Surface-mount connector

Information

  • Patent Grant
  • 7749009
  • Patent Number
    7,749,009
  • Date Filed
    Monday, May 12, 2008
    17 years ago
  • Date Issued
    Tuesday, July 6, 2010
    15 years ago
Abstract
A preferred embodiment of an electrical connector includes a housing having a body. The body defines a contact-receiving aperture extending therethrough, and a heat-transfer aperture extending therethrough in substantially the same direction as the contact-receiving aperture for facilitating circulation of air through the body.
Description
FIELD OF THE INVENTION

The present invention relates generally to electrical connectors. More specifically, the invention relates to a surface-mount connector, such as a ball-grid array connector (“BGA connector”), having features that permit air to circulate through the connector.


BACKGROUND OF THE INVENTION

Surface-mount connectors such as BGA connectors typically include a plurality of electrically-conductive contacts mounted in a housing. Each conductor has a solder ball attached to a tail portion thereof. The solder balls collectively form a ball grid array.


The solder balls are used to form electrical and mechanical connections between the connector and a substrate, such as a printed-circuit board (PCB), on which the connector is mounted. The connector is mounted on the substrate by heating the solder balls to their melting point. The melted solder subsequently cools and re-hardens to form solder connections between the connector and the substrate.


The solder balls can be heated by placing the connector and the substrate in a convection reflow oven. The oven directs heated air over the connector. Heat is transferred to the solder balls directly and indirectly, by a combination of conductive and convective heat transfer.


The rate of heat transfer to the individual solder balls usually is not uniform throughout the ball grid array. In particular, the heated air primarily contacts the outermost surfaces the connector, and the outermost solder balls in the ball-grid array, i.e., the solder balls located proximate to the outer perimeter of the ball-grid array. The outermost solder balls therefore tend to receive a higher amount of thermal energy than the innermost, i.e., centrally-located, solder balls.


The need to transfer sufficient thermal energy to the innermost portion of the connector to melt the centrally-located solder balls can be addressed by slowing the speed of the connector and the substrate through the convection reflow oven, i.e., by increasing the dwell time of the connector and the substrate in the oven. This approach can lower the yield of the oven, i.e., number of connector and substrate pairs that can be processed in the oven per unit time.


Alternatively, the temperature of the heated air within the convection reflow oven can be increased. This approach, however, can result in unintended connector, substrate, or component damage.


SUMMARY OF THE INVENTION

To help solve uneven heating of surface-mount connectors having fusible elements such as solder balls, the present invention includes an electrical connector that has heat-transfer passages, and other passages fluidly connected to the heat-transfer passages. In general, one aspect of the present invention is to expose more of the center portion of the connector to: (i) heated air during reflow; and (ii) ambient airflow to help cool the connector in operation.


A preferred embodiment of an electrical connector comprises a housing including a body. The body defines a contact-receiving aperture extending therethrough, and a heat-transfer aperture extending therethrough in substantially the same direction as the contact-receiving aperture for facilitating circulation of air through the body.


A preferred embodiment of an electrical connector for mounting on a substrate comprises a plurality of insert molded leadframe assemblies each comprising a frame, and a plurality of electrically-conductive contacts mounted on the frame. The connector also comprises a housing having a body including a first face that faces the substrate when the connector is mounted thereon, and a second face. The body has a first plurality of apertures formed therein and extending between the first and second faces for receiving the contacts, and a second plurality of apertures formed therein and extending between the first and second faces.


The insert-molded leadframe assemblies are secured to the housing so that the first face of the housing and adjacent ones of the insert-molded leadframe assemblies define passages that adjoin the second plurality of apertures.


