Surface modification of contact lenses

Information

  • Patent Grant
  • 8163358
  • Patent Number
    8,163,358
  • Date Filed
    Thursday, February 18, 2010
    14 years ago
  • Date Issued
    Tuesday, April 24, 2012
    12 years ago
Abstract
A method of increasing the hydrophilicity of a polymer surface, such as a contact lens surface, includes exposing the polymer substrate to a first plasma under conditions selected to generate free radicals on the surface of the polymer substrate. The method also includes reacting an organic compound with the free radicals on the surface of the polymer substrate to thereby form an organic coating. The method further includes exposing the organic coating to a second plasma under conditions selected to oxidize the organic coating to thereby form a hydrophilic layer at the substrate surface. The hydrophilic layer can have a contact angle with respect to water that is less than about 50°.
Description
BACKGROUND

1. Field


Embodiments of the present invention relate generally to polymer articles for medical devices which provide improved hydrophilicity in such articles, for example, ophthalmic devices and other suitable medical and non-medical devices.


2. Description of the Related Art


The field of vision correction has involved measuring aberrations in the optics of the eye, by first creating a prescription that corrected for the measured aberrations, and then using the prescription to correct the measured aberration, e.g., by surgery, spectacles or contact lenses. Vision correction has further involved proper fitting of spectacles and contact lenses to ensure patient comfort.


Patient comfort is of particular concern in the case of contact lenses, which are worn on the patient's eye. Comfort can be related to the affinity of the surface of the lens for water (e.g., the patient's tears). If the lens has relatively low affinity for tears (hydrophobicity), tears coming into contact with the surface of the lens may tend to bead up, rather than spread out. As a result, the surface of the lens may be relatively dry and may rub against the patient's cornea and eye lids, creating a sense of discomfort for the patient when wearing the lens. Alternatively, if the lens has relatively high affinity for tears (hydrophilicity), tears coming into contact with the surface of the lens may tend to spread out uniformly and the surface of the lens may be relatively wet. As a result, lens may float above the cornea on the lacrimal (tear) reservoir without rubbing against the cornea, creating a sense of comfort for the patient when wearing the lens. Thus, it is desirable to develop contact lens systems which possess improved wetability.


SUMMARY

In an embodiment, a method of increasing the hydrophilicity of a polymer surface is provided. The method comprises exposing a polymer substrate to a first plasma under conditions selected to generate free radicals on a surface of the polymer substrate. The method further comprises reacting an organic compound with the free radicals on the surface of the polymer substrate to thereby form an organic coating. The method additionally comprises exposing the organic coating to a second plasma under conditions selected to oxidize the organic coating to thereby form a hydrophilic layer at the substrate surface.


In another embodiment, a method of reducing the hydrophobicity of a contact lens surface is provided. The method comprises providing a contact lens. The method further comprises exposing the contact lens to a first plasma under conditions selected to generate free radicals on a surface of the contact lens. The method additionally comprises contacting an organic compound with the free radicals on the surface of the contact lens under conditions selected to form a hydrophilic surface on the contact lens, the hydrophilic surface having a contact angle with respect to water that is less than about 50°.


These and other embodiments are described in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are flow diagrams of embodiments of methods for fabricating contact lenses having improved wetability; (1A) two-step coating process for treating opposite sides of a contact lens; (1B) single-step process for treating either a single side or both sides of a contact lens; and



FIG. 2 is a schematic illustration of one embodiment of a reaction sequence for forming a hydrophilic layer on the surface of a contact lens from an organic compound that imparts improved hydrophilicity to the contact lens.





DETAILED DESCRIPTION

Embodiments of the present disclosure provide methods for modifying the surface of polymer substrates in order to enhance the affinity of such surfaces for water. Specifically, the enhanced affinity for water, also referred to as hydrophilicity or wetability, may achieved through a plurality of operations. The polymer surface may be prepared so as to react with an organic compound to form an organic coating on the polymer surface. The organic coating may be further oxidized under conditions selected to form a hydrophilic layer at the polymer surface. In this manner, water coming into contact with the polymer surface may spread out more readily out along the surface of the polymer surface.


In certain embodiments discussed herein, the polymer substrates may be discussed in the context of contact lenses and portions thereof. Increasing the hydrophilicity of contact lenses may enable water and/or other aqueous solutions (e.g., tears) spread along the contact lens surface to act as a lubricating layer which enhances the patient's comfort when the contact lens is worn. It will be understood, however, that the disclosed embodiments may be extended to other polymeric substrates without limit.


The term “organic compound” as used herein has its ordinary meaning as known to those skilled in the art, and thus includes reference to carbon-containing molecular species having various forms of molecular substitution and architecture, e.g., cyclic, linear, branched, saturated, unsaturated, and/or optionally halogenated, unless the context indicates otherwise. For example, reference herein to a particular group, (e.g., a C1-C20 alkyl group) will be understood to include branched, linear, cyclic, and optionally halogenated embodiments of that group.


In certain embodiments, described in greater detail below, the organic compound may be selected from the group consisting of a C1-C20 alcohol, a C1-C20 ether, a C1-C20 aldehyde, a C1-C20 ketone, a C1-C20 ester, a C1-C20 alkyl, a C2-C20 alkenyl, a C6-C20 aryl, a C1-C20 organosilicon compound, a C1-C20 organosilane compound, a C1-C20 organophosphorous compound, a C1-C20 organotitanium compound, a C1-C20 organotin compound, a C1-C20 organogermanium compound, and a C1-C20 organoboron compound.


Plasmas may be employed in the surface modification process. In one embodiment, the contact lens surface may be exposed to a first plasma under conditions selected to generate free radicals on the lens surface. This invention is not limited by theory of operation, but it is believed that such generation of free radicals is a surface activation that may enable the organic species to react with the lens surface so as to form the organic coating on the lens surface. In another embodiment, a second plasma, the same or different from the first, may also be employed to oxidize the organic coating to form the hydrophilic layer at the lens surface.


As further illustrated below, wetability of contact lenses, as evaluated through contact angle measurements, exhibits significant improvement with surface modification. For example, while untreated contact lens surfaces exhibit contact angles greater than about 90°, lens surfaces that are modified according to embodiments of the disclosed surface modification processes exhibit contact angles less than about 50°. These results indicate that embodiments of the surface modification processes significantly improve the affinity of the treated surfaces of modified contact lenses for water.


Contact angles of surface modified lenses were also evaluated in a rub test study simulating six months of patient wear. Substantially no change in contact angle is observed in the lenses, further illustrating that the surface modification processes disclosed herein provide hydrophilic coatings which bond strongly to the underlying contact lens and possess high mechanical durability. These and other advantages of the disclosed processes are discussed in greater detail below.


The term “soft contact lens” as used herein has its ordinary meaning as known to those skilled in the art and thus includes contact lenses made of flexible plastic materials, including, but not limited to, hydrogel materials, such as silicone hydrogels.


The term “hard contact lens” as used herein has its ordinary meaning as known to those skilled in the art and thus includes contact lenses that retain their form without support, as compared with soft contact lenses which readily yield to pressure. Hard contact lenses may further include rigid gas permeable (RGP) contact lenses which possess improved oxygen permeability. Hard contact lenses may be formed of materials including, but not limited to, polymethylmethacrylate (PMMA), fluoro silicone acrylate, and methacrylate.


The term “hybrid contact lens” as used herein has its ordinary meaning as known to those skilled in the art and thus includes a variety of contact lenses adapted for positioning on the surface of the eye. The hybrid contact lenses may comprise a substantially rigid center portion and a substantially flexible skirt portion disposed about the periphery of the center portion. Hybrid contact lenses have the benefit of visual acuity of the hard RGP and the comfort of the soft lenses. In some embodiments, the skirt portion may comprise a substantially flexible annular portion coupled to the substantially rigid center portion at a junction defined at least in part by an outer edge of the substantially rigid center portion. Further discussion of materials and methods of manufacture of hybrid contact lenses are provided in U.S. Pat. Nos. 7,104,648 and 7,543,936, each of which are hereby incorporated by reference in their entirety, and particularly for the purpose of describing such materials and methods of manufacture.


