regions of the light sources and locations intermediate the light emitting regions of the light sources. The strip may extend along only a part of at least one of the first guide surface and the second guide surface. Said part of at least one of the first guide surface and the second guide surface along which the strip extends may be offset from the center of the input surface. The strip may be an adhesive tape. The strip may be an adhesive material. The strip may have a refractive index that differs from the refractive index of the waveguide by no more than 0.02.
Advantageously in a privacy mode of operation such a display can provide reduced luminance for off axis viewing positions. Further the degree of luminance reduction can be controlled by means of control of width of the strip. Further light loss for input light can be reduced by control of size and location of the at least one strip.
The strip may have a refractive index that differs from the refractive index of the waveguide by no less than 0.08. Advantageously input light streaks may be reduced in intensity for small loss of head on luminance. Said part of at least one of the first guide surface and the second guide surface along which the strip extends may be across the center of the input surface. Advantageously the light streak visibility for off axis viewing positions in Privacy mode of operation may be reduced.
A directional backlight may further comprise a support which supports the array of light sources and may have a portion extending past the input surface of the waveguide across the first guide surface or the second guide surface of the waveguide, and wherein the at least one strip may comprise at least one strip adhered to the support and to one of the first guide surface and the second guide surface of the waveguide for holding the waveguide in position relative to the light sources supported on the support. The strip may be adhered to the support and to one of the first guide surface and the second guide surface of the waveguide. The strip may be adhered to the support and to the first or second guide surface of the waveguide.
Advantageously the waveguide may be provided in a substantially fixed alignment with an array of light sources. Further the alignment means may have further function of reducing light for privacy viewing positions and/or light streaks.
A directional backlight may further comprise at least one further strip provided on the other of the first guide surface and the second guide surface of the waveguide and extending therealong adjacent the input surface, the further strip may also be arranged to absorb light incident thereon from inside the waveguide. Advantageously the level of privacy and streak luminance may be further increased for waveguide regions outside of the active area, achieving reduced bezel width.
The at least one strip may comprise at least one strip adhered to the first guide surface of the waveguide and at least one strip adhered to the second guide surface of the waveguide. The strip may be absorptive of light, whereby the strip reduces reflection of light incident thereon from inside the waveguide by absorbing that light. The strip may be absorptive of light throughout the wavelength range of the light from the array of light sources. Advantageously scatter within the strip may be reduced.
The strip may be transmissive of light, whereby the strip reduces reflection of light incident thereon from inside the waveguide by coupling that light out of the waveguide. The support may be a flexible printed circuit. Advantageously conventional adhesive tape materials may be used, reducing cost and complexity.
A directional backlight may further comprise a rigid holder portion to which the support may be attached. The support may be a rigid holder portion. A directional backlight may further comprise a resilient member provided behind the light sources and resiliently biasing the light sources towards the waveguide.
Advantageously longitudinal alignment of the array of light sources and waveguide may be achieved in cooperation with improvement of privacy and light streak luminance.
According to a fifth aspect of the present disclosure a directional backlight may comprise: a waveguide comprising first and second, opposed guide surfaces for guiding light along the waveguide and an input end comprising an input surface extending between the first and second guide surfaces; an array of light sources arranged at different input positions along the input end of the waveguide and arranged to input input light into the waveguide, the light sources having light emitting regions that are spaced apart, the waveguide further comprising a reflective end for reflecting input light from the light sources back along the waveguide, the second guide surface being arranged to deflect the reflected input light through the first guide surface as output light, and the waveguide being arranged to image the light sources so that the output light from the light sources is directed into respective optical windows in output directions that are distributed laterally in dependence on the input positions of the light sources; a holder portion extending across the light sources and the waveguide, the holder portion holding the light sources and the waveguide in position relative to each other; and a resilient member provided behind the light sources and resiliently biasing the light sources towards the input end of the waveguide.
Advantageously longitudinal alignment of the array of light sources and waveguide may be achieved in arrangements where it may be undesirable to provide an adhesive strip between the waveguide and a support.
The directional backlight may further comprise a stop extending from the holder portion behind the resilient member, the resilient member engaging the stop. The stop may be an integral part of the holder portion. The directional backlight may further comprise a support which supports the array of light sources, the support being attached to the holder portion. The support may be a printed circuit. The printed circuit may be a flexible printed circuit.
Advantageously, the alignment and force on the light sources may be provided by cooperation of the stop and the resilient member, to reduce damage during dropping of the directional display and other high impact events.
The support may have a portion extending past the input end of the waveguide across the second guide surface of the waveguide, and the directional backlight may further comprise a light-absorptive adhesive strip adhered to the support and to the second guide surface of the waveguide for holding the waveguide in position relative to the light sources supported on the support, the light-absorptive adhesive strip extending along the second guide surface waveguide adjacent to the input end. Advantageously longitudinal alignment of the array of light sources and waveguide may be achieved in cooperation with improvement of privacy and light streak luminance.
According to a sixth aspect of the present disclosure a directional backlight may comprise a waveguide comprising first and second, opposed guide surfaces for guiding light along the waveguide, an input surface extending between the first and second guide surfaces for receiving input light, and a reflective end for reflecting input light from the light sources back along the waveguide; an array of light sources arranged at different input positions along the input surface of the waveguide and arranged to input the input light into the waveguide, wherein the first guide surface is arranged to guide light by total internal reflection and the second guide surface has a stepped shape comprising a plurality of extraction facets oriented to reflect input light from the light sources, after reflection from the reflective end, through the first guide surface as output light, and intermediate regions between the facets that are arranged to guide light along the waveguide, the waveguide being arranged to image the light sources so that the output light is directed into respective optical windows in output directions that are distributed laterally in dependence on the input positions of the light sources; a rear reflector comprising a linear array of reflective facets arranged to reflect light from the light sources, that is transmitted through the plurality of facets of the waveguide, back through the waveguide to exit through the first guide surface; and a transmissive sheet arranged between the rear reflector and the second guide surface of the waveguide.
The transmissive sheet may comprise plural layers. The plural layers may include a rear protective layer adjacent the rear reflector, the rear protective layer being made of a material that provides less damage to the rear reflector than the material of any other layer of the plural layers. The plural layers may include a front protective layer adjacent the waveguide, the front protective layer being made of a material that provides less damage to the waveguide than the material of any other layer of the plural layers. The plural layers include a reinforcing layer made of a material having a higher stiffness than the material than any other layer of the plural layers.
Advantageously damage of the rear reflector and waveguide second guiding surface may be reduced. Further contrast of Moirébetween the facets of the rear reflector and waveguide respectively may be reduced.
Any of the aspects of the present disclosure may be applied in any combination.
Embodiments herein may provide an autostereoscopic display that provides wide angle viewing which may allow for directional viewing and conventional 2D compatibility. The wide angle viewing mode may be for observer tracked autostereoscopic 3D display, observer tracked 2D display (for example for privacy or power saving applications), for wide viewing angle 2D display or for wide viewing angle stereoscopic 3D display. Further, embodiments may provide a controlled illuminator for the purposes of an efficient autostereoscopic display. Such components can be used in directional backlights, to provide directional displays including autostereoscopic displays. Additionally, embodiments may relate to a directional backlight apparatus and a directional display which may incorporate the directional backlight apparatus. Such an apparatus may be used for autostereoscopic displays, privacy displays, multi-user displays and other directional display applications that may achieve for example power savings operation and/or high luminance operation.
Embodiments herein may provide an autostereoscopic display with large area and thin structure. Further, as will be described, the optical valves of the present disclosure may achieve thin optical components with large back working distances. Such components can be used in directional backlights, to provide directional displays including autostereoscopic displays. Further, embodiments may provide a controlled illuminator for the purposes of an efficient autostereoscopic display.
Embodiments of the present disclosure may be used in a variety of optical systems. The embodiment may include or work with a variety of projectors, projection systems, optical components, displays, microdisplays, computer systems, processors, self-contained projector systems, visual and/or audiovisual systems and electrical and/or optical devices. Aspects of the present disclosure may be used with practically any apparatus related to optical and electrical devices, optical systems, presentation systems or any apparatus that may contain any type of optical system. Accordingly, embodiments of the present disclosure may be employed in optical systems, devices used in visual and/or optical presentations, visual peripherals and so on and in a number of computing environments.
Before proceeding to the disclosed embodiments in detail, it should be understood that the disclosure is not limited in its application or creation to the details of the particular arrangements shown, because the disclosure is capable of other embodiments. Moreover, aspects of the disclosure may be set forth in different combinations and arrangements to define embodiments unique in their own right. Also, the terminology used herein is for the purpose of description and not of limitation.
Directional backlights offer control over the illumination emanating from substantially the entire output surface controlled typically through modulation of independent LED light sources arranged at the input aperture side of an optical waveguide. Controlling the emitted light directional distribution can achieve single person viewing for a security function, where the display can only be seen by a single viewer from a limited range of angles; high electrical efficiency, where illumination is primarily provided over a small angular directional distribution; alternating left and right eye viewing for time sequential stereoscopic and autostereoscopic display; and low cost.
These and other advantages and features of the present disclosure will become apparent to those of ordinary skill in the art upon reading this disclosure in its entirety.
Embodiments are illustrated by way of example in the accompanying FIGURES, in which like reference numbers indicate similar parts, and in which:
Time multiplexed autostereoscopic displays can advantageously improve the spatial resolution of autostereoscopic display by directing light from all of the pixels of a spatial light modulator to a first viewing window in a first time slot, and all of the pixels to a second viewing window in a second time slot. Thus an observer with eyes arranged to receive light in first and second viewing windows will see a full resolution image across the whole of the display over multiple time slots. Time multiplexed displays can advantageously achieve directional illumination by directing an illuminator array through a substantially transparent time multiplexed spatial light modulator using directional optical elements, wherein the directional optical elements substantially form an image of the illuminator array in the window plane.
The uniformity of the viewing windows may be advantageously independent of the arrangement of pixels in the spatial light modulator. Advantageously, such displays can provide observer tracking displays which have low flicker, with low levels of cross talk for a moving observer.