Another preferred embodiment of an electrical connector comprises a first and a second linear array of electrically-conductive contacts, a plurality of fusible elements each attached to a respective one of the contacts, and a housing having a body. The body has a first and a second linear array of apertures formed therein for receiving the respective first and second liner arrays of contacts, and a third linear array of apertures positioned between the first and second linear arrays of apertures for permitting air to flow through the body.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of a preferred embodiment, are better understood when read in conjunction with the appended diagrammatic drawings. For the purpose of illustrating the invention, the drawings show an embodiment that is presently preferred. The invention is not limited, however, to the specific instrumentalities disclosed in the drawings. In the drawings:



FIG. 1 is a top perspective view of a preferred embodiment of a BGA-type surface-mount connector;



FIG. 2 is a side view of the BGA-type connector shown in FIG. 1;



FIG. 3 is a side view of the BGA-type connector shown in FIGS. 1 and 2, depicting the connector mounted on a substrate;



FIG. 4 is a bottom view of the BGA-type connector shown in FIGS. 1-3, with a wafer of the connector not shown; and



FIG. 5 is a perspective view of an insert-molded leadframe assembly of the BGA-type connector shown in FIGS. 1-4.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The figures depict a preferred embodiment of a BGA-type connector 10. The figures are each referenced to a common coordinate system 20 depicted therein. The connector 10 can be mounted on a substrate 11, as shown in FIG. 3. The connector 10 comprises a housing 12, and a plurality of insert-molded leadframe assemblies (IMLAs) 14 mechanically coupled to the housing 10.


Each IMLA 14 includes electrically-conductive contacts 16. Each IMLA 14 also includes an overmolded frame 18 for holding the contacts 16, so that the contacts 16 of each IMLA 14 form a linear array. The frame 18, which is best shown in FIG. 5, is formed from a suitable electrically-insulative material such as plastic. The connector 10, in turn, carries the IMLAs 14. Any number of the IMLAs 14 or the electrical contacts 16 can be used, depending on the desired contact density.


Each contact 16 includes a mating portion 28, as shown in FIG. 5. The contacts 16 can be, for example, flexible dual beam mating contacts in which the mating portion 28 comprises two contact beams 30. The contact beams 30 of each contact 16 can receive a complementary contact beam (not shown) of another connector or electrical device when the connector 10 is mated therewith.


Each contact 16 also includes a middle portion 32 that adjoins the mating portion 28, and a tail portion 34 that adjoins the middle portion 32. The frame 18 of each IMLA 14 is molded around the middle portion 32, or some other suitable portion of the corresponding contact 16. The contacts 16 located at the opposing ends of each IMLA 14 can each include a tab 38, the purpose of which is discussed below.


Other configurations for the contacts 16 are possible in alternative embodiments. For example, a contact having a tail portion comprising two spring beams can be used in the alternative. This type of contact is described in pending U.S. patent application Ser. No. 11/022,137, filed Dec. 23, 2004, the contents of which is incorporated by reference herein in its entirety.


The connector 10 preferably includes a plurality of fusible elements in the form of solder balls 40, and a wafer 41. Each solder ball 40 is attached to the tail portion 34 of a corresponding one of the contacts 16. The solder balls 40 collectively form a ball-grid array 42 below the connector 10, as shown in FIG. 4.


The wafer 41 is positioned between the ball grid array 42 and the frames 18 of the IMLAs 14, as shown in FIGS. 2 and 3. The wafer 41 has a plurality of apertures and optional pockets formed therein. Each aperture is associated with one of the optional pockets. The tail portion 34 of each contact 16 extends through the wafer 41 by way of an associated one of the apertures. When used, each pocket receives a portion of an associated one of the solder balls 40 during a first reflow operation. The pockets help to locate the solder balls 40 with respect to the tail portions 34 of the contacts 16. The solder balls 40, as discussed below, are melted during a second reflow operation to form solder connections 92 between the connector 10 and the substrate 11 when the connector 10 is mounted on the substrate 11.


Directional terms such as “above,” “below,” “upper,” “lower,” etc. are used with reference to the component orientations depicted in FIGS. 2 and 3. These terms are used for exemplary purposes only, and unless otherwise noted, are not meant to limit the scope of the appended claims.


The housing 12 includes a body 50. The body 50 has an upper surface, or mating face 52, and a lower surface, or mounting face 54. The mating face 52 and the mounting face 54 are best shown in FIGS. 1 and 4, respectively. The body 50 also includes side portions 56 that adjoin the respective outer edges of the mating face 52 and mounting face 54.