The term “contact angle” as used herein has its ordinary meaning as known to those skilled in the art. The contact angle of a liquid (e.g., water, saline) lying upon a surface is the angle between the surface and the tangent to a drop or bubble of the liquid on that surface at the point of interface, measured from the liquid side of the bubble or drop. In certain embodiments, the contact angle may be measured according to ANSI AZ80.20-2004.


Those skilled in the art will further understand that references herein to particular monomeric materials to be references to such monomers as well as to both cross-linked and uncross-linked versions of polymers (including copolymers) synthesized by polymerizing or copolymerizing the recited monomers, unless clearly stated otherwise.



FIGS. 1A and 1B illustrate flow diagrams illustrating embodiments of methods 100, 150 for fabricating contact lenses having improved wetability. The methods 100, 150 will be discussed with reference to FIG. 2. In certain embodiments, the methods 100, 150 may be performed on any type of polymer material, including, but not limited to, contact lenses and portions thereof. Contact lenses may include but are not limited to, soft contact lenses, hard lenses, and hybrid contact lenses. It may be understood that the methods 100, 150 may be performed with greater or fewer operations than those illustrated in FIGS. 1A, 1B and the sequence of steps of operations of methods 100, 150 may be altered as desired.


The method 100 of FIG. 1A presents one embodiment of a process for manufacturing a contact lens having improved wetability in which opposing sides of the lens are subjected to coating and oxidation separately. Embodiments of the method 100 may be referred to herein as two-step coating processes. In certain embodiments, the method 100 may be performed with the contact lens or disc oriented in a substantially horizontal geometry. For example, in one embodiment, the operations described in blocks 102-110 may be employed to provide a substantially continuous hydrophilic layer on at least a portion of the contact lens surface which improves the wetability of the lens portion which is coated with the hydrophilic layer. In certain embodiments, the lens may be placed in a concave up orientation during the operations of blocks 102-110 and in a concave down orientation during the operations of blocks 112-114. In alternative embodiments, these orientations may be reversed for the respective operations of blocks 102-110 and 112-114.


As discussed in greater detail below, the method 150, illustrated in FIG. 1B, present one embodiment of a process for manufacturing a contact lens having improved wetability in which opposing sides of the lens are subjected to coating and oxidation separately or a single side of the lens is subjected to coating and oxidation. Embodiments of the method 100 may be referred to herein as single-step coating processes. In certain embodiments, during the operations of blocks 152-160, the contact lens may be oriented horizontally in a concave down or concave up geometry. In other embodiments, the contact lens may be oriented in a vertical geometry.


Referring to FIG. 1A and FIG. 2, the method 100 begins in block 102 where a contact lens 200 may be cleaned, placed into a substantially airtight chamber, and subjected to a vacuum. The cleaning and vacuum may be performed under conditions which substantially remove moisture and/or contaminants from the surface of the lens 200 (e.g., water, oils, and the like). In one embodiment, the lens 200 may be cleaned with an acidic or basic solution (e.g., 5% aqueous sodium bicarbonate solution) and then rinsed thoroughly with water to remove the solution. In another embodiment, the lens 200 may be cleaned with a surfactant (e.g., a 2% aqueous surfactant solution). Examples of surfactants may include commercially available formulations such that available under the trade name Micro 90. After cleaning, the lens 200 may be subjected to vacuum in the range of about 40 mtorr to about 80 mtorr for a time in the range of about 10 min to about 45 min to substantially remove water on the lens surface. For example, a vacuum pressure of about 80 mtorr for about 15 minutes may be employed.


The lens 200 may be exposed to plasma in block 104 in order to generate free radicals on the lens surface 202, also referred to herein as plasma activation. In one embodiment, the plasma may be one of an oxygen plasma, a nitrogen plasma, an ozone plasma, and a hydrogen peroxide plasma. In certain embodiments, hydrogen peroxide plasmas may be provided from solutions of hydrogen peroxide. In certain embodiments, the plasma treatment may be performed using any plasma chamber as known in the art. The flow rate of the feed gas for the plasma (e.g., oxygen, nitrogen, ozone, hydrogen peroxide, and the like) may be in the range between about 100 cc/min to about 300 cc/min, for example, about 100 cc/min to about 150 cc/min. The pressure of the feed gas may be in the range between about 200 mtorr to about 350 mtorr. The power applied to the plasma may be in the range between about 100 Watts to about 600 Watts, for example, about 150 Watts to about 500 Watts, and about 200 to 300 Watts. The time of the plasma activation may be in the range between about 10 seconds to about 2 min, for example, about 1 minute.


In block 106, an organic compound may be reacted with the activated contact lens. In one embodiment, the organic material may be a material comprising the functional form R—O—R′, where, R and R′ are each independently selected from H, linear C1-C10 alkyl, branched C1-C10 alkyl, cyclic C3-C10 alkyl, linear C2-C10 alkenyl, branched C2-C10 alkenyl, and cyclic C3-C10 alkenyl, with the proviso that R and R′ may not both be selected to be H; or R and R′ may be joined together to form a C4-C5 cyclic ether. For example, the organic material may comprise alcohols and ethers. Examples of alcohols may include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, tertbutyl alcohol, hexanol, pentanol, 3-buten-1-ol, allyl alcohol, and the like. In other embodiments, the ethers may comprise diethyl ether, methyl ethyl ether, and tetrahydrofuran (THF).


In another embodiment, the organic material may be a ketone of the formula R—(C═O)—R′ or an ester of the formula R—(C═O)—OR′, where R and R′ are independently selected from H, linear C1-C10 alkyl, branched C1-C10 alkyl, cyclic C3-C10 alkyl, linear C2-C10 alkenyl, branched C2-C10 alkenyl, and cyclic C3-C10 alkenyl; or R and R′ may be joined together to form a cyclic C3-C6 ketone or C3-C6 lactone.


For example, the organic material may comprise one or more of aldehydes, ketones, and esters. Examples of aldehydes may include, but are not limited to, butrylaldehyde, acetaldehyde, propionaldehyde, pentanal, and hexanal. Examples of ketones may include 2-butanone, acetone, diethyl ketone, ethyl methyl ketone, dipropyl ketone, cyclohexanone, and cyclohexenone. Examples of acids, acid anhydrides and esters may include carboxylic acids, propionic acid, ethyl acetate, methyl acetate, propyl acetate, ethyl propionate, methyl propionate, ethyl butyrate, cyclohexyl acetate.


In a further embodiment, the organic compound may be selected from the group consisting of a C1-C20 organosilicon, a C1-C20 organosilane compound, a C1-C20 organophosphorous compound, a C1-C20 organotitanium compound, a C1-C20 organotin compound, a C1-C20 organogermanium compound, and a C1-C20 organoboron compound. Examples of such compounds may include, but are not limited to, vinyltrimethylsilane, vinyl triethyl silane, vinyl trimethoxy silane, vinyl triethoxy silane, vinyltripopoxysilane, vinylpentamethyldisiloxane, vinylmethyldiacetoxysilane, methyacryloxypropyl trimethoxysilane, vinyl or alkyl trimethylsilane, methacryloxy propyl tris[trimethylsiloxy]silane titanium ethoxide, titanium isopropoxide, diacetoxy di-tert-butoxy silane, heptamethyltricyloxane, organo germanium, organotin, boron organo materials, and diethylphosphite, diethylphosphatoethyltriethoxysilane, dimethyl(trimethylsilyl)phosphate and trimethylphosphate.