To achieve high uniformity in the window plane, it is desirable to provide an array of illumination elements that have a high spatial uniformity. The illuminator elements of the time sequential illumination system may be provided, for example, by pixels of a spatial light modulator with size approximately 100 micrometers in combination with a lens array. However, such pixels suffer from similar difficulties as for spatially multiplexed displays. Further, such devices may have low efficiency and higher cost, requiring additional display components.
High window plane uniformity can be conveniently achieved with macroscopic illuminators, for example, an array of LEDs in combination with homogenizing and diffusing optical elements that are typically of size 1 mm or greater. However, the increased size of the illuminator elements means that the size of the directional optical elements increases proportionately. For example, a 16 mm wide illuminator imaged to a 65 mm wide viewing window may require a 200 mm back working distance. Thus, the increased thickness of the optical elements can prevent useful application, for example, to mobile displays, or large area displays.
Addressing the aforementioned shortcomings, optical valves as described in commonly-owned U.S. Patent Publ. No. 2012/0127573 advantageously can be arranged in combination with fast switching transmissive spatial light modulators to achieve time multiplexed autostereoscopic illumination in a thin package while providing high resolution images with flicker free observer tracking and low levels of cross talk. Described is a one dimensional array of viewing positions, or windows, that can display different images in a first, typically horizontal, direction, but contain the same images when moving in a second, typically vertical, direction.
Conventional non-imaging display backlights commonly employ optical waveguides and have edge illumination from light sources such as LEDs. However, it should be appreciated that there are many fundamental differences in the function, design, structure, and operation between such conventional non-imaging display backlights and the imaging directional backlights discussed in the present disclosure.
Generally, for example, in accordance with the present disclosure, imaging directional backlights are arranged to direct the illumination from multiple light sources through a display panel to respective multiple viewing windows in at least one axis. Each viewing window is substantially formed as an image in at least one axis of a light source by the imaging system of the imaging directional backlight. An imaging system may be formed between multiple light sources and the respective window images. In this manner, the light from each of the multiple light sources is substantially not visible for an observer's eye outside of the respective viewing window.
In contradistinction, conventional non-imaging backlights or light guiding plates (LGPs) are used for illumination of 2D displays. See, e.g., Kälil Käläntär et al., Backlight Unit With Double Surface Light Emission, J. Soc. Inf Display, Vol. 12, Issue 4, pp. 379-387 (Dec. 2004). Non-imaging backlights are typically arranged to direct the illumination from multiple light sources through a display panel into a substantially common viewing zone for each of the multiple light sources to achieve wide viewing angle and high display uniformity. Thus non-imaging backlights do not form viewing windows. In this manner, the light from each of the multiple light sources may be visible for an observer's eye at substantially all positions across the viewing zone. Such conventional non-imaging backlights may have some directionality, for example, to increase screen gain compared to Lambertian illumination, which may be provided by brightness enhancement films such as BEF™ from 3M. However, such directionality may be substantially the same for each of the respective light sources. Thus, for these reasons and others that should be apparent to persons of ordinary skill, conventional non-imaging backlights are different to imaging directional backlights. Edge lit non-imaging backlight illumination structures may be used in liquid crystal display systems such as those seen in 2D Laptops, Monitors and TVs. Light propagates from the edge of a lossy waveguide which may include sparse features; typically local indentations in the surface of the guide which cause light to be lost regardless of the propagation direction of the light.
As used herein, an optical valve is an optical structure that may be a type of light guiding structure or device referred to as, for example, a light valve, an optical valve directional backlight, and a valve directional backlight (“v-DBL”). In the present disclosure, optical valve is different to a spatial light modulator (even though spatial light modulators may be sometimes generally referred to as a “light valve” in the art). One example of an imaging directional backlight is an optical valve that may employ a folded optical system. Light may propagate substantially without loss in one direction through the optical valve, may be incident on an imaging reflector, and may counter-propagate such that the light may be extracted by reflection off tilted light extraction features, and directed to viewing windows as described in U.S. Patent Publ. No. 2012/0127573, which is herein incorporated by reference in its entirety.
Additionally, as used herein, a stepped waveguide imaging directional backlight may be at least one of an optical valve. A stepped waveguide is a waveguide for an imaging directional backlight comprising a waveguide for guiding light, further comprising: a first light guiding surface; and a second light guiding surface, opposite the first light guiding surface, further comprising a plurality of light guiding features interspersed with a plurality of extraction features arranged as steps.
In operation, light may propagate within an exemplary optical valve in a first direction from an input surface to a reflective side and may be transmitted substantially without loss. Light may be reflected at the reflective side and propagates in a second direction substantially opposite the first direction. As the light propagates in the second direction, the light may be incident on light extraction features, which are operable to redirect the light outside the optical valve. Stated differently, the optical valve generally allows light to propagate in the first direction and may allow light to be extracted while propagating in the second direction.
The optical valve may achieve time sequential directional illumination of large display areas. Additionally, optical elements may be employed that are thinner than the back working distance of the optical elements to direct light from macroscopic illuminators to a window plane. Such displays may use an array of light extraction features arranged to extract light counter propagating in a substantially parallel waveguide.
Thin imaging directional backlight implementations for use with LCDs have been proposed and demonstrated by 3M, for example U.S. Pat. No. 7,528,893; by Microsoft, for example U.S. Pat. No. 7,970,246 which may be referred to herein as a “wedge type directional backlight;” by RealD, for example U.S. Patent Publ. No. 2012/0127573 which may be referred to herein as an “optical valve” or “optical valve directional backlight,” all of which are herein incorporated by reference in their entirety.
The present disclosure provides stepped waveguide imaging directional backlights in which light may reflect back and forth between the internal faces of, for example, a stepped waveguide which may include a first side and a first set of features. As the light travels along the length of the stepped waveguide, the light may not substantially change angle of incidence with respect to the first side and first set of surfaces and so may not reach the critical angle of the medium at these internal faces. Light extraction may be advantageously achieved by a second set of surfaces (the step “risers”) that are inclined to the first set of surfaces (the step “treads”). Note that the second set of surfaces may not be part of the light guiding operation of the stepped waveguide, but may be arranged to provide light extraction from the structure. By contrast, a wedge type imaging directional backlight may allow light to guide within a wedge profiled waveguide having continuous internal surfaces. The optical valve is thus not a wedge type imaging directional backlight.
Further, in
The waveguide 1 has first and second, opposed guide surfaces extending between the input end 2 and the reflective end 4 for guiding light forwards and back along the waveguide 1. The second guide surface has a plurality of light extraction features 12 facing the reflective end 4 and arranged to reflect at least some of the light guided back through the waveguide 1 from the reflective end from different input positions across the input end in different directions through the first guide surface that are dependent on the input position.
In this example, the light extraction features 12 are reflective facets, although other reflective features could be used. The light extraction features 12 do not guide light through the waveguide, whereas the intermediate regions of the second guide surface intermediate the light extraction features 12 guide light without extracting it. Those regions of the second guide surface are planar and may extend parallel to the first guide surface, or at a relatively low inclination. The light extraction features 12 extend laterally to those regions so that the second guide surface has a stepped shape which may include the light extraction features 12 and intermediate regions. The light extraction features 12 are oriented to reflect light from the light sources, after reflection from the reflective end 4, through the first guide surface.
The light extraction features 12 are arranged to direct input light from different input positions in the lateral direction across the input end in different directions relative to the first guide surface that are dependent on the input position. As the illumination elements 15a-15n are arranged at different input positions, the light from respective illumination elements 15a-15n is reflected in those different directions. In this manner, each of the illumination elements 15a-15n directs light into a respective optical window in output directions distributed in the lateral direction in dependence on the input positions. The lateral direction across the input end 2 in which the input positions are distributed corresponds with regard to the output light to a lateral direction to the normal to the first guide surface. The lateral directions as defined at the input end 2 and with regard to the output light remain parallel in this embodiment where the deflections at the reflective end 4 and the first guide surface are generally orthogonal to the lateral direction. Under the control of a control system, the illuminator elements 15a-15n may be selectively operated to direct light into a selectable optical window. The optical windows may be used individually or in groups as viewing windows.
The SLM 48 extends across the waveguide and modulates the light output therefrom. Although the SLM 48 may a liquid crystal display (LCD), this is merely by way of example and other spatial light modulators or displays may be used including LCOS, DLP devices, and so forth, as this illuminator may work in reflection. In this example, the SLM 48 is disposed across the first guide surface of the waveguide and modulates the light output through the first guide surface after reflection from the light extraction features 12.
The operation of a directional display device that may provide a one dimensional array of viewing windows is illustrated in front view in
Continuing the discussion of
In some embodiments with uncoated extraction features 12, reflection may be reduced when total internal reflection (TIR) fails, squeezing the xz angular profile and shifting off normal. However, in other embodiments having silver coated or metallized extraction features, the increased angular spread and central normal direction may be preserved. Continuing the description of the embodiment with silver coated extraction features, in the xz plane, light may exit the stepped waveguide 1 approximately collimated and may be directed off normal in proportion to the y-position of the respective illuminator element 15a-15n in illuminator array 15 from the input edge center. Having independent illuminator elements 15a-15n along the input edge 2 then enables light to exit from the entire first light directing side 6 and propagate at different external angles, as illustrated in
Illuminating a spatial light modulator (SLM) 48 such as a fast liquid crystal display (LCD) panel with such a device may achieve autostereoscopic 3D as shown in top view or yz-plane viewed from the illuminator array 15 end in
The reflective end 4 may have positive optical power in the lateral direction across the waveguide. 14. In other words, the reflective end may have positive optical power in a direction extending between sides of the waveguide that extend between the first and second guide surfaces and between the input end and the reflective end. The light extraction features 12 may have positive optical power in a direction between sides of the waveguide that extend between the first and second guide surfaces 6,8 and between the input end 2 and the reflective end.