The body 50 has a plurality of contact-receiving apertures 70 formed therein, as best shown in FIG. 1. The contact-receiving apertures 70 extend between the mating face 52 and the mounting face 54. Each of the contact-receiving apertures 70 receives the mating portion 28 of a corresponding one of the contacts 16. The contact-receiving apertures 70 are arranged to match the linear arrays of the contacts 16 formed by each IMLA 14.


The housing 12 also includes a plurality of retaining legs 60, as best shown in FIGS. 1-3. The retaining legs 60 extend downward from an opposing two of the side portions 56. Each retaining leg 60 has a slot 62 formed therein.


Opposing pairs of the retaining legs 60 retain a corresponding one of the IMLAs 14. In particular, the slots 62 in the retaining legs 60 each receive a corresponding one of the tabs 38 on the outermost end contacts 16 of each IMLA 14. The tabs 38 and the slots 62 are sized so that the each tab 38 fits snugly within the corresponding slot 62, thereby securing the outermost contacts 16, and the rest of the corresponding IMLA 14, to the housing 12.


Adjacent ones of the retaining legs 60 are spaced apart, as best shown in FIGS. 2-4. The frame 18 of each IMLA 14 has a width, or “x” dimension, approximately equal to the width, or “x” dimension, of the retaining legs 60. The noted spacing of the retaining legs 60 thus causes the frames 18 of adjacent ones of the IMLAs 14 to be spaced apart by a corresponding amount. The spacing arrangement results in voids, or passages 72 between adjacent ones of the frames 18. Each passage 72 is defined by adjacent ones of the frames 68, and the adjacent portion of the mounting face 54. The passages 72 extend in substantially the same direction as the frames 18, i.e., the passages 72 extend substantially in the “y” direction.


The passages 72, as discussed in detail below, can facilitate air circulation that helps to heat the solder balls 40 as the solder balls 40 are melted to form the solder connections 92 between the connector 10 and the substrate 11. The width, or “x” dimension, of each passage 72 therefore should be sufficient to facilitate airflow therethrough. In the connector 10, the width of each passage 72 is approximately half the respective widths of the retaining legs 60 and the frames 18. It should be noted that this particular dimensional relationship is described for exemplary purposes only. Other dimensional relationships can be used in the alternative. For example, the width of the passages 72 can be increased or decreased, depending on the desired contact density.


The body 50 has a plurality of heat-transfer apertures 88 formed therein, as best shown in FIGS. 1 and 4. The heat-transfer apertures 88 extend between the mating face 52 and the mounting face 54. The heat-transfer apertures 88, as discussed in detail below, can facilitate air circulation that helps to heat the solder balls 40 as the solder balls 40 are melted to form the solder connections 92 between the connector 10 and the substrate 11.


A row of the heat-transfer apertures 88 is preferably formed between each adjacent row of the contact-receiving apertures 70. The bottom of each heat-transfer aperture 88 fluidly connects to a corresponding one of the passages 72. Any number of heat-transfer apertures 88 can be disposed in each row thereof, although rows of five or more of the heat-transfer apertures 88 are preferred. The heat-transfer apertures 70 preferably are rectangular, although other shapes can be used in the alternative.


The solder balls 40, as noted above, are melted in a reflow operation to form solder connections 92 between the connector 10 and the substrate 11 when the connector 10 is mounted on the substrate 11. In particular, the connector 10 preferably is placed on the substrate 11 so that each solder ball 40 substantially aligns with a corresponding electrically-conductive contact pad 90 on the substrate 11. The connector 10 and the substrate 11 are then heated by a thermally-excited medium, such as heated air.


The heating of the solder balls 40 eventually causes the solder balls 40 to melt and form solder connections 92 between each corresponding pair of contacts 16 and solder pads 90. The solder connections 92 are depicted diagrammatically in FIG. 3.