In certain embodiments, antimicrobial organotin compounds may be used in surface modification of contact lenses to inhibit bacteria growth. In one embodiment, the antimicrobial compounds may be organotin, organogermanium, and organoboron compounds. Examples of organotin compounds may include, but are not limited to, bis(triethyltin)oxide, tetra methyl tin, chloromethyltrimethyltin, diallylbromotin, diallydi-n-butyltin and other liquid organometallic tin compound liquid halogenated organometallic tins. Examples of organogermanium compounds may include, but are not limited to, tetraalkylgermane (e.g, tetramethylgermane, tetraethylgermane, tetralkenylgermane), alkenyltrialkylsilane, alkenyltrialkoxylsilane, vinyl trialkylgermane, vinyltrialkenylgermane, vinyltrialkoxygermane, tetraalkoxygermane (e.g., tetraethoxyoxygermane), alkyltrialkoxygermane (e.g., methyltrimethoxygermane), methacyloxyalkyltrialkylgermane (e.g., methacryloxyacryloxy methyltrimethylgermane, methacyloxyacryloxytrialkygermane). Examples of organoboron compounds may include, but are not limited to, boron allylolxide, boron n-butoxide, boron ethoxide, and boron t-butoxide.


In various embodiments, the organic compound may be saturated or unsaturated, linear, cyclic or branched, and/or optionally halogenated, e.g., may be optionally halogenated straight or branched alkanes, alkenes or alkynes.


As illustrated FIG. 2, in one embodiment, after surface activation, the organic compound may participate in one or more free radical reactions, resulting in the formation of an organic layer 204 at the contact lens surface 202. For example, the first plasma may be removed from the chamber containing the contact lens 200 and a flow of the organic material in a gaseous state may be introduced into the chamber. The flow rate of the organic material may be in the range between about 10 cc/min to about 150 cc/min. The pressure of the organic material may be in the range between about 250 mtorr to about 500 mtorr. The flow of the organic material may be further subjected to an alternating electric field at a power that may be in the range between about 200 Watts to about 500 Watts. The flow of the organic compound within the chamber containing the lens may be maintained for a time in the range between about 2.5 minutes to about 10 minutes.


In alternative embodiments, the lens surface activation, introduction of the organic compound, and reaction operations may be performed in a single step. For example, the organic compound may be introduced with the plasma. The plasma and deposition parameters may be employed as discussed above.


In block 110, the contact lens coated with the organic layer 204 may be oxidized. The coating may be oxidized under conditions selected to form a hydrophilic layer 206 at the surface 202 of the lens. In one embodiment, oxidation may be performed using plasma. The plasma may be continuous or pulsed, where pulsing refers to interrupted operation of the plasma (e.g., turning the plasma on and off) during the oxidation process. Examples of plasmas may include, but are not limited to, an oxygen plasma (O2 plasma), an ozone plasma (O3 plasma), and a hydrogen peroxide plasma (H2O2 plasma). In one embodiment, the flow rate of the feed gas for the plasma may be in the range between about 50 cc/min to about 250 cc/min, for example, about 100 cc/min to about 150 cc/min. The power applied to the plasma may be in the range between about 100 Watts to about 600 Watts, for example, in the range between about 200 Watts to about 450 Watts. The plasma oxidation time may be in the range between about 5 seconds to about 60 seconds, for example, about 5 seconds to about 30 seconds continuously. In another example, the plasma oxidation time may be in the range from about 5 seconds to about 10 seconds continuously. In embodiments where the plasma is pulsed, the duty cycle of the plasma may be varied as necessary to achieve the hydrophilic layer at the contact lens surface, for example, about one-half. The time of pulsed plasma oxidation may be in the range between about 15 seconds to about 45 seconds.


In alternative embodiments, the oxidation may be performed using a chemical reaction such as different concentration of hydrogen peroxide or other non toxic oxidizing agents.


In embodiments of the surface modification processes discussed herein may provide contact lenses which exhibit significantly improved wetability. For example, as discussed in greater detail below in the examples, contact angles less than about 50°, less than about 40°, less than about 30°, or less than about 20°, with respect to water are measured after lenses are subjected to the surface modification process. In contrast, untreated or as-received contact lenses (e.g., soft, hard, and hybrid lenses) can have contact angles greater than about 90°. Therefore, embodiments of the disclosed surface modification processes may significantly improve the wetability of contact lenses. For example, the contact angle of a lens may be reduced by more than 50% as compared to their unmodified or as-received condition. In many cases, the reduction in the contact angle of a lens subjected to embodiments of the disclosed surface treatments may be significantly more, such as over 60% or over 70% as compared to the lens in the as-received condition. The reduction in contact angle significantly improves the wetability of the lens and interaction with tears and enhancing the comfort of the patient during wear.


After completing the operation of block 110, the horizontally oriented contact lens is repositioned such that the opposing side is oriented upwards. The operations of blocks 112-114 are then performed as discussed above with respect to blocks 106 and 110. The improvements in contact angle achieved in the operations of blocks 102-110 in a first side of the contact lens may generally be achieved in performing the operations of blocks 112-114 on a second side of the lens.


In alternative embodiments, as illustrated in FIG. 1B, the hydrophilicity of a contact lens may be improved in single deposition and oxidation operations. To perform the single deposition method 150 illustrated in FIG. 1B, the contact lens may, in one embodiment, be oriented vertically. In alternative embodiments, the contact lens may either be oriented horizontally in a concave up or concave down orientation. The operations of blocks 152-160 of the method 150 may be performed as discussed above with respect to the operations of blocks 102-110 of the method 100.


EXAMPLES

In the following examples, various samples of contact lenses subjected to embodiments of the coating process disclosed herein are examined. The examples highlight the wetting performance of these materials and the relative durability of this performance, as reflected in rub testing. It may be understood, however, that these examples are discussed for illustrative purposes and should not be construed to limit the embodiments of the invention.


Unless noted below, the surface modification process was performed using the following processing method:


with the disc or lens oriented concave up:

    • about 7 minutes under vacuum;
    • about 1 minute oxygen plasma activation at a power of about 400 Watts and temperature of about 35° C.;
    • about 7 minutes methanol vapor deposition at a flow rate of about 15 cc/min and pressure of about 175 mtorr;
    • about 7 seconds oxygen plasma oxidation;


with the disc or lens oriented concave down:

    • about 7.5 minutes additional methanol vapor deposition;
    • about 7 seconds oxygen plasma oxidation activation at a power of about 200 Watts and temperature of about 35° C.


Example 1
Effect of Processing Parameters on Contact Angle

To establish the effects of selected processing parameters on the wetability of contact lenses subjected to embodiments of the surface modification processes discussed herein, a series of samples were prepared under varying processing conditions. The selected processing parameters included: plasma activation time, oxygen versus nitrogen plasma oxidation, flow rate and pressure of organic compound (methanol), deposition time, oxidation time, and pulse versus continuous oxidation.


Discs of hard and soft contact lens materials were employed in this study. The hard disc materials comprised RGP material, while the soft disc materials comprised silicone hydrogel. The discs were coated in a horizontal, two-step coating process. Contact angle measurements were performed according to ANSI AZ80.20-2004 using the sisal method with a Goniometer manufactured by KSV and equipped with Cam 100 Optical Contact Angle Meter. The measured contact angles are summarized in Tables 1-6 below. All contact angles are in units of degrees unless otherwise stated.