The waveguide 1 may further comprising a reflective end 4 for reflecting input light from the light sources back along the waveguide 1, the second guide surface 8 being arranged to deflect the reflected input light through the first guide surface 6 as output light, and the waveguide 1 being arranged to image the light sources 15a-n so that the output light from the light sources is directed into respective optical windows 26a-n in output directions that are distributed laterally in dependence on the input positions of the light sources.
In embodiments in which typically the reflective end 4 has positive optical power, the optical axis may be defined with reference to the shape of the reflective end 4, for example being a line that passes through the center of curvature of the reflective end 4 and coincides with the axis of reflective symmetry of the end 4 about the x-axis. In the case that the reflecting surface 4 is flat, the optical axis may be similarly defined with respect to other components having optical power, for example the light extraction features 12 if they are curved, or the Fresnel lens 62 described below. The optical axis 238 is typically coincident with the mechanical axis of the waveguide 1. In the present embodiments that typically comprise a substantially cylindrical reflecting surface at end 4, the optical axis 238 is a line that passes through the center of curvature of the surface at end 4 and coincides with the axis of reflective symmetry of the side 4 about the x-axis. The optical axis 238 is typically coincident with the mechanical axis of the waveguide 1. The cylindrical reflecting surface at end 4 may typically comprise a spherical profile to optimize performance for on-axis and off-axis viewing positions. Other profiles may be used.
Continuing the discussion of
Advantageously, the arrangement illustrated in
A further wedge type directional backlight is generally discussed by U.S. Pat. No. 7,660,047 which is herein incorporated by reference in its entirety. The wedge type directional backlight and optical valve further process light beams in different ways. In the wedge type waveguide, light input at an appropriate angle will output at a defined position on a major surface, but light rays will exit at substantially the same angle and substantially parallel to the major surface. By comparison, light input to a stepped waveguide of an optical valve at a certain angle may output from points across the first side, with output angle determined by input angle. Advantageously, the stepped waveguide of the optical valve may not require further light re-direction films to extract light towards an observer and angular non-uniformities of input may not provide non-uniformities across the display surface.
There will now be described some waveguides, directional backlights and directional display devices that are based on and incorporate the structures of
The reflective end 4 converges the reflected light. Fresnel lens 62 may be arranged to cooperate with reflective end 4 to achieve viewing windows at a viewing plane. Transmissive spatial light modulator 48 may be arranged to receive the light from the directional backlight. The image displayed on the SLM 48 may be presented in synchronization with the illumination of the light sources of the array 15.
The control system may comprise a sensor system arranged to detect the position of the observer 99 relative to the display device 100. The sensor system comprises a position sensor 406, such as a camera arranged to determine the position of an observer 408; and a head position measurement system 404 that may for example comprise a computer vision image processing system. The position sensor 406 may comprise known sensors including those comprising cameras and image processing units arranged to detect the position of observer faces. Position sensor 406 may further comprise a stereo sensor arranged to improve the measure of longitudinal position compared to a monoscopic camera. Alternatively position sensor 406 may comprise measurement of eye spacing to give a measure of required placement of respective arrays of viewing windows from tiles of the directional display.
The control system may further comprise an illumination controller and an image controller 403 that are both supplied with the detected position of the observer supplied from the head position measurement system 404.
The illumination controller comprises an LED controller 402 arranged to determine which light sources of array 15 should be switched to direct light to respective eyes of observer 408 in cooperation with waveguide 1; and an LED driver 400 arranged to control the operation of light sources of light source array 15 by means of drive lines 407. The illumination controller 74 selects the illuminator elements 15 to be operated in dependence on the position of the observer detected by the head position measurement system 72, so that the viewing windows 26 into which light is directed are in positions corresponding to the left and right eyes of the observer 99. In this manner, the lateral output directionality of the waveguide 1 corresponds with the observer position.
The image controller 403 is arranged to control the SLM 48 to display images. To provide an autostereoscopic display, the image controller 403 and the illumination controller may operate as follows. The image controller 403 controls the SLM 48 to display temporally multiplexed left and right eye images and the LED controller 402 operates the light sources 15 to direct light into viewing windows in positions corresponding to the left and right eyes of an observer synchronously with the display of left and right eye images. In this manner, an autostereoscopic effect is achieved using a time division multiplexing technique. In one example, a single viewing window may be illuminated by operation of light source 409 (which may comprise one or more LEDs) by means of drive line 410 wherein other drive lines are not driven as described elsewhere.
The head position measurement system 404 detects the position of an observer relative to the display device 100. The LED controller 402 selects the light sources 15 to be operated in dependence on the position of the observer detected by the head position measurement system 404, so that the viewing windows into which light is directed are in positions corresponding to the left and right eyes of the observer. In this manner, the output directionality of the waveguide 1 may be achieved to correspond with the viewer position so that a first image may be directed to the observer's right eye in a first phase and directed to the observer's left eye in a second phase.
Thus a directional display apparatus may comprise a directional display device and a control system arranged to control the light sources 15a-n.
Reflective end 4 may be provided by a Fresnel mirror. Further taper region 204 may be arranged at the input to the waveguide 1 to increase input coupling efficiency from the light sources 15a-15n of the array of illuminator elements 15 and to increase illumination uniformity. Shading layer 206 with aperture 203 may be arranged to hide light scattering regions at the edge of the waveguide 1. Rear reflector 300 may comprise facets 302 that are curved and arranged to provide viewing windows from groups of optical windows provided by imaging light sources of the array 15 to the window plane. An optical stack 208 may comprise reflective polarizers, retarder layers and diffusers. Rear reflectors 300 and optical stack 208 are described further in U.S. Patent Publ. No. 2014/0240828, filed Feb. 21, 2014, entitled “Directional backlight” (Attorney Ref. No. 355001) incorporated herein by reference in its entirety.
Spatial light modulator 48 may comprise a liquid crystal display that may comprise an input polarizer 210, TFT glass substrate 212, liquid crystal layer 214, color filter glass substrate 216 and output polarizer 218. Red pixels 220, green pixels 222 and blue pixels 224 may be arranged in an array at the liquid crystal layer 214. White, yellow, additional green or other color pixels (not shown) may be further arranged in the liquid crystal layer to increase transmission efficiency, color gamut or perceived image resolution.
A directional backlight thus comprises a first guide surface 6 arranged to guide light by total internal reflection and the second guide surface 8 comprising a plurality of light extraction features 12 oriented to direct light guided along the waveguide 1, 301 in directions allowing exit through the first guide surface 6 as the output light and intermediate regions 10 between the light extraction features 12 that are arranged to guide light along the waveguide 1, 301.
Considering the arrangements of
Thus all sides 2, 4, 6, 8, 22, 24 provide reflections to achieve uniform illumination and low cross talk in privacy mode of operation. If features are applied to many areas of the surface then non-uniformities may be provided due to the spatial location of the waveguide extraction loss at the features.
It may be desirable to provide high image uniformity by means of illumination of the reflective end 4, 304.
The arrangements of
Thus it would be further desirable to provide a directional backlight that reduces the amount of stray light seen in Privacy mode of operation.
Advantageously the waveguide 1 and rear reflector 300 may be aligned. Further differential thermal expansion in the lateral direction (y-axis), while maintaining alignment in the orthogonal direction (x-axis).
Further the waveguide 1 may comprise a reflective end 2 for reflecting input light from the light sources back along the waveguide 1, the second guide surface 8 being arranged to deflect the reflected input light through the first guide surface as output light, and the waveguide being arranged to image the light sources so that the output light from the light sources is directed into respective optical windows in output directions that are distributed laterally in dependence on the input positions of the light sources, wherein the waveguide 1 further comprises at least one surface relief feature formed either on at least one of the first and second guide surfaces in a location adjacent the input surface and intermediate the light emitting regions of the light sources, and/or on the input surface intermediate the light emitting regions of the light sources.
Thus feature 510 may be a pin extending in the z-direction with width 514 and height 516. Advantageously such a feature 510 may be formed during moulding of waveguide 1. Alternatively the feature 510 could be separately attached to waveguide 1.
The surface relief feature 510 may further be arranged to remove from the waveguide 1 at least some of the reflected light that is incident thereon after reflection by the reflective end 4. The feature 510 may have an absorbing coating, or an absorbing layer may be arranged with the feature 510 to reduce stray light.
Advantageously light rays 509 from the input surface, reflected from the reflective end 4 and guided by feature 10 on side 8 and side 6 may be incident on the feature 510 and extracted before reaching the input surface 2. Such light thus is not reflected into the waveguide from side 1, so that the intensity of streaks 767 such as shown in
Thus light sources 15a-n may have a package material 519 and light emitting region 515. Region 500 is formed by light rays 504, 506 from the edge of the region 515 to the edges of the reflective end 4, and input surface 2.
Advantageously the features 510 do not degrade the uniformity of the output. By way of comparison, features outside region 500 may create light loss such that some regions of the reflective end 4 are illuminated at lower intensity in comparison to other regions which have light rays that do not pass through features 510.
It may be desirable to provide a directional display with uniform appearance for off-axis viewing positions in a wide angle of viewing.
In wide mode of operation groups of light sources 801, 803, 805 of array 15 are all operated and an image can be seen for an off-axis viewing position as shown in
It may be desirable to minimize the luminance of the off-axis image in the Privacy mode of operation.
In a wide mode of operation the light sources in groups 803, 805 are arranged to provide input rays 802 that provide uniform illumination for a wide range of viewing positions.
However, in Privacy mode light rays 811 that reflect from the light source package or rays 812 that reflect from the input microstructure at the input end create an effective illumination source. Such rays propagate back in the waveguide 1 and provide undesirable off-axis illumination thus reducing the effectiveness of the Privacy mode of operation.
It may be desirable to reduce the reflectivity of features at the input end 2 of the waveguide 2.
Modifications to the input end 2 are described in U.S. Pat. No. 9,350,980 (Attorney Ref. No 317001), which is incorporated by reference herein in its entirety. The thickness of the input end may be 0.5 mm or less. Applying light absorbing layers to such a low thickness is complex and increases cost. It may be desirable to provide a reduced cost arrangement to reduce reflections.