The liquid solder from the solder balls 40 is allowed to cool after the connector 10 and the substrate 11 exit the oven. The liquid solder, upon cooling, solidifies into the solder connections 92. The solder connections 92 electrically and mechanically couple the connector 10 to the contacts pads 90 of the substrate 11.


The heat-transfer apertures 88 and the passages 72 increase the rate of heat transfer to the solder balls 40. In particular, the heat-transfer apertures 88 adjoin the passages 72, as noted above. Therefore, the heat transfer apertures 88 and the passages 72 provide a fluid path for heated air flowing over the connector 10.


Once entering the passages 72, some of the heated air can reach the solder balls 40 by way of additional apertures formed in the wafer 41, such as between columns or rows of contact/solder ball ends, thereby increasing the heat-transfer rate to the solder balls 40. Moreover, convective heat transfer can occur to the structure of the connector 10 that defines the passages 72. For example, the heated air can warm the frames 18 of the IMLAs 14. Conductive heat transfer from the frames 18 to the associated contacts 16 and solder balls 40 can further warm the solder balls 40.


The heat-transfer apertures 88 and the passages 72 can thus increase the rate of heat transfer to the solder balls 40, and in particular to the innermost, i.e., centrally-located, solder balls 40 in the ball-grid array 42. The heat-transfer apertures 88 and the passages 72 can thereby help to substantially reduce or eliminate the disparity in the temperature of the outermost and innermost of the contacts 16 that could otherwise occur during the reflow process.


The heat-transfer apertures 88 and the passages 72 therefore can potentially eliminate the need to subject the connector 10 and the substrate 11 to excessive temperatures or relatively lengthy dwell times in the solder reflow oven to ensure adequate heating of the innermost solder balls 40. In addition, the heat-transfer apertures 88 and the passages 72 can potentially enhance the uniformity, integrity, and reliability of the solder connections 92. In addition, the heat flow may also make it easier to remove a connector that is already soldered to a substrate. An attached connector has less clearance between the bottom of the connector and the surface of the substrate. This makes heating solder connections at an interior point on the BGA pattern more difficult. The present invention helps to alleviate this problem.


The heat-transfer apertures 88 and the passages 72 can be used in connection with other techniques to affect the heating of the solder balls 40. For example, the connector 10, and alternative embodiments thereof, can be equipped with a cap such as the cap disclosed in pending U.S. patent application Ser. No. 10/340,279, filed Jan. 10, 2003, the contents of which is incorporated by reference herein in its entirety, to retard the melting of the solder balls 40 by blocking the apertures 88 and the passageways 72.


Moreover, the heat-transfer apertures 88 and the passages 72 can facilitate circulation of ambient air through the connector 10 in operation, thereby helping to cool the connector 10.


The foregoing description is provided for the purpose of explanation and is not to be construed as limiting the invention. While the invention has been described with reference to preferred embodiments or preferred methods, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Furthermore, although the invention has been described herein with reference to particular structure, methods, and embodiments, the invention is not intended to be limited to the particulars disclosed herein, as the invention extends to all structures, methods and uses that are within the scope of the appended claims. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the invention as described herein, and changes may be made without departing from the scope and spirit of the invention as defined by the appended claims.


For example alternative embodiments of the connector 10 can be configured without the passages 72 or the heat-transfer apertures 88. In other words, alternative embodiments can include the passages 72 without the heat-transfer apertures 88. Other alternative embodiments can include the heat-transfer apertures 88 without the passages 72. Moreover, the principles of the invention can be applied to plug connectors, as well receptacle connectors. The principles of the invention can also be applied any type of object that is surface mounted, including but not limited to right-angle connectors.