TABLE 1







Contact Angle as a Function of Plasma Activation Time












Contact
Contact
Contact
Contact



Angle -
Angle -
Angle -
Angle -



Hard Disc
Hard Disc
Soft Disc
Soft Disc



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





1 min Oxygen
>90
35.73 ± 9.96
>90
53.02 ± 12.20


Plasma


Activation


2 min Oxygen
>95
49.53 ± 9.24
>90
58.69 ± 9.58 


Plasma


Activation









Plasma activation times were varied over the range of about 1 minute to about 2 minutes. It is observed that, over this range, the contact angle decreases by approximately 40-50% or more for both hard and soft lenses, as compared to as-received lenses prior to treatment. Furthermore, within the standard deviation, the contact angle appears to be approximately unchanged with activation times between about 1 minute to about 2 minutes. Additionally, the contact angle of the soft and hard discs, for a given activation time, appears to be approximately unchanged.









TABLE 2







Contact Angle as a Function of Plasma Type


During Surface Activation












Contact
Contact
Contact
Contact



Angle -
Angle -
Angle -
Angle -



Hard Disc
Hard Disc
Soft Disc
Soft Disc



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





Oxygen Plasma
>90
40.80 ± 6.32
>90
56.50 ± 7.11


Nitrogen Plasma
>90
45.53 ± 4.37
>90
61.51 ± 4.18









Nitrogen and oxygen plasmas were each employed for activation to investigate their effect on contact angle. It is observed that, irrespective of the plasma, the contact angle decreases by approximately 40-50%, as compared to as-received discs prior to treatment. Furthermore, within the standard deviation, the contact angle appears to be approximately unchanged with either oxygen or nitrogen plasma. It may be also noted that, within a given plasma, soft discs appear to give modestly higher contact angles, as compared to hard discs.









TABLE 3







Contact Angle as a Function of Deposition Flow Rate and Pressure













Contact
Contact
Contact



Contact Angle -
Angle -
Angle -
Angle -



Hard Disc
Hard Disc
Soft Disc
Soft Disc



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





 50 cc/min
>90
46.26 ± 7.97
>90
59.08 ± 7.48


250 mtorr


100 cc/min
>90
45.09 ± 8.89
>90
58.02 ± 9.11


350 mtorr


150 cc/min
>90
47.50 ± 6.73
>90
63.56 ± 5.43


500 mtorr









Flow rates and pressures for methanol deposition were varied over the range of about 50 cc/min to about 150 cc/min and about 250 mtorr to about 500 mtorr, respectively. It is observed that, over these ranges, the contact angle decreases by approximately 40-50%, as compared to as-received discs prior to treatment. Furthermore, within the standard deviation, the contact angle appears to be approximately unchanged over the range of about 50 cc/min to about 150 cc/min flow rates and about 250 mtorr to about 500 mtorr pressures. The soft and hard discs also appear to exhibit approximately comparable contact angles for a given deposition condition.









TABLE 4







Contact Angle as a Function of Deposition Time












Contact

Contact




Angle -
Contact Angle -
Angle -
Contact Angle -



Hard Disc
Hard Disc
Soft Disc
Soft Disc



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





 5 min
>90
49.00 ± 2.25
>90
50.63 ± 1.54


7.5 min 
>90
40.15 ± 5.86
>90
45.70 ± 5.81


10 min
>90
45.88 ± 6.34
>90
57.30 ± 3.37









Methanol deposition times were varied over the range of about 5 minutes to about 10 minutes. It is observed that, over this range, the contact angle decreases by approximately 40-50% or more, as compared to as-received discs prior to treatment. Furthermore, within the standard deviation, the contact angle appears to be approximately unchanged over the range of about 5-10 minutes of deposition. Soft discs exhibit a modestly higher contact angle than hard discs for a given deposition time.









TABLE 5







Contact Angle as a Function of Plasma Oxidation Time













Contact
Contact
Contact



Contact Angle -
Angle -
Angle -
Angle -



Hard Disc
Hard Disc
Soft Disc
Soft Disc



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





 7 sec
>90
45.88 ± 6.34
>90
57.30 ± 3.37


14 sec
>90
44.48 ± 3.61
>90
57.55 ± 3.68


28 sec
>90
40.31 ± 6.39
>90
 49.39 ± 12.35









Plasma oxidation times were varied over the range of about 7 seconds to about 28 seconds. It is observed that, over this range, for both hard and soft discs, the contact angle decreases by approximately 50% or more, as compared to as-received lenses prior to treatment. Furthermore, over the range of about 7 seconds to about 28 seconds of plasma oxidation, the contact angle of surface modified discs, within a given disc, is approximately the same, within the standard deviation. Soft discs exhibit a slightly higher contact angle than hard discs.









TABLE 6







Contact Angle as a Function of Pulsed Versus


Continuous Plasma Oxidation












Contact
Contact
Contact
Contact



Angle -
Angle -
Angle -
Angle -



Hard Disc,
Hard Disc,
Soft Disc,
Soft Disc,



Before
After
Before
After



Treatment
Treatment
Treatment
Treatment


Condition
(°)
(°)
(°)
(°)





 7 sec continuous
>90
36.09 ± 4.62
>90
55.41 ± 14.06


20 sec pulse
>90
42.15 ± 8.49
>90
57.08 ± 16.72









Contact angles of surface modified soft and hard discs subjected to plasma oxidation times of approximately 7 seconds of continuous oxidation and about 20 seconds pulsed oxidation with a duty cycle of about one half were examined. It is observed that, for both hard and soft discs, the contact angle decreased by approximately 40-50% or more, as compared to as-received discs prior to treatment, irrespective of the oxidation processes. Furthermore, within the standard deviation, the contact angle appears to be approximately unchanged between the approximately 7 seconds continuous oxidation and the approximately 20 seconds of pulsed oxidation. Soft and hard discs exhibited approximately the same contact angles for a give oxidation condition.


Example 2
Effect of Single- and Two-Step Deposition Processes on Contact Angle

To investigate the effects of contact lens orientation on the resultant contact angle during surface modification, soft discs, hard discs, and hybrid lenses were examined in single-step and two-step coating processes, and contact angle of the discs was measured in dry and hydrated conditions. The single-step coating processes included horizontal concave up, horizontal concave down, and vertical, while the two-step processes included coating horizontally both concave up and concave down. The results of these coating operations are illustrated below in Tables 7-8.









TABLE 7







Contact Angle as a Function of Horizontal Coating Process











Concave Up
Concave Down
Double Coated















Before
After Plasma,
After Plasma,
After Plasma,
After Plasma,
After Plasma,
After Plasma,


Condition
Treatment (°)
Dry (°)
Hydrated, (°)
Dry (°)
Hydrated (°)
Dry (°)
Hydrated (°)





Hard Disc
102.79 ± 6.16
22.15 ± 2.62
34.93 ± 3.61
30.88 ± 3.27
33.79 ± 2.98
19.29 ± 3.57
35.31 ± 5.89


Soft Disc
102.70 ± 3.46
48.83 ± 3.86
59.57 ± 9.38
48.07 ± 5.02
56.79 ± 6.08
23.62 ± 3.30
35.89 ± 5.79


Hybrid Lens
 86.47 ± 3.51
38.02 ± 4.01
39.64 ± 2.49
37.68 ± 2.18
39.69 ± 5.51
 32.16 ± 10.03
40.89 ± 3.37
















TABLE 8







Contact Angle as a Function of Vertical Coating Process











Before
After Plasma,
After Plasma,



Treatment
Dry
Hydrated


Condition
(°)
(°)
(°)





Hard Disc
102.79 ± 6.16
46.49° ± 2.95
46.85° ± 3.30


Soft Disc
102.70 ± 3.46
60.38 ± 3.07
68.64 ± 5.47


Hybrid Lens
 86.47 ± 3.51
49.41 ± 2.87
50.75 ± 4.66









As illustrated in Table 7, the contact angles of the hard discs and hybrid lenses in the dry condition were relatively insensitive to the horizontal coating process, about 19° to about 30° and about 32° to about 38°, respectively. When hydrated, the contact angles of the hard discs and hybrid lenses were approximately unchanged with the horizontal coating process, however the contact angles were higher than in the dry state, about 35° and about 40°, respectively.