It would be further desirable to provide stable alignment of light source array 15 to the input end to increase coupling efficiency and to reduce hot spot visibility.
A directional backlight may comprise a waveguide 1 comprising first and second, opposed guide surfaces 6,8 for guiding light along the waveguide 1 and an input surface 2 extending between the first and second guide surfaces 6,8; an array 15 of light sources 15a-n arranged at different input positions along the input surface 2 of the waveguide 1 and arranged to input input light into the waveguide 1, the light sources 15a-n having light emitting regions that are spaced apart, the waveguide 1 further comprising a reflective end 4 for reflecting input light from the light sources 15a-n back along the waveguide 1, the second guide surface 8 being arranged to deflect the reflected input light through the first guide surface 6 as output light, and the waveguide 1 being arranged to image the light sources 15a-n so that the output light from the light sources is directed into respective optical windows 26a-n in output directions that are distributed laterally in dependence on the input positions of the light sources 15a-n.
The directional waveguide 1 may further comprise a support 816 which supports the array 15 of light sources and has a portion 813 extending past the input surface 2 of the waveguide 1 across the first or second guide surface of the waveguide 1.
At least one strip 815 is adhered to at least one of the first guide surface 6 and the second guide surface 8 of the waveguide 1 and extending therealong adjacent to the input surface 2, the strip 815 being arranged to reduce reflection of light rays 806 incident thereon from inside the waveguide 1.
In operation light rays 806 that have been reflected at the reflective end 4 may be incident on the strip 815. Light may propagate into the strip 815 and the reflected ray intensity may be reduced by absorption or scattering as will be described herein. The light ray 806 that has been reflected by the input side may be incident on the strip 815 a second time and further absorption may take place. For illustrative purposes, the ray intensity on reflection at the input side is shown with the same line width to illustrate intensity. However, some light will be transmitted and absorbed at the input end 2, with some light reflected back into the waveguide towards the reflective end 4.
Advantageously, the rays 806 undergo losses at the strip 815, input end 2 and a second time at the strip 815. Light ray 806 may be advantageously reduced and privacy performance increased.
Further light rays directly from the light source of the array 15 may be incident on the strip 815 for a single pass. Thus the loss of input light rays 808 is advantageously lower than the loss of reflected light rays 806.
The support 816 is illustrated as being on the second guide surface 8, however the strip may be on the first guide surface 6. To further increase the reduction of reflected light a further strip 815b may be arranged on the first guide surface 6. The amount of reflection reduction may be further controlled by adjusting the widths 819, 819b of the strips 815, 815b. Advantageously the trade-off between input light loss and reflection reduction may be controlled to minimize wide mode power consumption and reduce privacy image luminance.
As illustrated in
Advantageously light reflections from light sources of the array 15 and reflections from the input end may be reduced.
It may be desirable to increase the efficiency of input light while minimizing the visibility of reflections from the input side in the regions intermediate the light sources.
The strip 815 may be an adhesive tape or may be an adhesive material. For example the strip 815 may comprise a pressure sensitive adhesive (PSA), an optically clear adhesive (OCA) tape such as 3M™ Optically Clear Double-Sided Acrylic Adhesive Tape. Alternatively the strip 815 may comprise a cured liquid crystal material such as but not limited to UV or thermally cured resin materials. The optical properties of such materials will be described further herein.
It would further be desirable to achieve accurate and stable mechanical alignment of the light sources to the input side.
The strip 815 will now be described further with reference to
Advantageously privacy mode performance may be improved, and light sources aligned to the input of the waveguide 1 using the same strip 815, further achieving reduced cost and complexity.
The strip 815 may be adhered to the support 816 and to the first or second guide surface 6, 8 of the waveguide 1.
A directional backlight may further comprise at least one further strip 815b provided on the other of the first guide surface 6 and the second guide surface 8 of the waveguide 1 and extending therealong adjacent the input surface 2, the further strip 815b also being arranged to absorb light rays 806 incident thereon from inside the waveguide 1.
The at least one strip may comprise at least one strip 815b adhered to the first guide surface 6 and at least one strip 815 adhered to the second guide surface 8 of the waveguide 1.
The absorption of light rays 806 will now be described.
The strip 815 may be absorptive of light, whereby the strip reduces reflection of light incident thereon from inside the waveguide 1 by absorbing that light. For example, the strip 815b may comprise absorptive particles in its bulk. The strip may be absorptive of light throughout the wavelength range of the light from the array of light sources. For example a black pigment or dye may be incorporated in the strip 815b.
As illustrated by strip 815c the strip may be transmissive of light, whereby the strip reduces reflection of light incident thereon from inside the waveguide 1 by coupling that light out of the waveguide 1.
It may be desirable to provide further control of the light extraction from the strip 815.
In operation, light rays that are output in a normal direction may propagate at angle 831 within the waveguide with respect to the x axis at angles in the cone +/−20 degrees for example. Such rays may be reflected by the input to output in unwanted privacy directions. It would thus be desirable to reduce rays that are close to the x-axis.
The strip may have a refractive index that differs from the refractive index of the waveguide by no more than 0.02.
In an illustrative example, the waveguide may have a refractive index of 1.50 and the strip may have a refractive index of 1.48. The critical angle at the interface of the strip 815 and the waveguide 1 may be 80 degrees, so that only +/−10 degree light cone will be maintained within the waveguide by the interface. Rays from the waveguide 1 that have a small deflection in the vertical direction and output to off axis directions may be attenuated by the strip 815 and thus the privacy mode luminance may be reduced.
It would be advantageous to minimize the complexity of the support 816. The support may be a flexible printed circuit (FPC). The FPC may comprise the electrical connections to the array of light sources. Advantageously the cost and complexity of the support 816 may be reduced.
The support 816 may comprise an absorptive material. For example the support 816 may be an FPC that comprises a black solder mask layer. Light that is transmitted by strip 815 is incident on the black material on the support and absorbed.
It may be desirable to provide heat flow path and rigidity to the assembly of light source array 15, FPC 816 and waveguide 1.
The directional backlight may further comprise a resilient member 920 provided behind the light sources and resiliently biasing the light sources towards the waveguide 1 as will be described in further detail herein.
It may be desirable to provide preferential extraction of reflected light without the complexity of strip 815 and that can be provided during moulding of the waveguide 1.
Privacy performance may be improved while maintaining input light efficiency. Further complexity of assembly may be reduced. Absorbers 837 may for example comprise a black solder mask on an FPC or blackened surface of a substrate such as a rigid holder 833.
It may be desirable to provide the light control advantages described above in arrangements wherein the width of the printed circuit has a small width.
The appearance and formation of input light streaks and hotspots will now be described.
One origin of light streaks 706 will now be described.
Another origin of light streaks 706 will now be described.
It may be desirable to reduce the appearance of light streaks by preferential removal of high angle light rays within the waveguide.
More preferably the refractive index difference may be 0.14 or greater and most preferably 0.19 or greater, so that the cone angle of the light that remains trapped in the waveguide is increased, particularly for light that escapes in the normal direction. Such refractive index step can be provided for example by UV curable materials with refractive indices in the range 1.30 to 1.35.
Advantageously light streak appearance can be minimized.
It may be desirable to provide a uniform strip width 819.
It may be desirable to remove light streaks 706 for central light sources in region 823 while providing low reflectivity in outer regions. 827
Advantageously privacy levels, head on luminance and wide angle uniform can be optimized.
It would further be desirable to provide identification marking for purposes of monitoring the process conditions for fabrication of the waveguide 1.
Thus the feature 520 may further by arranged in region 500. Advantageously waveguide 1 may be moulded with identification marks 520 to record its design and manufacturing conditions. Such identification marks may create waveguide losses that improve privacy performance but do not degrade uniformity characteristics. Such identification marks can be arranged further in cooperation with scattering marks in region 500 to increase scatter and light losses in such regions, advantageously improving privacy performance by reducing cross talk from reflected light from side 2.
The waveguide 1 may further comprise at least one surface relief feature 570 formed on the input surface 2 and intermediate the light emitting regions of the light sources 15a-n. The feature 570 may comprise further identification marks 520 that may be on the surface 6, surface 8, or may have surface relief in the x direction as shown in
The protrusion may thus extend into the waveguide as defined by region 500 and may extend rearwards from the surface 2. Advantageously the size of the region 500 may be increased and the size and strength of protrusion 570 can be increased. Further the area for identification marks 520 can be increased to improve visibility and ease of providing marks on the tool.
It may be desirable to record the metallization and waveguide 1 properties by printing onto the coated waveguide 1.
It may be desirable to provide alignment of waveguide 1 to multiple optical elements.
The directional backlight may further comprise a rear reflector 300 comprising a linear array of reflective facets 302 arranged to reflect light from the light sources, that is transmitted through the second guide surface 8 of the waveguide 1, back through the waveguide 1 to exit through the first guide surface 6, the rear reflector being said further component to which the mechanical fixing feature is fixed. A directional display device may thus comprise a directional backlight and a transmissive spatial light modulator 48 arranged to receive the output light from the waveguide 1, 301 and to modulate it to display an image.
Thus the alignment feature may be provided on a side 6 of the waveguide that is opposite the side 8 of the waveguide on which the light extraction features are formed. Advantageously the mechanical alignment feature 510 does not interfere with the rear reflector 300.
It may be desirable to minimize damage caused by impact and movement between waveguide 1 and rear reflector 300. In construction, the rear reflector microstructure 302 may be formed from a harder cross-linked material such as an acrylate than the moulded thermoplastic material such as PMMA or polycarbonate that may be used to form the waveguide 1. It may be desirable to provide similar hardness materials adjacent to waveguide 1 and rear reflector 300 to reduce damage between the two components.
During thermal cycling of the display the waveguide 1 may expand and contract differentially with respect to the lightbar comprising the arrays of light sources 15, 815. It may be desirable to limit the misalignment between light sources 15, 815 and waveguide 1 during thermal cycling.