Claims
  • 1. An electrical connector, comprising: a housing including a body, the body defining a first column of apertures extending therethrough, and a second column of apertures extending therethrough, in substantially the same direction as the first column of apertures, wherein (i) an electrical contact is mounted in each aperture of the first column of apertures, (ii) each aperture of the second column of apertures is a heat-transfer aperture for facilitating circulation of air through the body, and each aperture of the second column of apertures does not contain an electrical contact, (iii) a first aperture of the first column of apertures is spaced apart from an adjacent aperture of the first column of apertures by a first distance, (iv) a first aperture of the second column of apertures is spaced apart from an adjacent aperture of the second column of apertures by a second distance, and (v) the second distance is greater than the first distance.
  • 2. The electrical connector of claim 1, wherein the electrical contacts are arranged in pairs.
  • 3. The electrical connector of claim 1, wherein the apertures of the second column of apertures are evenly spaced apart.
  • 4. The electrical connector of claim 1, wherein each aperture of the second column of apertures is positioned so that each aperture is adjacent to at least a portion of two apertures of the first column of apertures.
  • 5. The electrical connector of claim 1, further comprising a first electrically-insulative frame carrying the electrical contacts, and a second electrically-insulative frame carrying additional electrical contacts and disposed adjacent the first electrically insulative frame, wherein the frames define a passage therebetween that is fluidly connected to the apertures of the second column of apertures.
  • 6. The electrical connector of claim 5, wherein the passage is defined by a mounting face of the housing.
  • 7. The electrical connector of claim 5, wherein the apertures of the second column of aperture extends substantially in a first direction, and the passage extends substantially in a second direction perpendicular to the first direction.
  • 8. An electrical connector comprising: a housing having a first column of apertures extending therethrough and a second column of apertures extending therethrough, in substantially the same direction as the first column of apertures; anda plurality of electrical contacts, each electrical contact being mounted in a respective aperture of the first column of apertures,wherein the apertures of the second column of apertures are heat-transfer apertures for facilitating circulation of air through the housing, and each aperture of the second column of apertures is positioned so that each aperture is adjacent to at least a portion of two apertures of the first column of apertures.
  • 9. The electrical connector of claim 8, wherein (i) each aperture of the second column of apertures has a height and a width, and (ii) each aperture of the second column of apertures is uninterrupted throughout its height and width.
  • 10. The electrical connector of claim 8, wherein (i) a first aperture of the first column of apertures is spaced apart from an adjacent aperture of the first column of apertures by a first distance, (ii) a first aperture of the second column of apertures is spaced apart from an adjacent aperture of the second column of apertures by a second distance, and (iii) the second distance is greater than the first distance.
  • 11. The electrical connector of claim 8, wherein the electrical contacts are arranged in pairs.
  • 12. A housing for an electrical connector, the housing comprising: a first group of apertures that are disposed in a substantially linear alignment in a first direction, and that are each for receiving a contact;a second group of apertures that are disposed in a substantially linear alignment in the first direction, and that are each not for receiving a contact;a plurality of the apertures of the second group of apertures being disposed adjacent to more than one of the apertures of the first group; andthe apertures of the second group of apertures being disposed so that one of the apertures of the first group is not adjacent to any apertures from the second group,wherein the second group of apertures are heat-transfer apertures for facilitating circulation of air through the housing.
  • 13. The housing of claim 12, further comprising a leadframe assembly having a housing and a plurality of contacts extending therethrough, wherein each contact of the leadframe assembly is positioned within a respective aperture of the first group of apertures.
  • 14. The housing of claim 12, further comprising a third group of apertures that are disposed in a substantially linear alignment in the first direction and that are each for receiving a contact, wherein only the housing body is disposed between at least one of the apertures of the first group and at least one of the apertures of the third group.
  • 15. The housing of claim 12, further comprising a plurality of contacts, wherein each contact extends through a respective aperture of the first group of apertures.
  • 16. The housing of claim 15, wherein the contacts are arranged in pairs.
  • 17. The housing of claim 12, wherein the second group of apertures is spaced from the first group of apertures along a second direction that is different from the first direction.
  • 18. The housing of claim 17, wherein the second direction is perpendicular with respect to the first direction.