In contrast, soft discs exhibited a significant improvement when undergoing the double-step horizontal coating process, as opposed to the single-step horizontal coating processes. In the double-step process, the aggregate contact angle was measured to be about 24°, as opposed to about 49°. These trends were also found in the hydrated state, though the contact angles were uniformly higher in the hydrated state, with the concave up and concave down angles measured to be about 57° to about 59° and the double coated contact angle measured to be about 36°


Examining the vertical coating results of Table 8, several features may be observed. The coated discs and lenses for each condition exhibit significantly reduced contact angles, as compared to the as-received disc or lens, illustrating that, irrespective of orientation, the treatment process is effective at improving the hydrophilicity of the lens surface.


In terms of improving the surface modification process, though, the vertically coated lenses and discs exhibit higher contact angles than those coated in the horizontal orientations. For example, hard discs coated vertically in dry condition exhibit contact angles which are roughly 50-100% higher, about 47°, compared to about 19° to about 30°. Similar observations may also be made for soft and hybrid lenses. Therefore, while the coating process in general provides improvements to the wetability of the contact lens surfaces, horizontal coating processes may be preferred for providing the largest degree of improvement.


Example 3
Effect of Wear on Wetability of Contact Lenses Coated in Single- and Two-Step Processes

Soft discs, hard discs, and hybrid contact lenses were each subjected to the methanol coating process discussed above in Example 1 in both the single- and two-step horizontal coating processes to examine the effects of wear on wetability. To simulate the coating consistency and coherence during wet wear, the discs and lenses were subjected to a total of about 180 rubbing cycles. The hard discs, soft discs, or hybrid lens were placed in palm of hand and drop of saline or lens cleaning solution, such as the formulations available commercially under the trade names Opti Free Express or Acquify, was poured on the subject and unidirectional rubbing was applied for 10 times, then the subject was flipped and same process was repeated on the other side. This procedure was adapted based on regular cleaning of contact lenses after dispensing and storing in lens cleaning solution which has been recommended by solutions and lens manufacturer, which is the equivalent of approximately six months of lens wear. This six month period was selected as a target, as it is a generally recommended replacement time for contact lenses. 10 hard discs, 10 soft discs, and 10 hybrid lenses were used for each test.


Contact angle was measured in each of the ten samples for the lenses and discs after intervals of 30 rubbing cycles. The average contact angle values and standard deviation are summarized below in Tables 9 and 10.









TABLE 9







Summary of Contact Angle As a Function of Wear for Single Step Methanol Coated Discs and Lenses














Single Step
0 Cycles
30 Cycles
60 Cycles
90 Cycles
120 Cycles
150 Cycles
180 Cycles


Coating
(°)
(°)
(°)
(°)
(°)
(°)
(°)





Hard Disc
26.80 ± 2.95
47.82 ± 2.20
36.11 ± 3.23
33.78 ± 2.78
34.29 ± 3.16
32.39 ± 3.31
32.79 ± 3.55


Soft Disc
36.58 ± 4.06
53.43 ± 4.17
40.32 ± 5.46
45.33 ± 5.32
46.26 ± 5.12
44.15 ± 4.85
46.66 ± 4.05


Hybrid Lens
31.90 ± 2.84
62.27 ± 2.30
40.33 ± 4.95
46.25 ± 3.55
55.55 ± 4.54
52.26 ± 7.78
54.16 ± 6.45
















TABLE 10







Summary of Contact Angle As a Function of Wear for Double Step Methanol Treated Discs and Lenses














Double Step
0 Cycles
30 Cycles
60 Cycles
90 Cycles
120 Cycles
150 Cycles
180 Cycles


Coating
(°)
(°)
(°)
(°)
(°)
(°)
(°)





Hard Disc
28.58 ± 2.56
49.62 ± 2.37
38.70 ± 3.05
35.08 ± 3.99
33.30 ± 4.57
32.56 ± 2.31
36.24 ± 3.32


Soft Disc
39.86 ± 4.50
48.09 ± 4.10
41.42 ± 3.80
42.97 ± 5.53
43.46 ± 5.29
42.15 ± 4.44
42.98 ± 3.73


Hybrid Lens
29.68 ± 2.26
62.68 ± 1.97
42.29 ± 4.53
46.32 ± 6.69
52.31 ± 3.28
55.58 ± 7.63
54.10 ± 4.66









As illustrated in Tables 9 and 10, the contact angles measured for the hard discs, soft discs and hybrid lenses subjected to single step coating, prior to rubbing, were about 26.80°, about 36.58°, and about 31.90°, while the hard discs, soft discs and hybrid lenses subjected to double step coating, prior to rubbing, were about 28.58°, about 39.86°, and about 29.68°. The contact angles for each of the lenses and discs rose when subjected to the 180 cycle rub treatment. For example, the contact angles of the hard disc, soft disc, and hybrid lens materials which underwent single step coating rose to about 32.79°, about 46.66°, and about 54.16°, respectively. The contact angles of the hard disc, soft disc, and hybrid lens materials which underwent double step coating rose to about 36.24°, about 42.98°, and about 54.10°, respectively.


These results illustrate two conclusions. First, the behavior of the discs and lenses undergoing single and double step coating exhibit substantially similar behavior with respect to their contact angles. This result illustrates that the processing of the lenses and discs is substantially insensitive to whether a single vertical or double horizontal coating operation is performed.


Second, the values of contact angles measured in the as-processed and 180 rub cycle condition are substantially similar, when taking their standard deviations into account. Thus, there is little to no change in the contact angle of discs and lenses coated after about 180 rubbing cycles (e.g., simulated wear of about 6 months). This result indicates that the significant improvement to wetability achieved through the coating process is robust and, therefore, long lasting.


Example 4
Effect of Flow Rate and Pressure on Wear Behavior of Contact Lenses

In order to evaluate possible effects of the delivery of the organic compound on wear behavior, lenses and discs were processed under varying deposition conditions in a two-step deposition process and subjected to about 180 rubbing cycles. Three different pressure and flow rate conditions were examined with methanol, with pressure ranging from about 190 mtorr to about 250 mtorr and flow rate ranging from about 20 cc/min to about 50 cc/min, as illustrated below in Table 11.









TABLE 11







Summary of Deposition Conditions













Pressure
Flow Rate
Time



Condition
(mTorr)
(cc/min)
(min)







1
250
20
7.5



2
190
20
7.5



3
250
50
7.5










Five each of soft discs, hard discs, and hybrid lenses were prepared and evaluated for each of the conditions and the results are summarized in Tables 12-14.