It may be desirable to provide adhesive between the waveguide 1 and mechanical structure of the backlight.
Thus the waveguide 1 further comprises adhesive 580 provided on at least one of the first and second guide surfaces 6,8 in a location within a region 500 bounded by a portion of the input surface 2 intermediate the light emitting regions of a pair of adjacent light sources 15, and a pair of intersecting notional lines 504, 506 that extend from the respective edges of the light emitting regions of the pair of light sources 15 that are adjacent the portion of the input surface 2, to the respective sides of the reflective end 4 that extend between the first and second guide surfaces 6,8.
Thus adhesive 580 may be provided in regions 500 described elsewhere herein. Adhesive arranged outside region 500 may absorb light and create non-uniformities and streaks in optical output. Adhesive 580 may be pressure sensitive adhesive or other types of adhesive material. Advantageously uniformity is maintained while adhesive materials are used, reducing the cost of mechanical alignment.
The moulding of a directional waveguide will now be described.
After alignment of the respective tools in a first step, in a second step material is injected to form the waveguide 1 and cured for example by cooling, as illustrated in
It may be desirable to incorporate features within the tool to reduce cost and complexity of assembly.
Advantageously features such as identification and absorptive features may be incorporated in the moulding process, reducing cost and complexity.
Damage to the surfaces of the waveguide 1 may result in light leakage for light that has not been reflected from the reflective end 4, reflected or refracted by the extraction features 12 and passes through the first guiding surface 6. Such damage may appear as white spots for example in Privacy mode of operation for off axis viewing positions. Damage to the peaks of the rear reflector may appear as dark or white spots.
Waveguide 1 that may be a relatively soft material such as PMMA or polycarbonate for example. Pencil hardness of rear reflector 302 surface may be greater than 2H for example 4H, while pencil hardness of waveguide 1 may be less than 2H for example HB.
Force 613 may be applied to the substrate 300 of the rear reflector, providing direct contact between the two surfaces. Sharp peaks 609 in contact with waveguide 1 may form digs 601 in the material of the waveguide 1 and may form debris 603. Further peaks 609 may be damaged to form damage regions 605 and debris 607. Debris 603 and 607 may be deposited on surfaces of waveguide 1 and rear reflector 302.
In operation light rays 611 may be provided for dig 601. Thus for light propagating from the input end 2 towards the reflective end 4 light may be undesirably extracted, forming a bright spot 601 in the output image as illustrated in
It would be desirable to reduce the number and size of damage features due to contact between the rear reflector 302 surface and the waveguide 1.
It would further be desirable to reduce Moiréartefacts between the repetitive extraction features 12 of the waveguide 1 and the facets of the rear reflector 302.
A directional backlight may comprise a waveguide 1 comprising first and second, opposed guide surfaces 6,8 for guiding light along the waveguide 1, an input surface 2 extending between the first and second guide surfaces 6,8 for receiving input light, and a reflective end 4 for reflecting input light from the light sources back along the waveguide 1. An array 15 of light sources is arranged at different input positions along the input surface of the waveguide 1 and arranged to input the input light into the waveguide 1. The first guide surface 6 is arranged to guide light by total internal reflection and the second guide surface 8 has a stepped shape comprising a plurality of extraction facets 12 oriented to reflect input light from the light sources 15, after reflection from the reflective end 4, through the first guide surface 6 as output light, and intermediate regions 10 between the facets 12 that are arranged to guide light along the waveguide 1, the waveguide 1 being arranged to image the light sources so that the output light is directed into respective optical windows 26 (not shown) in output directions that are distributed laterally in dependence on the input positions of the light sources. Further a rear reflector 302 comprising a linear array of reflective facets arranged to reflect light from the light sources, that is transmitted through the plurality of facets 12 of the waveguide 1, back through the waveguide 1 to exit through the first guide surface 6; and a transmissive sheet 600 arranged between the rear reflector and the second guide surface of the waveguide 1.
Transmissive sheet 600 may for example comprise a single planar layer 602 with for example similar hardness to rear reflector 302. Sheet 600 may be a glass sheet for example, or may be a polymer layer. Sheet 600 may be provided with an internal diffuser effect, for example by scattering particles.
Advantageously the pressure from peaks 609 may be reduced, thus providing reduced increase resistance to damage of the waveguide 1 and rear reflector 302. Further the separation of extraction features 12 from peaks 609 of the rear reflector 302 may be increased, reducing Moirébeating between the two structures.
Advantageously damage to the waveguide 1 may be reduced.
As shown in
The plural layers of the transmissive sheet 600 may include a reinforcing layer 603 made of a material having a higher stiffness than the material than any other layer of the plural layers. Advantageously optical aberrations due to distortions of the transmissive sheet 600 may be reduced.
The reinforcing layer may have a thickness arranged to provide reduced Moirébeating between the waveguide 1 and rear reflector 302.
It may be desirable to reduce the damage from the peaks of a rear reflector 302 to the surface of waveguide 1 during relative movement of the two elements.
Advantageously robustness of the assembled device can be improved.
It may be desirable to provide efficient coupling of light from the array 15 of light sources into the waveguide 1. In conventional non-directional waveguides a scattering adhesive element may be used to attach the waveguide to a substrate provided with an array of LEDs across the whole width of the light source array.
By way of comparison in directional waveguides such adhesive may increase hotspot visibility and may result in increased cross talk for some of the light sources in the array of light source. Thus although some light sources may be provided with adhesive strips as described elsewhere herein, other light sources in the array may desirably be provided with no adhesive strip between light source and array. It is desirable to provide high coupling efficiency between light sources and waveguides without the use of adhesives.
It would be further desirable to minimize the visibility of hotspots due to misalignment of the array 15 light sources and input end 2 of the waveguide 1. It would be further desirable to provide a thermal path from an array 15 of light sources to a frame to provide reduced junction temperature during operation.
In the illustrative embodiment of
It may be desirable to increase coupling efficiency at reduced cost.
It may be desirable to provide increased coupling efficiency in a directional backlight in light sources that are desirably not wholly aligned by attachment to adhesive strips or other adhesive elements.
A holder portion 923 may be provided extending across the light sources 15a-n and the waveguide 1, the holder portion 923 holding the light sources 15a-n and the waveguide 1 in position relative to each other. Further a resilient member 920 may be provided behind the light sources 15a-n and resiliently biasing the light sources 15a-n towards the input end 2 of the waveguide 1. The directional backlight may thus further comprise a stop 921 extending from the holder portion 923 behind the resilient member 920, the resilient member 920 engaging the stop 921. The stop 921 may be an integral part of the holder portion 923 as illustrated for example in
During assembly a force 925 may be applied to contact the waveguide 1 to the light source array 15 across the lateral direction, with the resilient member providing a resistant force that may vary across the array of light sources.
The support 816 may be a printed circuit, the printed circuit may be a flexible printed circuit. Thus the support 816 may be provided by a flexible printed circuit to which the light sources are soldered.
The resilient member 920 may for example be a sponge material that may be attached to the support 816 and may extend beyond behind the support 816.
Advantageously, each light source of the array of light sources may be aligned with respect to the input to the waveguide 1 and coupling efficiency improved. An adhesive may not be inserted between the waveguide 1 and support 816, that may reduce light losses in comparison to arrangements using adhesives.
A support 923 may be provided which supports the array of light sources, the support being attached to the holder portion 530. The stop 921 may be an integral part of the support 923 as illustrated in
The support 816 may have a portion extending past the input end 2 of the waveguide 1 across the first guide surface 6 or second guide surface 8 of the waveguide 1, and the directional backlight may further comprise at least one strip 815 adhered to at least one of the first guide surface and the second guide surface of the waveguide and extending therealong adjacent to the input surface 2, the strip 815 being arranged for holding the waveguide 1 in position relative to the light sources 15 supported on the support 816, the light-absorptive adhesive strip 815 extending along the second guide surface 8 of waveguide 1 adjacent to the input end 2.
Advantageously the slotted frame 922 may conveniently provide a support for assembly of the directional backlight into a frame for a directional display.
It may be desirable to provide alignment of the waveguide 1 and light source array 15 in the normal direction (z-direction).
It would be advantageous to reduce possible damage to the waveguide 1 during assembly.
Advantageously possible damage during assembly may be reduced.
It may be advantageous to further combine the resilient member into the frame of the directional backlight.
Advantageously the resilient member is incorporated in the frame 940, reducing cost and complexity.
In some arrangements side mirrors 827 may be provided on the sides 24, 26 of the waveguide 1. It may be desirable to provide mechanical alignment of the side mirrors 827 to the sides 24, 26 of the waveguide 1.
Advantageously leakage of light at the side mirrors and coupling efficiency may be optimized.
