The present invention relates to capacitors. More particularly, though not exclusively, the present invention relates to improved surface mount chip capacitors and methods for manufacturing the same.
Capacitors exist in the art which are made from a capacitive element such as a tantalum slug or pellet. To create a conventional tantalum slug, tantalum powder is pressed with a binder and then exposed to a process for forming a polarized capacitor having a positive end and a negative end. A typical tantalum slug will have an anode comprised of a wire extending from the slug and a cathode comprised of a conductive surface formed at the opposite side of the tantalum slug.
The usual method for making tantalum pellets for use in tantalum capacitors includes steps wherein tantalum powder is first pressed or compacted into a pellet. The resulting pressed pellets then undergo a sintering process wherein the pellets are heated in a vacuum. The heating allows the tantalum particles to stick together so they can hold a lead wire, which functions as the anode.
Following the sintering process, the tantalum pellet is dipped in an acid solution to form a dielectric film on the outer surface of the pellet and the particles within the pellet which is typically tantalum pentoxide. The pellet and the particles within the pellet are then subsequently coated with various other metal-containing materials which form the cathode.
These capacitors have the anode and the cathode attached to a circuit board by connection wires.
Modern methods of mounting components use the possibility of soldering the components directly to conductor tracks of printed circuit boards without the use of connection wires. This technology is used to an ever increasing extent under the indication “Surface Mounted Device” (SMD).
Capacitors suitable for the SMD technique may be manufactured as a chip component and as a MELF component. Chip components generally have supporting members in the form of rectangular parallelepipeds which have end faces suitable for soldering or in the form of flipchips which have a face with both cathode and anode terminals suitable for soldering. MELF components (Metal Electrode Face Bonding) start from cylindrical supporting members having connection caps in which the connection wires are omitted and the caps themselves are made suitable for soldering at their surfaces by an electroplating treatment and are soldered directly with said connection caps to conductor tracks of printed circuit boards.
The great advantage of the SMD technology is that extremely high packing densities of components on the printed circuit boards are possible. For realizing ever increasing densities, smaller and smaller components suitable for the SMD technique become necessary.
However, SMD technology encounters problems with producing devices with productivity and uniformity. It can therefore be seen that there is a need for an improved surface mount chip capacitor and method for making the same.
In addition, current SMD technology may require the manipulation of individual capacitors as opposed to using techniques for mass manipulation of capacitors. One particularly useful technique of mass manipulation is through the use of a reel to reel process. Therefore, a further feature of the present invention is the provision of a capacitor that is efficiently manufactured using a reel to reel process.
Also, current SMD technology may be improved by the use of electrophoretic deposition. Some of the advantages of electrophoretic deposition include a high coating rate of charged particles upon the substrate, a resulting film of charged particles upon the substrate that is dense and uniform, a thickness of film that is able to be controlled by depositing condition, and a simple process that is easy to scale up. Accordingly, a still further feature of the present invention is the provision of a method that uses electrophoretic deposition to increase the capacitor uniformity, tolerance, capacitance and the density per volume.
It is still a further feature of the present invention to provide a surface mount chip that is easy to make and economical to manufacture.
The device and method of accomplishing these and other features will become apparent from the following description of the invention.
The present invention will be described as it applies to the preferred embodiment. It is not intended that the present invention be limited to the described embodiment. It is intended that the invention cover all alternatives, modifications, and equivalencies which may be included within the spirit and scope of the invention.
The capacitor 10, as shown, has two conductors, namely, the tantalum pellet 12 and the manganese dioxide (Mn02) 16, which is actually a semiconductor. The dielectric film 14 is tantalum pentoxide (Ta2O5). When the capacitor 10 is in use, the tantalum pellet 12 is positively charged and acts as the anode, and the manganese dioxide 16 is negatively charged and acts as the cathode. The capacitor also includes a tantalum anode lead wire 18, a layer of carbon 22, and a metallized outer electrode 20.
The prior art capacitor 10 is usually made by taking tantalum powder and compressing or compacting into a pellet. The resulting pressed pellet 12 then undergo a sintering process wherein the pellet 12 is heated in a vacuum. The heating allows the tantalum particles to stick together so they can hold the lead wire 18.
After the sintering process, the pellet 12 is typically dipped in an acid solution to form a dielectric film 14 on the outer surface of the pellet 12. The pellet 12 is then subsequently coated with various other metal-containing materials which form the cathode. Typically, Mn02 16 is placed around the dielectric film 14 which may be followed by the layer of carbon graphite 22 which is painted with silver print 20. Other conductive polymers such as polypirrolle can also be used in place of manganese oxide. The cathode portion ends in a cathode termination.
The lead wire 18 is usually coated with an insulating substance such as Teflon™ (not shown). The lead wire 18 is typically the anode termination. These terminations can be connected to a circuit board for mounting the capacitor 10 in an electrical circuit.
The capacitor includes a wire 32. The wire 32 is typically made of tantalum. Alternatively, the wire may be made of another valve metal (i.e., Niobium (Nb), Hafnium (Hf), Zirconium (Zr), Titanium (Ti), Vanadium (V), Tungsten (W), Beryllium (Be), or Aluminum (Al)). Alternatively, the wire may be made of a substrate containing a valve metal (i.e., Ta, Nb, Hf, Zr, Ti, V, W, Be, or Al). The wire is preferably between 50–100 μm thick. The wire may be a rectangular parallelepiped. Alternatively, the wire may be of various other shapes.
