This invention relates to a surface flow head. More specifically, but not by way of limitation, this invention relates to a flow valve and method used on the surface of oil and gas installations such as drilling rigs and production platforms.
In the course of drilling, completing, and producing subterranean reservoirs, operators find it necessary to rig up and run into a well various types of work strings. Examples of work strings include, but not limited to, drill strings, coiled tubing, snubbing pipe, and wireline. As those of ordinary skill in the art will recognize, operators will perform various types of well intervention operations on rigs and platforms. The pressure of subterranean reservoirs may be several thousand pounds per square inch (psi). Operators are always concerned with safety of the crew and the rig. Hence, during any type of operation, operators will employ various types of valves that will control the pressure at the surface.
For instance, the specific operation may be to run coiled tubing into a well on a floating platform. A blow out preventer stack (BOP stack) may be rigged to the well at the surface, and wherein the BOP stack will function to surround the coiled tubing to prevent any escape of pressure from subterranean reservoir via the annulus. A lubricator type of string connects to the BOP stack, and wherein the lubricator allows for the entry of the worksting into the well. Additionally, operators will also place a valve that is made up with the lubricator so that pressure that is within the work string can be contained and controlled.
In the past, valves such as the Texas Iron Works, known in the industry as the TIW valve were used. The TIW valves are essentially ball valves that seal in both directions. Other valves have been developed over the years that are similar to the TIW valve. For instance, there is a valve that has become known as a lower kelly valve, and wherein these valves are shorter, in a single piece, and contain an actuating mechanism that is recessed. The lower kelly valves are commercially available from Hydril Inc. under the name lower kelly valve. Hence, as part of the lubricator may contain a lower kelly valve to control the pressures within the inner portion of the lubricator.
However, these valve systems suffer from several disadvantages. For instance, it is desirable to be able to allow flow from the well, but still be able to keep control of the well. Also, the prior art does not allow for a safe and efficient system to pump into the well. Additionally, these prior art systems do not allow the ability to rotate below the valve, while maintaining the valve stationary when attempting to land a tubing hanger. Also, in cases of rigging up, rigging down or performing some other type of maintenance to the BOP stack, or well intervention string, etc, the operator has the ability to rotate either the top half or the bottom half of the valve assembly, while keeping the opposite half stationary. These needs, and many others, will be met by the following described invention.
A surface flow control system on a well is disclosed. The system comprises a main housing having a first and second end, and wherein the main housing contains a main bore there through, and a first port communicating with the main bore. The system further comprises a first valve position within the main bore of the main housing, and wherein the first valve is placed at a positioned above the first port, and a second valve positioned within the main bore of the main housing, and wherein the second valve is placed at a position below the first port. The system may further comprise a swivel connected to the second end of the main housing, and wherein the swivel is connected to a well head landing string. The landing string may have a tubing hanger configured to land within a surface well head and/or sub-sea tree.
In one preferred embodiment, the first and second valve is a ball valve, and wherein the first and second ball valve can be manually operated.
In the most preferred embodiment, the swivel comprises: a first sub and a second sub threadedly connected so that a cavity is formed, and wherein a thrust bearing means is provided within the cavity; a joint operatively associated with the first and second sub, and wherein the joint contains a radial shoulder abutting the thrust bearing means to allow rotation of the joint.
A second port communicating with the main bore may be provided in one preferred embodiment, and wherein the second port is in a plane longitudinally opposite the first port. In one embodiment, the first port is connected to a tank for collecting fluids discharged from the well. Additionally, the second port may be connected to pump means for pumping into the well.
A method of controlling well pressure from a well completed to a subterranean reservoir is also disclosed. The method comprises providing a surface control system, with the system comprising: a main housing containing a main bore there through, and a first port communicating with the main bore; a first valve position within the main bore of the main housing, and wherein the first valve is placed at a position above the first port; a second valve position within the main bore of said main housing, and wherein the second valve is placed at a position below the first port; a swivel connected to the second end of the main housing, and wherein the swivel is connected to a well head, such as a sub-sea tree.