As may be used herein, the terms “substantially” and “approximately” provide an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from zero percent to ten percent and corresponds to, but is not limited to, component values, angles, et cetera. Such relativity between items ranges between approximately zero percent to ten percent.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiment(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
This application claims priority to U.S. Provisional Patent Appl. No. 62/255,270 entitled “Wide angle imaging directional backlights” filed Nov. 13, 2015 (Attorney Ref. No. 390000), which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1128979 | Hess | Feb 1915 | A |
1970311 | Ives | Aug 1934 | A |
2133121 | Stearns | Oct 1938 | A |
2247969 | Lemuel | Jul 1941 | A |
2480178 | Zinberg | Aug 1949 | A |
2810905 | Barlow | Oct 1957 | A |
3409351 | Winnek | Nov 1968 | A |
3715154 | Bestenreiner | Feb 1973 | A |
4057323 | Ward | Nov 1977 | A |
4528617 | Blackington | Jul 1985 | A |
4542958 | Young | Sep 1985 | A |
4804253 | Stewart | Feb 1989 | A |
4807978 | Grinberg et al. | Feb 1989 | A |
4829365 | Eichenlaub | May 1989 | A |
4914553 | Hamada et al. | Apr 1990 | A |
5278608 | Taylor et al. | Jan 1994 | A |
5347644 | Sedlmayr | Sep 1994 | A |
5349419 | Taguchi et al. | Sep 1994 | A |
5459592 | Shibatani et al. | Oct 1995 | A |
5466926 | Sasano et al. | Nov 1995 | A |
5510831 | Mayhew | Apr 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5581402 | Taylor | Dec 1996 | A |
5588526 | Fantone et al. | Dec 1996 | A |
5688035 | Kashima et al. | Nov 1997 | A |
5697006 | Taguchi et al. | Dec 1997 | A |
5703667 | Ochiai | Dec 1997 | A |
5727107 | Umemoto et al. | Mar 1998 | A |
5771066 | Barnea | Jun 1998 | A |
5796451 | Kim | Aug 1998 | A |
5808792 | Woodgate et al. | Sep 1998 | A |
5850580 | Taguchi et al. | Dec 1998 | A |
5875055 | Morishima et al. | Feb 1999 | A |
5896225 | Chikazawa | Apr 1999 | A |
5903388 | Sedlmayr | May 1999 | A |
5933276 | Magee | Aug 1999 | A |
5956001 | Sumida et al. | Sep 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5959702 | Goodman | Sep 1999 | A |
5969850 | Harrold et al. | Oct 1999 | A |
5971559 | Ishikawa et al. | Oct 1999 | A |
6008484 | Woodgate et al. | Dec 1999 | A |
6014164 | Woodgate et al. | Jan 2000 | A |
6023315 | Harrold et al. | Feb 2000 | A |
6044196 | Winston et al. | Mar 2000 | A |
6055013 | Woodgate et al. | Apr 2000 | A |
6061179 | Inoguchi et al. | May 2000 | A |
6061489 | Ezra et al. | May 2000 | A |
6064424 | Berkel et al. | May 2000 | A |
6075557 | Holliman et al. | Jun 2000 | A |
6094216 | Taniguchi et al. | Jul 2000 | A |
6108059 | Yang | Aug 2000 | A |
6118584 | Berkel et al. | Sep 2000 | A |
6128054 | Schwarzenberger | Oct 2000 | A |
6144118 | Cahill et al. | Nov 2000 | A |
6172723 | Inoue et al. | Jan 2001 | B1 |
6199995 | Umemoto et al. | Mar 2001 | B1 |
6219113 | Takahara | Apr 2001 | B1 |
6224214 | Martin et al. | May 2001 | B1 |
6232592 | Sugiyama | May 2001 | B1 |
6256447 | Laine | Jul 2001 | B1 |
6262786 | Perlo et al. | Jul 2001 | B1 |
6295109 | Kubo et al. | Sep 2001 | B1 |
6302541 | Grossmann | Oct 2001 | B1 |
6305813 | Lekson et al. | Oct 2001 | B1 |
6335999 | Winston et al. | Jan 2002 | B1 |
6373637 | Gulick et al. | Apr 2002 | B1 |
6377295 | Woodgate et al. | Apr 2002 | B1 |
6422713 | Fohl et al. | Jul 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6464365 | Gunn et al. | Oct 2002 | B1 |
6476850 | Erbey | Nov 2002 | B1 |
6481849 | Martin et al. | Nov 2002 | B2 |
6654156 | Crossland et al. | Nov 2003 | B1 |
6663254 | Ohsumi | Dec 2003 | B2 |
6724452 | Takeda et al. | Apr 2004 | B1 |
6731355 | Miyashita | May 2004 | B2 |
6736512 | Balogh | May 2004 | B2 |
6801243 | Berkel | Oct 2004 | B1 |
6816158 | Lemelson et al. | Nov 2004 | B1 |
6825985 | Brown et al. | Nov 2004 | B2 |
6847354 | Vranish | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6859240 | Brown et al. | Feb 2005 | B1 |
6867828 | Taira et al. | Mar 2005 | B2 |
6870671 | Travis | Mar 2005 | B2 |
6883919 | Travis | Apr 2005 | B2 |
7052168 | Epstein et al. | May 2006 | B2 |
7058252 | Woodgate et al. | Jun 2006 | B2 |
7073933 | Gotoh et al. | Jul 2006 | B2 |
7091931 | Yoon | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7136031 | Lee et al. | Nov 2006 | B2 |
7215391 | Kuan et al. | May 2007 | B2 |
7215415 | Maehara et al. | May 2007 | B2 |
7215475 | Woodgate et al. | May 2007 | B2 |
7239293 | Perlin et al. | Jul 2007 | B2 |
7365908 | Dolgoff | Apr 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7430358 | Qi et al. | Sep 2008 | B2 |
7492346 | Manabe et al. | Feb 2009 | B2 |
7528893 | Schultz et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7587117 | Winston et al. | Sep 2009 | B2 |
7614777 | Koganezawa et al. | Nov 2009 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7695182 | Iwasaki | Apr 2010 | B2 |
7750981 | Shestak et al. | Jul 2010 | B2 |
7750982 | Nelson et al. | Jul 2010 | B2 |
7771102 | Iwasaki | Aug 2010 | B2 |
7944428 | Travis | May 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8179361 | Sugimoto et al. | May 2012 | B2 |
8216405 | Emerton et al. | Jul 2012 | B2 |
8223296 | Lee et al. | Jul 2012 | B2 |
8251562 | Kuramitsu et al. | Aug 2012 | B2 |
8325295 | Sugita et al. | Dec 2012 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8502253 | Min | Aug 2013 | B2 |
8534901 | Panagotacos et al. | Sep 2013 | B2 |
8556491 | Lee | Oct 2013 | B2 |
8651725 | Ie et al. | Feb 2014 | B2 |
8714804 | Kim et al. | May 2014 | B2 |
8752995 | Park | Jun 2014 | B2 |
9197884 | Lee et al. | Nov 2015 | B2 |
9350980 | Robinson | May 2016 | B2 |
20010001566 | Moseley et al. | May 2001 | A1 |
20010050686 | Allen | Dec 2001 | A1 |
20020018299 | Daniell | Feb 2002 | A1 |
20020113246 | Nagai et al. | Aug 2002 | A1 |
20020113866 | Taniguchi et al. | Aug 2002 | A1 |
20030046839 | Oda et al. | Mar 2003 | A1 |
20030117790 | Lee et al. | Jun 2003 | A1 |
20030133191 | Morita et al. | Jul 2003 | A1 |
20030137738 | Ozawa et al. | Jul 2003 | A1 |
20030137821 | Gotoh et al. | Jul 2003 | A1 |
20040008877 | Leppard et al. | Jan 2004 | A1 |
20040021809 | Sumiyoshi et al. | Feb 2004 | A1 |
20040042233 | Suzuki et al. | Mar 2004 | A1 |
20040046709 | Yoshino | Mar 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109303 | Olczak | Jun 2004 | A1 |
20040135741 | Tomisawa et al. | Jul 2004 | A1 |
20040170011 | Kim et al. | Sep 2004 | A1 |
20040263968 | Kobayashi et al. | Dec 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20050007753 | Hees et al. | Jan 2005 | A1 |
20050094295 | Yamashita et al. | May 2005 | A1 |
20050110980 | Maehara et al. | May 2005 | A1 |
20050135116 | Epstein et al. | Jun 2005 | A1 |
20050174768 | Conner | Aug 2005 | A1 |
20050180167 | Hoelen et al. | Aug 2005 | A1 |
20050190345 | Dubin et al. | Sep 2005 | A1 |
20050237488 | Yamasaki et al. | Oct 2005 | A1 |
20050254127 | Evans et al. | Nov 2005 | A1 |
20050264717 | Chien et al. | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050276071 | Sasagawa et al. | Dec 2005 | A1 |
20050280637 | Ikeda et al. | Dec 2005 | A1 |
20060012845 | Edwards | Jan 2006 | A1 |
20060056166 | Yeo et al. | Mar 2006 | A1 |
20060114664 | Sakata et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060158729 | Vissenberg et al. | Jul 2006 | A1 |
20060176912 | Anikitchev | Aug 2006 | A1 |
20060203200 | Koide | Sep 2006 | A1 |
20060215129 | Alasaarela et al. | Sep 2006 | A1 |
20060221642 | Daiku | Oct 2006 | A1 |
20060227427 | Dolgoff | Oct 2006 | A1 |
20060244918 | Cossairt et al. | Nov 2006 | A1 |
20060250580 | Silverstein et al. | Nov 2006 | A1 |
20060262376 | Mather et al. | Nov 2006 | A1 |
20060269213 | Hwang et al. | Nov 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060291053 | Robinson et al. | Dec 2006 | A1 |
20060291243 | Niioka et al. | Dec 2006 | A1 |
20070008406 | Shestak et al. | Jan 2007 | A1 |
20070013624 | Bourhill | Jan 2007 | A1 |
20070025680 | Winston et al. | Feb 2007 | A1 |
20070035706 | Margulis | Feb 2007 | A1 |
20070035829 | Woodgate et al. | Feb 2007 | A1 |
20070035964 | Olczak | Feb 2007 | A1 |
20070081110 | Lee | Apr 2007 | A1 |
20070085105 | Beeson et al. | Apr 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070115551 | Spilman et al. | May 2007 | A1 |
20070115552 | Robinson et al. | May 2007 | A1 |
20070153160 | Lee et al. | Jul 2007 | A1 |
20070183466 | Son et al. | Aug 2007 | A1 |
20070188667 | Schwerdtner | Aug 2007 | A1 |
20070189701 | Chakmakjian et al. | Aug 2007 | A1 |
20070223252 | Lee et al. | Sep 2007 | A1 |
20070279727 | Gandhi et al. | Dec 2007 | A1 |
20080079662 | Saishu et al. | Apr 2008 | A1 |
20080084519 | Brigham et al. | Apr 2008 | A1 |
20080086289 | Brott | Apr 2008 | A1 |
20080128728 | Nemchuk et al. | Jun 2008 | A1 |
20080225205 | Travis | Sep 2008 | A1 |
20080259012 | Fergason | Oct 2008 | A1 |
20080291359 | Miyashita | Nov 2008 | A1 |
20080297431 | Yuuki et al. | Dec 2008 | A1 |
20080297459 | Sugimoto et al. | Dec 2008 | A1 |