A conductive powder element 34 is upon the wire 32. The conductive powder element may be a valve metal. Alternatively, the conductive powder element may be a valve metal substrate. The conductive powder element 34 may have a low capacitor-voltage (CV) (i.e. 10 CV) up to 100–150 KCV. The conductive powder element 34 before being placed upon the wire 32 may be in a form of a powder that is regularly agglomerated, sieved, and/or crushed. The conductive powder element 34 has a density in the range of 3–8 g/cc when attached to the wire 32 in a layer.
A dielectric film 36 is over the surface of the conductive powder element 34 and the anode wire 32. The dielectric film 36 is typically tantalum pentoxide (Ta205). An insulative coating 38 such as Teflon™ coats a portion of the anode wire 32 and the sintered tantalum layer 34.
A solid electrolyte, i.e. manganese dioxide (MnO2) or a conductive polymer, is a dielectric exterior 40. The solid electrolyte impregnates spaces within the dielectric film 36 coated conductive powder element 34 to form the cathode of the capacitor.
A conductive counterelectrode layer overlies the dielectric exterior 40 and is in electrical continuity with the manganese dioxide cathode of the capacitor 30. The counterelectrode layer is preferably comprised of a first sublayer 42 of graphite carbon and an overlayer of metal particles 44, preferably silver, in a binder or organic resin. The counterelectrode layer must extend over the cathode end 46 of the tantalum layer 34 as well as helps seal the manganese dioxide layer 40. The counterelectrode layer overlies substantially all of the side surfaces and the cathode end 46 of the tantalum layer 34 to obtain a capacitor having a minimum dissipation factor and ESR, but is maintained separate from, and out of electrical continuity with the anode wire 32.
An organic coating or pasivation coating 48 is formed over the counterelectrode layer on the side surface of the tantalum layer 34 and over the insulative coating 38 at the anode end 50 of the tantalum layer 34 while not extending over the cathode end 15. A silver print anode 52 is bonded at the anode end 50 of the tantalum layer 34 over the organic coating 48 and in contact with the anode wire 32. A cathode end cap 54 is bonded in contact with the cathode end 46 of the counterelectrode layer, thus forming a cathode terminal or second terminal 56. An anode end cap 58 is bonded in contact with the anode end 50 coating the silver print anode 52 and a portion of the insulative coating 48, thus forming an anode terminal or first terminal 60.
The cathode terminal 56 and the anode terminal 60 are connections that can be connected to a circuit board for mounting the capacitor 30 in an electrical circuit. While the method described below and shown in
The foil strip 70 also has holes 72 on the outside edges. The holes 72 are used to place the foil strip 70 into a frame 74. As seen in
The foil strips 70 and frame 74 are but one apparatus for handling the punched wires 32. Alternatively, a single foil strip may be used having a single row of wires 32. Still alternatively, a single wide foil strip may be used to replace the series of foil strips 70 as seen in
The conductive powder element 34 is placed upon the wire by electrophoretic deposition that comprises essentially two steps: first, charged particles of powder (0.2–40 μm) in suspension are moved to the wire 32 by applied voltage and second, the particles of powder are deposited (discharged and flocculated) on the wire 32. The resulting film of charged particles is the conductive powder element 34 which is dense and uniform.
As seen in
As seen in
The next step in the process, as seen in
Next, as seen in
As seen in
As seen in
The next step is to cut the surface mount chip capacitor 30 from the strips 70, as seen in
The final step, as seen in
While the present invention can be accomplished using the methods described above, it us understood that various other methods could be used within the spirit and scope of the present invention.
The preferred embodiment of the present invention has been set forth in the drawings and specification, and although specific terms are employed, these are used in a generic or descriptive sense only and are not used for purposes of limitation. Changes in the form and proportion of parts as well as in the substitution of equivalents are contemplated as circumstances may suggest or render expedient without departing from the spirit and scope of the invention as further defined in the following claims.
This application is a Divisional of U.S. Ser. No. 10/792,639 filed Mar. 2, 2004 now U.S. Pat. No. 7,085,127 and which application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3679944 | Yoshimura et al. | Jul 1972 | A |
3828227 | Millard et al. | Aug 1974 | A |
4009424 | Itoh | Feb 1977 | A |
4090288 | Thompson et al. | May 1978 | A |
4494299 | Franklin et al. | Jan 1985 | A |
4984130 | Düll et al. | Jan 1991 | A |
5036434 | Kobayashi | Jul 1991 | A |
5117333 | Kakuma et al. | May 1992 | A |
5168434 | Kobayashi | Dec 1992 | A |
5349496 | Taniguchi et al. | Sep 1994 | A |
5390074 | Hasegawa et al. | Feb 1995 | A |
5699597 | Nakamura et al. | Dec 1997 | A |
6212064 | Aoki et al. | Apr 2001 | B1 |
6238444 | Cadwallader | May 2001 | B1 |
6380577 | Cadwallader | Apr 2002 | B1 |
6410083 | Pozdeev-Freeman | Jun 2002 | B1 |
6504705 | Shimada et al. | Jan 2003 | B2 |
6510043 | Shiue et al. | Jan 2003 | B1 |
6541302 | Huber et al. | Apr 2003 | B2 |
6679934 | Rao et al. | Jan 2004 | B2 |
7144432 | Nakamura | Dec 2006 | |
20030174461 | Takatani et al. | Sep 2003 | A1 |
20040195093 | Cohen et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 02103728 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060061939 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10792639 | Mar 2004 | US |
Child | 11266632 | US |