TABLE 12







Contact Angle as a Function of Rubbing Cycles and


Condition for Soft Discs













Condition 1
Condition 2
Condition 3



Soft Disc
(°)
(°)
(°)







 0 Cycles
29.60 ± 4.78
26.50 ± 4.57
61.68 ± 8.22



 20 cycles
35.35 ± 7.31
31.77 ± 6.95
61.92 ± 5.43



 40 cycles
 34.42 ± 11.87
32.70 ± 4.47
55.09 ± 6.74



 60 cycles
44.17 ± 8.54
43.22 ± 4.58
57.10 ± 4.96



 80 cycles
48.15 ± 9.38
42.36 ± 4.44
59.89 ± 4.46



100 cycles
49.97 ± 8.52
43.02 ± 6.25
58.64 ± 4.00



120 cycles
50.31 ± 7.66
44.49 ± 4.34
59.24 ± 2.82



140 cycles
53.06 ± 7.34
44.16 ± 5.82
57.34 ± 6.50



160 cycles
52.65 ± 5.54
44.41 ± 6.14
58.71 ± 7.30



180 cycles
54.25 ± 5.82
46.25 ± 5.04
59.83 ± 3.37

















TABLE 13







Contact Angle as a Function of Rubbing Cycles and


Condition for Hard Discs













Condition 1
Condition 2
Condition 3



Hard Disc
(°)
(°)
(°)







 0 Cycles
25.56 ± 5.70
24.97 ± 2.68
44.53 ± 8.30



 20 cycles
33.65 ± 5.18
27.97 ± 4.72
42.59 ± 5.27



 40 cycles
34.45 ± 5.32
34.37 ± 3.74
39.40 ± 3.55



 60 cycles
39.57 ± 5.65
41.95 ± 2.96
44.19 ± 4.46



 80 cycles
40.96 ± 3.64
43.72 ± 2.41
44.81 ± 4.16



100 cycles
40.70 ± 3.84
44.21 ± 2.06
47.47 ± 5.07



120 cycles
46.09 ± 3.69
46.51 ± 3.11
47.98 ± 4.48



140 cycles
46.51 ± 6.09
46.31 ± 3.98
51.58 ± 2.44



160 cycles
50.14 ± 5.45
47.78 ± 4.70
51.99 ± 2.45



180 cycles
50.88 ± 4.26
46.24 ± 5.61
52.30 ± 3.91

















TABLE 14







Contact Angle as a Function of Rubbing Cycles and


Condition for Hybrid Lenses












Hybrid
Condition 1
Condition 2
Condition 3



Lens
(°)
(°)
(°)







 0 Cycles
60.61 ± 2.67
59.91 ± 3.76
81.95 ± 2.48



 20 cycles
54.04 ± 3.26
61.09 ± 2.84
63.73 ± 2.16



 40 cycles
55.47 ± 2.90
56.40 ± 6.56
 78.33 ± 10.01



 60 cycles
62.99 ± 4.74
65.01 ± 4.98
66.46 ± 5.73



 80 cycles
65.03 ± 1.90
74.26 ± 3.07
69.22 ± 2.69



100 cycles
72.20 ± 3.16
62.12 ± 6.52
73.77 ± 5.31



120 cycles
84.22 ± 3.37
82.75 ± 1.42
75.18 ± 0.65



140 cycles
74.72 ± 6.06
73.14 ± 2.64
76.20 ± 1.94



160 cycles
81.78 ± 2.98
84.48 ± 5.38
85.10 ± 7.29



180 cycles
84.80 ± 2.08
85.10 ± 4.33
83.20 ± 5.51










From Tables 12-14, it may be observed that condition 2, a flow rate of about 20 cc/min and a pressure of about 190 mtorr, was the most effective condition, of those evaluated, at reducing contact angles over all cycles and all disc or lens materials. For example, contact angles of about 26.50°, about 24.97°, and about 59.91° were observed in the initial condition, without rubbing, in the soft disc, hard disc, and hybrid lens, respectively. These values rose to about 46.25°, about 46.24°, and about 85.10°, respectively, after about 180 rub cycles. These results indicate that contact angles are sensitive to flow rates and pressure, when considering long term durability. The results further indicate that improvements in contact angle may be achieved with deposition flow rates as low as about 20 cc/min and pressures of about 190 mtorr.


Example 5
Effect of Deposition Material on Contact Angle

The effect of different deposition materials was also investigated to examine their effect on the contact angles achieved through the surface modification process. The contact angle of these materials was measured in dry conditions immediately after plasma coating. Functionalized organic compounds tested included alcohol and aldehydes. Alcohols tested include 3-buten-1-ol, allyl alcohol, and ethanol. Aldehydes tested include butrylaldehyde. Silicon containing organic compounds tested included vinylpentamethyldi-siloxane, vinyl methyldiacetoxy-silane, 3-methacryloxy propyltristrimethylsiloxy-silane, and vinyltrimethyl-silane. Titanium containing organic compounds tested included titanium isopropoxide. The results of contact angle testing are illustrated below in Table 15.









TABLE 15







Contact Angle as a Function of Deposition Material












Contact
Contact

Contact



Angle -
Angle -
Contact Angle -
Angle - Soft



Hard Disc
Hard Disc
Soft Disc
Disc



Before
After
Before
Before



Treatment
Treatment
Treatment
Treatment


Deposition Material
(°)
(°)
(°)
(°)





3-buten-1-ol
>90
21.11 ± 5.29
>90
45.65 ± 7.29


Allyl Alcohol
>90
35.96 ± 4.08
>90
46.21 ± 6.24


Ethanol
>90
35.69 ± 4.74
>90
51.34 ± 5.31


Methane
>90
33.11 ± 3.38
>90
46.35 ± 6.92


Butrylaldehyde
>90
25.90 ± 1.59
>90
52.92 ± 5.74


Bromohexane
>90
39.47 ± 2.78
>90
64.33 ± 6.35


Vinylpentamethyldi-
>90
31.50 ± 1.83
>90
51.09 ± 4.90


siloxane


Vinylmethyldiacetoxy-
>90
27.18 ± 2.46
>90
47.83 ± 8.09


silane


3-methacryloxy
>90
39.68 ± 4.86

65.64 ± 5.66


propyltristrimethylsiloxy-


silane


Vinyltrimethyl-silane
>90
40.26 ± 7.23
>90
 42.49 ± 12.08


Titanium Isopropoxide
>90
40.64 ± 3.54
>90
51.40 ± 6.43









Soft and hard discs modified with alcohols exhibited contact angles ranging between about 21° to about 51°. Organosilicon compounds exhibited contact angles of about 28° to 66°, while titanium isopropoxide exhibited contact angles of about 41° to about 52°. In each of these cases, the surface modification process significantly improves the contact angle of the discs. Furthermore, these benefits have been demonstrated when using alcohols, aldehydes, organosilicon and organotitanium compounds.


Example 6
Effect of Organic Material on Contact Angle of Contact Under Simulated Wear

In order to evaluate possible effects of the organic compound on wear behavior, hard and soft discs were processed using different organic compounds and subjected to about 180 rubbing cycles. The results are summarized below in Table 16.









TABLE 16





Contact Angle as a Function of Deposition Material and Wear



















Methanol (°)
Ethanol (°)
Isopropanol (°)