20080304282 | Mi et al. | Dec 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090014700 | Metcalf et al. | Jan 2009 | A1 |
20090016057 | Rinko | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090067156 | Bonnett et al. | Mar 2009 | A1 |
20090135623 | Kunimochi | May 2009 | A1 |
20090140656 | Kohashikawa et al. | Jun 2009 | A1 |
20090160757 | Robinson | Jun 2009 | A1 |
20090167651 | Benitez et al. | Jul 2009 | A1 |
20090168459 | Holman et al. | Jul 2009 | A1 |
20090174700 | Daiku | Jul 2009 | A1 |
20090190072 | Nagata et al. | Jul 2009 | A1 |
20090190079 | Saitoh | Jul 2009 | A1 |
20090225380 | Schwerdtner et al. | Sep 2009 | A1 |
20090278936 | Pastoor et al. | Nov 2009 | A1 |
20090290203 | Schwerdtner | Nov 2009 | A1 |
20100034987 | Fujii et al. | Feb 2010 | A1 |
20100040280 | McKnight | Feb 2010 | A1 |
20100053771 | Travis et al. | Mar 2010 | A1 |
20100091093 | Robinson | Apr 2010 | A1 |
20100091254 | Travis et al. | Apr 2010 | A1 |
20100165598 | Chen et al. | Jul 2010 | A1 |
20100177387 | Travis et al. | Jul 2010 | A1 |
20100182542 | Nakamoto et al. | Jul 2010 | A1 |
20100188438 | Kang | Jul 2010 | A1 |
20100188602 | Feng | Jul 2010 | A1 |
20100214135 | Bathiche et al. | Aug 2010 | A1 |
20100220260 | Sugita et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100277575 | Ismael et al. | Nov 2010 | A1 |
20100278480 | Vasylyev | Nov 2010 | A1 |
20100289870 | Leister | Nov 2010 | A1 |
20100295920 | McGowan | Nov 2010 | A1 |
20100295930 | Ezhov | Nov 2010 | A1 |
20100300608 | Emerton et al. | Dec 2010 | A1 |
20100302135 | Larson et al. | Dec 2010 | A1 |
20100309296 | Harrold et al. | Dec 2010 | A1 |
20100321953 | Coleman et al. | Dec 2010 | A1 |
20110013417 | Saccomanno et al. | Jan 2011 | A1 |
20110019112 | Dolgoff | Jan 2011 | A1 |
20110032483 | Hruska et al. | Feb 2011 | A1 |
20110032724 | Kinoshita | Feb 2011 | A1 |
20110043142 | Travis et al. | Feb 2011 | A1 |
20110043501 | Daniel | Feb 2011 | A1 |
20110044056 | Travis et al. | Feb 2011 | A1 |
20110044579 | Travis et al. | Feb 2011 | A1 |
20110051237 | Hasegawa et al. | Mar 2011 | A1 |
20110187293 | Travis | Aug 2011 | A1 |
20110187635 | Lee et al. | Aug 2011 | A1 |
20110188120 | Tabirian et al. | Aug 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110221998 | Adachi et al. | Sep 2011 | A1 |
20110228183 | Hamagishi | Sep 2011 | A1 |
20110235359 | Liu et al. | Sep 2011 | A1 |
20110242150 | Song et al. | Oct 2011 | A1 |
20110242277 | Do et al. | Oct 2011 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110255303 | Nichol et al. | Oct 2011 | A1 |
20110285927 | Schultz et al. | Nov 2011 | A1 |
20110292321 | Travis et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20120002136 | Nagata et al. | Jan 2012 | A1 |
20120002295 | Dobschal et al. | Jan 2012 | A1 |
20120008067 | Mun et al. | Jan 2012 | A1 |
20120013720 | Kadowaki et al. | Jan 2012 | A1 |
20120062991 | Mich et al. | Mar 2012 | A1 |
20120063166 | Panagotacos et al. | Mar 2012 | A1 |
20120075285 | Oyagi et al. | Mar 2012 | A1 |
20120081920 | Ie et al. | Apr 2012 | A1 |
20120086776 | Lo | Apr 2012 | A1 |
20120106193 | Kim et al. | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120154450 | Aho et al. | Jun 2012 | A1 |
20120162966 | Kim et al. | Jun 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120206050 | Spero | Aug 2012 | A1 |
20120236484 | Miyake | Sep 2012 | A1 |
20120243204 | Robinson | Sep 2012 | A1 |
20120243261 | Yamamoto et al. | Sep 2012 | A1 |
20120293721 | Ueyama | Nov 2012 | A1 |
20120294579 | Chen | Nov 2012 | A1 |
20120299913 | Robinson et al. | Nov 2012 | A1 |
20120314145 | Robinson | Dec 2012 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107340 | Wong et al. | May 2013 | A1 |
20130135588 | Popovich et al. | May 2013 | A1 |
20130137161 | Zhang et al. | May 2013 | A1 |
20130169701 | Whitehead et al. | Jul 2013 | A1 |
20130294684 | Lipton et al. | Nov 2013 | A1 |
20130307831 | Robinson et al. | Nov 2013 | A1 |
20130307946 | Robinson et al. | Nov 2013 | A1 |
20130321599 | Harrold et al. | Dec 2013 | A1 |
20130328866 | Woodgate et al. | Dec 2013 | A1 |
20130335821 | Robinson et al. | Dec 2013 | A1 |
20140009508 | Woodgate et al. | Jan 2014 | A1 |
20140022619 | Woodgate et al. | Jan 2014 | A1 |
20140036361 | Woodgate et al. | Feb 2014 | A1 |
20140041205 | Robinson et al. | Feb 2014 | A1 |
20140126238 | Kao et al. | May 2014 | A1 |
20140240828 | Robinson et al. | Aug 2014 | A1 |
20140340728 | Taheri | Nov 2014 | A1 |
20140368602 | Woodgate et al. | Dec 2014 | A1 |
20160266302 | Seen | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
1142869 | Feb 1997 | CN |
1377453 | Oct 2002 | CN |
1454329 | Nov 2003 | CN |
1466005 | Jan 2004 | CN |
1487332 | Apr 2004 | CN |
1585911 | Feb 2005 | CN |
1696788 | Nov 2005 | CN |
1823292 | Aug 2006 | CN |
1826553 | Aug 2006 | CN |
1866112 | Nov 2006 | CN |
2872404 | Feb 2007 | CN |
1307481 | Mar 2007 | CN |
101000433 | Jul 2007 | CN |
101029975 | Sep 2007 | CN |
101049028 | Oct 2007 | CN |
200983052 | Nov 2007 | CN |
101114080 | Jan 2008 | CN |
101142823 | Mar 2008 | CN |
100449353 | Jan 2009 | CN |
101364004 | Feb 2009 | CN |
101598863 | Dec 2009 | CN |
100591141 | Feb 2010 | CN |
101660689 | Mar 2010 | CN |
102147079 | Aug 2011 | CN |
202486493 | Oct 2012 | CN |
202693838 | Jan 2013 | CN |
1910399 | May 2013 | CN |
0653891 | May 1995 | EP |
0721131 | Jul 1996 | EP |
0830984 | Mar 1998 | EP |
0833183 | Apr 1998 | EP |
0860729 | Aug 1998 | EP |
0939273 | Sep 1999 | EP |
0656555 | Mar 2003 | EP |
2003394 | Dec 2008 | EP |
1394593 | Jun 2010 | EP |
2451180 | May 2012 | EP |
1634119 | Aug 2012 | EP |
2405542 | Feb 2005 | GB |
H08211334 | Aug 1996 | JP |
H08237691 | Sep 1996 | JP |
H08254617 | Oct 1996 | JP |
H08070475 | Dec 1996 | JP |
H08340556 | Dec 1996 | JP |
2000048618 | Feb 2000 | JP |
2000200049 | Jul 2000 | JP |
2001093321 | Apr 2001 | JP |
2001281456 | Oct 2001 | JP |
2002049004 | Feb 2002 | JP |
2003215349 | Jul 2003 | JP |
2003215705 | Jul 2003 | JP |
2004319364 | Nov 2004 | JP |
2005116266 | Apr 2005 | JP |
2005135844 | May 2005 | JP |
2005183030 | Jul 2005 | JP |
2005259361 | Sep 2005 | JP |
2006004877 | Jan 2006 | JP |
2006031941 | Feb 2006 | JP |
2006310269 | Nov 2006 | JP |
3968742 | Aug 2007 | JP |
H3968742 | Aug 2007 | JP |
2007273288 | Oct 2007 | JP |
2007286652 | Nov 2007 | JP |
2008204874 | Sep 2008 | JP |
2010160527 | Jul 2010 | JP |
20110216281 | Oct 2011 | JP |
2013015619 | Jan 2013 | JP |
2013502693 | Jan 2013 | JP |
2013540083 | Oct 2013 | JP |
20030064258 | Jul 2003 | KR |
20090932304 | Dec 2009 | KR |
20110006773 | Jan 2011 | KR |
20110017918 | Feb 2011 | KR |
20110067534 | Jun 2011 | KR |
20120048301 | May 2012 | KR |
20120049890 | May 2012 | KR |
20130002646 | Jan 2013 | KR |
20140139730 | Dec 2014 | KR |
454922 | Sep 2001 | TW |
200528780 | Sep 2005 | TW |
1994006249 | Apr 1994 | WO |
1995020811 | Aug 1995 | WO |
1995027915 | Oct 1995 | WO |
1998021620 | May 1998 | WO |
1999011074 | Mar 1999 | WO |
2001027528 | Apr 2001 | WO |
2001061241 | Aug 2001 | WO |
2001079923 | Oct 2001 | WO |
2008045681 | Apr 2008 | WO |
2011020962 | Feb 2011 | WO |
2011022342 | Feb 2011 | WO |
2011068907 | Jun 2011 | WO |
2011149739 | Dec 2011 | WO |
2012158574 | Nov 2012 | WO |
Entry |
---|
RU—2013122560 First office action dated Jan. 1, 2014. |
RU—2013122560 Second office action dated Apr. 10, 2015. |
Tabiryan et al., “The Promise of Diffractive Waveplates,” Optics and Photonics News, vol. 21, Issue 3, pp. 40-45 (Mar. 2010). |
Travis, et al. “Backlight for view-sequential autostereo 3D”, Microsoft E&DD Applied Sciences, (date unknown), 25 pages. |
Travis, et al. “Collimated light from a waveguide for a display,” Optics Express, vol. 17, No. 22, pp. 19714-19719 (2009). |
Williams S P et al., “New Computational Control Techniques and Increased Understanding for Stereo 3-D Displays”, Proceedings of SPIE, SPIE, US, vol. 1256, Jan. 1, 1990, XP000565512, p. 75, 77, 79. |
Robinson et al., U.S. Appl. No. 15/165,960 entitled “Wide Angle Imaging Directional Backlights” filed May 26, 2016. The application is available to Examiner on the USPTO database and has not been filed herewith. |
Robinson et al., U.S. Appl. No. 15/290,543 entitled “Wide angle imaging directional backlights” filed Oct. 11, 2016. The application is available to Examiner on the USPTO database and has not been filed herewith. |
CN201680074389.1 Notification of the First Office Action of the Chinese Patent Office dated Mar. 19, 2020. |
JP—200980150139.1 2d Office Action dated Apr. 5, 2015. |
JP—2013540083 Notice of reasons for rejection of dated Jun. 30, 2015. |
JP—2013540083 Notice of reasons for rejection with translation dated Jun. 21, 2016. |
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004). |
KR—20117010839 1st Office action (translated) dated Aug. 28, 2015. |
KR—20117010839 2d Office action (translated) dated Apr. 28, 2016. |
Languy et al., “Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics”, Optics Letters, 36, pp. 2743-2745. |
Lipton, “Stereographics: Developers' Handbook”, Stereographic Developers Handbook, Jan. 1, 1997, XP002239311, p. 42-49. |