The method further comprises connecting main housing to a lubricator, connecting the swivel to a landing string, the landing string having a tubing hanger, and rotating the swivel in order to set the tubing hanger within the well head while maintaining the main housing stationary. The method further includes communicating a pressure from the reservoir via the well. The method may further comprise closing the first valve so that the well pressure is controlled. The operator may also close the second valve.
The method may further comprise rigging up a kill line to the first port, and opening the second valve so that a kill fluid is pumped into the well in order to control the pressure.
In one embodiment, the control system contains a second port communicating with the main port, and wherein the second port is axially aligned with the first port, and the method further comprises opening the second valve and releasing the pressure from the well through the second port to a tank. Next, a kill line is rigged up to the first port. The second valve can be opened and a kill fluid is pumped into the well in order to control the pressure.
An advantage of the present system is that it allows a surface safety flow system in an integral tool design. Another advantage is that the surface flow system will allow the controlled release of excess pressure within the inner portion of a production tubing, drill pipe, or other tubular. Yet another advantage is that the design allows an operator to pump fluid through the surface flow system in order to control pressure.
Still yet another advantage is that the surface flow system can be used on well intervention operations such as coiled tubing, wireline, snubbing jobs, etc. Another advantage is that the system herein described is also applicable to traditional drilling rigs. Yet another advantage is that the system allows rotation of a landing string while the main housing is remains stationary. After the work is completed with the landing string, the valves are in place above the well, and therefore, the remedial well work, such as coiled tubing or wireline work, can commence in safety—a major advantage over prior art systems.
A feature of the present invention is that the system contains a top and bottom valve. The valves may hydraulically actuated low torque plug valves. In another embodiment, the valves may be manual ball valves. Another feature is that the most preferred embodiment contains a first and second port in communication with the main bore of the housing. Yet another feature is the swivel that allows rotation of a landing string while the main housing remains stationary within the derrick of the well. Alternatively, if the operator desires, the main housing can be rotated, and the landing string below the main housing is held stationary.
Referring now to
The main housing 20 contains an internal shoulder 22 a second end 24, and internal bore 26. As seen in
As seen in
As seen in
As illustrated in
Returning to
The swivel 28 further comprises a joint 62, and wherein the joint 62 has a first end 64 that will cooperate with the seal means 58 to form a seal. The joint 62 further includes a radial shoulder 66, and wherein the radial shoulder 66 is disposed within the cavity 60 and rest on the thrust bearings 61. The joint 62 extends out from the bottom member 46 through the opening 68 of the bottom member 46. As seen in
Referring now to
Referring now to
In the embodiment shown in
Once the surface control system 2 is rigged up in the derrick of the rig 102, and due to the novel design, the operator can rotate the landing string 112 in order to perform any type of remedial work and/or land the tubing hanger 113 within the well head 114. Hence, the operator can accomplish this without having to also turn the surface control system 2, elevators 111a, block, etc. Additionally, once the tubing hanger 113 has been landed, the remedial well work is ready to commence with the control system 2 in place and operational for well safety control.
Referring now to
Although the invention has been described in terms of certain preferred embodiments, it will become apparent to those of ordinary skill in the art that modifications and improvements can be made to the inventive concepts herein without departing from the scope of the invention. The embodiments shown herein are merely illustrative of the inventive concepts and should not be interpreted as limiting the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3690381 | Slator et al. | Sep 1972 | A |
3830304 | Cummins | Aug 1974 | A |
4111261 | Oliver | Sep 1978 | A |
4169504 | Scott | Oct 1979 | A |
5052657 | Winship | Oct 1991 | A |
5246203 | McKnight et al. | Sep 1993 | A |
5857523 | Edwards | Jan 1999 | A |
Number | Date | Country | |
---|---|---|---|
20060060360 A1 | Mar 2006 | US |