Condition
Soft Disc
Hard Disc
Soft Disc
Hard Disc
Soft Disc
Hard Disc





 0 Cycles
41.34 ± 6.94
37.73 ± 6.87
51.36 ± 7.96
41.63 ± 3.72
48.75 ± 4.81
35.81 ± 3.12


 30 Cycles
45.62 ± 4.38
41.89 ± 4.30
44.70 ± 8.32
37.82 ± 3.20
44.18 ± 3.07
35.27 ± 2.39


 60 Cycles
42.83 ± 4.69
45.94 ± 5.38
49.11 ± 6.22
42.91 ± 2.57
42.02 ± 5.64
42.85 ± 3.69


 90 Cycles
49.69 ± 3.58
47.78 ± 3.26
52.20 ± 4.92
50.67 ± 6.49
42.02 ± 5.64
42.85 ± 3.69


120 Cycles
53.11 ± 4.16
48.03 ± 4.38
53.33 ± 4.89
49.24 ± 1.58
47.45 ± 5.76
43.49 ± 9.13


150 Cycles
52.28 ± 5.00
52.93 ± 5.55
51.60 ± 2.63
 47.90 ± 13.80
49.92 ± 6.00
 42.63 ± 14.77


180 Cycles
51.53 ± 3.02
50.78 ± 2.57
52.24 ± 2.53
50.59 ± 1.62
50.54 ± 2.15
 49.50 ± 50.07














THF (°)
Allyl alcohol (°)
T-1













Condition
Soft Disc
Hard Disc
Soft Disc
Hard Disc
Soft Disc
Hard Disc





 0 Cycles
48.08 ± 6.00 
34.76 ± 3.48 
47.55 ± 7.17
37.45 ± 3.26
45.07 ± 3.03
39.73 ± 3.55


 30 Cycles
46.02 ± 5.06 
35.87 ± 4.48 
49.42 ± 4.98
38.50 ± 5.57
47.00 ± 6.48
46.71 ± 3.07


 60 Cycles
51.99 ± 1.96 
42.24 ± 2.15 
55.17 ± 5.92
44.91 ± 3.20
53.80 ± 4.37
46.53 ± 1.86


 90 Cycles
51.22 ± 10.84
44.71 ± 8.41 
48.03 ± 3.79
45.30 ± 2.30
53.72 ± 5.38
50.24 ± 3.54


120 Cycles
49.67 ± 10.26
49.90 ± 2.56 
 53.86 ± 11.40
 47.71 ± 11.38
45.39 ± 4.93
45.83 ± 8.86


150 Cycles
50.26 ± 13.69
49.29 ± 10.50
53.76 ± 9.47
 52.90 ± 15.13
49.67 ± 4.89
46.42 ± 5.91


180 Cycles
55.88 ± 15.59
 50.07 ± 10.167
 55.13 ± 10.13
 52.67 ± 10.13
47.04 ± 1.77
46.44 ± 4.72









As discussed above in Example 5, each of the organic compounds employed in embodiments of the surface modification process provide improvements in the measured contact angle of the hard and soft discs evaluated. In general, the contact angles exhibit values that range between about 35° to about 48° in the initial condition and rise modestly to about 47° to 53° after about 180 rubbing cycles, irrespective of the type of lens or organic material. The finding that the contact angles measured for the initial and 180 rubbing cycle conditions are approximately the same, within the standard deviation of the measurements, indicates that wetability of the surface modified contact lenses is substantially unchanged after 180 rubbing cycles. These results illustrate that the durability of the surface modified lenses is relatively insensitive to the choice of organic compound and lens type and that the benefits of the surface modification process may be achieved using a variety of organic compounds, as described herein.


Although these inventions have been disclosed in the context of a certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while a number of variations of the inventions have been shown and described in detail, other modifications, which are within the scope of the inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within one or more of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A method of increasing the hydrophilicity of a polymer surface, comprising: exposing a polymer substrate to a first plasma under conditions selected to generate free radicals on a surface of the polymer substrate;reacting an organic compound with the free radicals on the surface of the polymer substrate to thereby form an organic coating, wherein the organic compound is methanol; andexposing the organic coating to a second plasma under conditions selected to oxidize the organic coating to thereby form a hydrophilic layer at the substrate surface.
  • 2. The method of claim 1, wherein the polymer substrate is a contact lens or portion thereof.
  • 3. The method of claim 1, wherein the first plasma is selected from an oxygen plasma, nitrogen plasma, ozone plasma, and hydrogen peroxide plasma.
  • 4. The method of claim 1, wherein the polymer substrate is exposed to the first plasma for an exposure time in the range of from about 10 seconds to about 2 minutes.
  • 5. The method of claim 1, wherein reacting an organic compound with the free radicals on the surface of the polymer substrate comprises contacting the organic compound with the polymer substrate in the presence of an alternating electric field.
  • 6. The method of claim 1, wherein the second plasma is an oxygen plasma, an ozone plasma, or a hydrogen peroxide plasma.
  • 7. The method of claim 6, wherein the organic coating is exposed to the second plasma for an exposure time in the range of from about 7 seconds to about 28 seconds.
  • 8. The method of claim 1, wherein the contact angle of water with respect to the hydrophilic layer is less than that of the surface of the polymer substrate prior to exposure to the first plasma.
  • 9. The method of claim 8, wherein the contact angle of water with respect to the hydrophilic layer is reduced by at least half as compared to the polymer substrate prior to exposure to the first plasma.
  • 10. The method of claim 1, further comprising cleaning the polymer substrate with a basic solution prior to exposure to the first plasma.
  • 11. The method of claim 1, further comprising subjecting the polymer substrate to a vacuum under conditions selected to substantially remove water at the surface of the substrate prior to exposure to the first plasma.
  • 12. The method of claim 1, wherein the method is performed with the polymer substrate mounted in a substantially horizontal orientation.
  • 13. A method of reducing the hydrophobicity of a contact lens surface, comprising: providing a contact lens;exposing the contact lens to a first plasma under conditions selected to generate free radicals on a surface of the contact lens;contacting an organic compound with the free radicals on the surface of the contact lens under conditions selected to form a hydrophilic surface on the contact lens, the hydrophilic surface having a contact angle with respect to water that is less than about 50°.
  • 14. The method of claim 13, wherein the organic compound is linear, branched or cyclic and wherein the organic compound is selected from the group consisting of a C1-C20 alcohol, a C1-C20 ether, a C1-C20 aldehyde, a C1-C20 ketone, a C1-C20 ester, a C1-C20 alkane, a C2-C20 alkenyl, a C6-C20 aryl, a C1-C20 organosilicon compound, C1-C20 organosilane compound, a C1-C20 organophosphorous compound, a C1-C20 organotitanium compound a C1-C20 organotin compound, a C1-C20 organogermanium compound, and a C1-C20 organoboron compound.
  • 15. The method of claim 13, wherein the organic compound has the formula R—O—R′, where R and R′ are each independently selected from H, linear C1-C10 alkyl, branched C1-C10 alkyl, cyclic C3-C10 alkyl, linear C2-C10 alkenyl, branched C2-C10 alkenyl, and cyclic C3-C10 alkenyl, with the proviso that R and R′ may not both be selected to be H; or R and R′ may be joined together to form a C4-C5 cyclic ether.
  • 16. The method of claim 13, wherein the organic compound is a ketone of the formula R—(C═O)—R′ or an ester of the formula R—(C═O)—OR′, where R and R′ are independently selected from H, linear C1-C10 alkyl, branched C1-C10 alkyl, cyclic C3-C10 alkyl, linear C2-C10 alkenyl, branched C2-C10 alkenyl, and cyclic C3-C10 alkenyl; or R and R′ may be joined together to form a cyclic C3-C6 ketone or C3-C6 lactone.
  • 17. The method of claim 13, wherein the organic compound is selected from the group consisting of a C1-C20 organosilicon compound, a C1-C20 organosilane compound, a C1-C20 organophosphorous compound, a C1-C20 organotitanium compound, a C1-C20 organotin compound, a C1-C20 organogermanium compound, and a C1-C20 organoboron compound.
  • 18. The method of claim 13, wherein the organic compound is methanol.
  • 19. The method of claim 13, wherein the first plasma is an oxygen plasma, a nitrogen plasma, an ozone plasma, or a hydrogen peroxide plasma.
  • 20. The method of claim 13, wherein the contact lens is exposed to the first plasma for an exposure time in the range of from about 10 seconds to about 2 minutes.
  • 21. The method of claim 13, wherein the conditions selected to form a hydrophilic surface on the contact lens comprise reacting the organic compound with the free radicals on the surface of the contact lens to form an organic coating.
  • 22. The method of claim 13, wherein contacting the organic compound with the free radicals on the surface of the contact lens comprises contacting the organic compound with the contact lens in the presence of an alternating electric field.
  • 23. The method of claim 21, further comprising oxidizing the organic coating by exposure to a second plasma.
  • 24. The method of claim 23, wherein the plasma is one of an oxygen plasma, an ozone plasma, and a hydrogen peroxide plasma.
  • 25. The method of claim 23, wherein the contact lens is exposed to the second plasma for between about 7 sec to about 28 sec.
  • 26. The method of claim 23, wherein the power applied to the second plasma is in the range of about 200 Watts to about 450 Watts.
  • 27. The method of claim 13, wherein the method is performed with the contact lens mounted in a substantially horizontal orientation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/153,588, filed on Feb. 18, 2009 and entitled, “SURFACE MODIFICATION OF CONTACT LENS,” the entirety of which is incorporated herein by reference.