Marjanovic, M.,“Interlace, Interleave, and Field Dominance,” http://www.mir.com/DMG/interl.html, pp. 1-5 (2001). |
PCT/DE98/02576 International search report and written opinion of international searching authority dated Mar. 4, 1999 (WO99/11074). |
PCT/US2007/85475 International preliminary report on patentability dated May 26, 2009. |
PCT/US2007/85475 International search report and written opinion dated Apr. 10, 2008. |
PCT/US2009/060686 international preliminary report on patentability dated Apr. 19, 2011. |
PCT/US2009/060686 international search report and written opinion of international searching authority dated Dec. 10, 2009. |
PCT/US2011/061511 International Preliminary Report on Patentability dated May 21, 2013. |
PCT/US2011/061511 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/037677 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/042279 International search report and written opinion of international searching authority dated Feb. 26, 2013. |
PCT/US2012/052189 International search report and written opinion of the international searching authority dated Jan. 29, 2013. |
PCT/US2013/041192 International search report and written opinion of international searching authority dated Aug. 28, 2013. |
PCT/US2013/041228 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041235 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041237 International search report and written opinion of international searching authority dated May 15, 2013. |
PCT/US2013/041548 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041619 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041655 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041683 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041697 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041703 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/049969 International search report and written opinion of international searching authority dated Oct. 23, 2013. |
PCT/US2013/063125 International search report and written opinion of international searching authority dated Jan. 20, 2014. |
PCT/US2013/063133 International search report and written opinion of international searching authority dated Jan. 20, 2014. |
PCT/US2013/077288 International search report and written opinion of international searching authority dated Apr. 18, 2014. |
PCT/US2014/017779 International search report and written opinion of international searching authority dated May 28, 2014. |
PCT/US2014/042721 International search report and written opinion of international searching authority dated Oct. 10, 2014. |
PCT/US2014/057860 International Preliminary Report on Patentability dated Apr. 5, 2016. |
PCT/US2014/057860 International search report and written opinion of international searching authority dated Jan. 5, 2015. |
PCT/US2014/060312 International search report and written opinion of international searching authority dated Jan. 19, 2015. |
PCT/US2014/060368 International search report and written opinion of international searching authority dated Jan. 14, 2015. |
PCT/US2014/065020 International search report and written opinion of international searching authority dated May 21, 2015. |
PCT/US2015/000327 International search report and written opinion of international searching authority dated Apr. 25, 2016. |
PCT/US2015/021583 International search report and written opinion of international searching authority dated Sep. 10, 2015. |
PCT/US2015/038024 International search report and written opinion of international searching authority dated Dec. 30, 2015. |
PCT/US2016/027297 International search report and written opinion of international searching authority dated Jul. 26, 2017. |
PCT/US2016/027350 International search report and written opinion of the international searching authority dated Jul. 25, 2016. |
PCT/US2016/034418 International search report and written opinion of the international searching authority dated Sep. 7, 2016. |
Robinson et al., U.S. Appl. No. 15/097,750 entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016. The application is available to Examiner on the USPTO database and has not been filed herewith. |
Robinson et al., U.S. Appl. No. 15/098,084 entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016. |
PCT/US2016/061428 International search report and written opinion of international searching authority dated Jan. 20, 2017. |
EP—16865045.5 European Extended Search Report of the European Patent Office dated Jun. 18, 2019. |
EP—16865045.5 European office action of the European Patent Office dated Jan. 20, 2020. |
AU—2011329639 Australia Patent Examination Report No. 1 dated Mar. 6, 2014. |
AU—2013262869 Australian Office Action of Australian Patent Office dated Feb. 22, 2016. |
AU—2015258258 Australian Office Action of Australian Patent Office dated Jun. 9, 2016. |
Bahadur, “Liquid crystals applications and uses,” World Scientific, vol. 1, pp. 178 (1990). |
CA—2817044 Canadian office action dated Jul. 14, 2016. |
CN—201180065590.0 Office first action dated Dec. 31, 2014. |
CN—201180065590.0 Office second action dated Oct. 21, 2015. |
CN—201180065590.0 Office Third action dated Jun. 6, 2016. |
CN—201280034488.9 2d Office Action from the State Intellectual Property Office of P.R. China dated Mar. 22, 2016. |
CN—201280034488.9 1st Office Action from the State Intellectual Property Office of P.R. China dated Jun. 11, 2015. |
CN—201380026045.X Chinese First Office Action of Chinese Patent Office dated Aug. 29, 2016. |
CN—201380026046.4 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Oct. 24, 2016. |
CN—201380026047.9 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Dec. 18, 2015. |
CN—201380026047.9 Chinese 2d Office Action of the State Intellectual Property Office of P.R. dated Jul. 12, 2016. |
CN—201380026050.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 3, 2016. |
CN—201380026058.7 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Nov. 2, 2016. |
CN—201380026059.1 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Apr. 25, 2016. |
CN—201380026076.5 Office first action dated May 11, 2016. |
CN—201380049451.8 Chinese Office Action of the State Intellectual Property Office of P.R. dated Apr. 5, 2016. |
CN—201380063047.6 Chinese Office Action of the State Intellectual Property Office of P.R. China dated Oct. 9, 2016. |
CN—201380063055.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 23, 2016. |
CN—201480023023.2 Office action dated Aug. 12, 2016. |
EP—07864751.8 European Search Report dated Jun. 1, 2012. |
EP—07864751.8 Supplementary European Search Report dated May 29, 2015. |
EP—09817048.3 European Search Report dated Apr. 29, 2016. |
EP—11842021.5 Office Action dated Dec. 17, 2014. |
EP—11842021.5 Office Action dated Oct. 2, 2015. |
EP—11842021.5 Office Action dated Sep. 2, 2016. |
EP—13758536.0 European Extended Search Report of European Patent Office dated Feb. 4, 2016. |
EP—13790013.0 European Extended Search Report of European Patent Office dated Jan. 26, 2016. |
EP—13790141.9 European Extended Search Report of European Patent Office dated Feb. 11, 2016. |
EP—13790195.5 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP—13790267.2 European Extended Search Report of European Patent Office dated Feb. 25, 2016. |
EP—13790274.8 European Extended Search Report of European Patent Office dated Feb. 8, 2016. |
EP—13790775.4 European Extended Search Report of European Patent Office dated Oct. 9, 2015. |
EP—13790775.4 Office Action dated Aug. 29, 2016. |
EP—13790809.1 European Extended Search Report of European Patent Office dated Feb. 16, 2016. |
EP—13790942.0 European Extended Search Report of European Patent Office dated May 23, 2016. |
EP—13791332.3 European Extended Search Report of European Patent Office dated Feb. 1, 2016. |
EP—13791437.0 European Extended Search Report of European Patent Office dated Oct. 14, 2015. |
EP—13822472.0 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP—13843659.7 European Extended Search Report of European Patent Office dated May 10, 2016. |
EP—13844510.1 European Extended Search Report of European Patent Office dated May 13, 2016. |
EP—13865893.5 European Extended Search Report of European Patent Office dated Oct. 6, 2016. |
EP—14754859.8 European Extended Search Report of European Patent Office dated Oct. 14, 2016. |
EP—16150248.9 European Extended Search Report of European Patent Office dated Jun. 16, 2016. |
Ian Sexton et al: “Stereoscopic and autostereoscopic display-systems”,—IEEE Signal Processing Magazine, May 1, 1999 (May 1, 1999 ), pp. 85-99, XP055305471, Retrieved from the Internet: RL:http://ieeexplore.ieee.org/iel5/79/16655/00768575.pdf [retrieved on Sep. 26, 2016]. |
JP—2009538527 Reasons for rejection dated Jul. 17, 2012 with translation. |
JP—200980150139.1 1st Office Action dated Feb. 11, 2014. |
Number | Date | Country | |
---|---|---|---|
20210041619 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62255270 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15348809 | Nov 2016 | US |
Child | 16917615 | US |