US Referenced Citations (76)
Number Name Date Kind
3782045 Kanda Jan 1974 A
3874124 Morgan et al. Apr 1975 A
3925178 Gesser et al. Dec 1975 A
3955726 Reitzel May 1976 A
4055378 Feneberg et al. Oct 1977 A
4096315 Kubacki Jun 1978 A
4137365 Fletcher et al. Jan 1979 A
4163609 Neefe Aug 1979 A
4169119 Covington Sep 1979 A
4280759 Neefe Jul 1981 A
4287175 Katz Sep 1981 A
4306042 Neefe Dec 1981 A
4312725 Loshaek et al. Jan 1982 A
4321261 Ellis et al. Mar 1982 A
4357173 Rosenthal et al. Nov 1982 A
4414375 Neefe Nov 1983 A
4436730 Ellis et al. Mar 1984 A
4487905 Mitchell Dec 1984 A
4495361 Friends et al. Jan 1985 A
4508884 Wittmann et al. Apr 1985 A
4550001 Suminoe et al. Oct 1985 A
4626292 Sherman Dec 1986 A
4652622 Friends et al. Mar 1987 A
4743106 Novicky May 1988 A
4747683 Doane May 1988 A
4796991 Gordon et al. Jan 1989 A
4861850 Novicky Aug 1989 A
4874234 Wichterle Oct 1989 A
4911933 Gilbard Mar 1990 A
4940751 Frances et al. Jul 1990 A
4948855 Novicky Aug 1990 A
4951811 Lines Aug 1990 A
4968532 Janssen et al. Nov 1990 A
5093447 Novicky Mar 1992 A
5133708 Smith Jul 1992 A
5206298 Kawaguchi Apr 1993 A
5227039 Pankow Jul 1993 A
5274008 Lai Dec 1993 A
5498407 Atlas Mar 1996 A
5529678 Pankow Jun 1996 A
5529727 LaBombard et al. Jun 1996 A
5532224 Desai et al. Jul 1996 A
5708050 Nakada et al. Jan 1998 A
5712327 Chang et al. Jan 1998 A
5744271 Aizawa et al. Apr 1998 A
5849222 Jen et al. Dec 1998 A
5874127 Winterton et al. Feb 1999 A
5888656 Suzuki et al. Mar 1999 A
5910518 Nakada et al. Jun 1999 A
6075066 Matsuda et al. Jun 2000 A
6099852 Jen Aug 2000 A
6193369 Valint, Jr. et al. Feb 2001 B1
6213604 Valint, Jr. et al. Apr 2001 B1
6348507 Heiler et al. Feb 2002 B1
6440571 Valint, Jr. et al. Aug 2002 B1
6468667 Chabrecek et al. Oct 2002 B1
6550915 Grobe, III Apr 2003 B1
6599559 McGee et al. Jul 2003 B1
6630243 Valint, Jr. et al. Oct 2003 B2
6638563 McGee et al. Oct 2003 B2
6689480 Shimoyama et al. Feb 2004 B2
6858310 McGee et al. Feb 2005 B2
6896926 Qiu et al. May 2005 B2
6902812 Valint, Jr. et al. Jun 2005 B2
20020006521 Shimoyama et al. Jan 2002 A1
20020012755 Hodgkin et al. Jan 2002 A1
20020120084 Valint, Jr. et al. Aug 2002 A1
20030039748 Valint, Jr. et al. Feb 2003 A1
20030068433 McGee et al. Apr 2003 A1
20030109390 Salpekar et al. Jun 2003 A1
20030171499 Grobe, III Sep 2003 A1
20030235604 McGee et al. Dec 2003 A1
20040114105 Shimoyama et al. Jun 2004 A1
20050206309 Shibasaki et al. Sep 2005 A1
20060142410 Baba et al. Jun 2006 A1
20060157453 Dumont et al. Jul 2006 A1
Foreign Referenced Citations (90)
Number Date Country
4113292 Oct 1992 DE
10064096 Dec 2000 DE
20209329 Sep 2002 DE
0068800 Jan 1983 EP
0108886 May 1984 EP
0124017 Nov 1984 EP
0232986 Aug 1987 EP
0276631 Aug 1988 EP
0358447 Mar 1990 EP
0378511 Jul 1990 EP
0432970 Jun 1991 EP
0434362 Jun 1991 EP
0713106 May 1996 EP
0758687 Feb 1997 EP
0765721 Apr 1997 EP
0765733 Apr 1997 EP
0770474 May 1997 EP
0830865 Mar 1998 EP
0836111 Apr 1998 EP
0856400 Aug 1998 EP
0989418 Mar 2000 EP
1048304 Nov 2000 EP
1154287 Nov 2001 EP
1163914 Dec 2001 EP
1336415 Aug 2003 EP
1582910 Oct 2005 EP
1611883 Jan 2006 EP
2840826 Jun 2002 FR
1584884 Jan 1981 GB
2386847 Feb 2003 GB
56-095932 Aug 1981 JP
01-167726 Jul 1989 JP
01-253710 Oct 1989 JP
01-295216 Nov 1989 JP
02-220024 Sep 1990 JP
02-278224 Nov 1990 JP
03-015816 Jan 1991 JP
03-039928 Feb 1991 JP
03-098014 Apr 1991 JP
03-102313 Apr 1991 JP
03-125115 May 1991 JP
03-130718 Jun 1991 JP
03-131819 Jun 1991 JP
03-137056 Jun 1991 JP
03-217815 Sep 1991 JP
03-217816 Sep 1991 JP
03-235914 Oct 1991 JP
04-053921 Feb 1992 JP
04-067012 Mar 1992 JP
04-104121 Apr 1992 JP
04-104220 Apr 1992 JP
04-112157 Apr 1992 JP
04-179916 Jun 1992 JP
04-316013 Nov 1992 JP
04-338713 Nov 1992 JP
04-370122 Dec 1992 JP
05-107512 Apr 1993 JP
05-295391 Nov 1993 JP
06-122779 May 1994 JP
06-289333 Oct 1994 JP
07-056127 Jan 1995 JP
07-138392 May 1995 JP
08-227001 Sep 1996 JP
10-289952 Oct 1998 JP
2001-117054 Apr 2001 JP
2001-233922 Aug 2001 JP
2002-047365 Feb 2002 JP
2002-363447 Dec 2002 JP
2003-225311 Aug 2003 JP
WO 9305699 Apr 1993 WO
WO 9415729 Jul 1994 WO
WO 9500615 Jan 1995 WO
WO 9500617 Jan 1995 WO
WO 9500620 Jan 1995 WO
WO 9510523 Apr 1995 WO
WO 9517492 Jun 1995 WO
WO 9525287 Sep 1995 WO
WO 9636890 Nov 1996 WO
WO 9855155 Dec 1998 WO
WO 9957177 Nov 1999 WO
WO 0037545 Jun 2000 WO
WO 0071611 Nov 2000 WO
WO 0071612 Nov 2000 WO
WO 0071613 Nov 2000 WO
WO 0182984 Nov 2001 WO
WO 0222186 Mar 2002 WO
WO 0248300 Jun 2002 WO
WO 2005003237 Jan 2005 WO
WO 2005014074 Feb 2005 WO
WO 2006039466 Apr 2006 WO
Related Publications (1)
Number Date Country
20100208196 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
61153588 Feb 2009 US