  • 19. An electrical connector, comprising: a housing including a body, the body defining a first column of apertures extending therethrough, and a second column of apertures extending therethrough, in substantially the same direction as the first column of apertures, wherein (i) a first electrically insulative frame carries a first column of electrical contact, and the contacts in the first column of contacts are disposed in respective apertures of the first column of apertures, (ii) each aperture of the second column of apertures does not contain an electrical contact, (iii) a first aperture of the first column of apertures is spaced apart from an adjacent aperture of the first column of apertures by a first distance, (iv) a first aperture of the second column of apertures is spaced apart from an adjacent aperture of the second column of apertures by a second distance, (v) the second distance is greater than the first distance, and (vi) a second electrically insulative frame carries a second column of electrical contacts, such that the first and second electrically insulative frames define a passage therebetween that is fluidly connected to the apertures of the second column of apertures.
  • 20. The electrical connector of claim 19, wherein the passage is defined by a mounting face of the housing.
  • 21. The electrical connector of claim 19, wherein the apertures of the second column of aperture extends substantially in a first direction, and the passage extends substantially in a second direction perpendicular to the first direction.
  • 22. A housing for an electrical connector, the housing comprising: a first group of apertures that are disposed in a substantially linear alignment in a first direction;a leadframe assembly having a housing and a plurality of contacts extending therethrough, wherein each contact of the leadframe assembly is positioned within a respective aperture of the first group of apertures;a second group of apertures that are disposed in a substantially linear alignment in the first direction, and that are each not for receiving a contact;a plurality of the apertures of the second group of apertures being disposed adjacent to more than one of the apertures of the first group; andthe apertures of the second group of apertures being disposed so that one of the apertures of the first group is not adjacent to any apertures from the second group.
  • 23. A housing for an electrical connector, the housing comprising: a first group of apertures that are disposed in a substantially linear alignment in a first direction, and that are each for receiving a contact;a second group of apertures that are disposed in a substantially linear alignment in the first direction, and that are each not for receiving a contact, the apertures of the second group of apertures being disposed so that one of the apertures of the first group is not adjacent to any apertures from the second group, wherein a plurality of the apertures of the second group of apertures are disposed adjacent to more than one of the apertures of the first group; anda third group of apertures that are disposed in a substantially linear alignment in the first direction and that are each for receiving a contact, wherein only the housing body is disposed between an aperture of the first group and an aperture of the third group.
  • 24. The housing of claim 23, further comprising a leadframe assembly having a housing and a plurality of contacts extending therethrough, wherein each contact of the leadframe assembly is positioned within a respective aperture of the first group of apertures.
  • 25. An electrical connector comprising: a housing having a first column of electrical contact-containing apertures through the housing, the first column extending along a first direction, a second column of electrical contact-containing apertures extending through the housing, the second column spaced from the first column and extending along the first direction, and a third column of apertures that do not contain electrical contacts, the third column disposed between the first and second columns of electrical contact-containing apertures, such that an aperture of the third column of apertures is aligned with an aperture of the first column of electrical contact-receiving apertures with respect to a second direction that extends perpendicular to the first direction, and further aligned with an aperture of the second column of electrical contact-receiving apertures with respect to a second direction that extends perpendicular to the first direction; anda plurality of electrical contacts, each electrical contact being disposed in a respective aperture of the first and second columns of apertures.
  • 26. The electrical connector of claim 25, further comprising a first electrically-insulative frame carrying a first plurality of the electrical contacts, each of the first plurality of electrical contacts being disposed in a respective aperture of the first column of apertures, and a second electrically-insulative frame disposed adjacent the first electrically insulative frame, wherein the second electrically-insulative frame carries a second plurality of the electrical contacts, each of the second plurality of electrical contacts being disposed in a respective aperture of the second column of apertures, wherein the frames define a passage therebetween that is fluidly connected to the apertures of the third column of apertures.
  • 27. The electrical connector of claim 25, wherein the apertures of the third column are heat transfer apertures.
  • 28. The electrical connector of claim 25, further comprising a passage that connects a first aperture of the third column of apertures with a second aperture of the third column of apertures.
  • 29. The electrical connector of claim 28, wherein the no additional apertures of the third column of apertures is disposed between the first and second apertures of the third column of apertures along the first direction.
  • 30. The electrical connector of claim 25, wherein a plurality of apertures of the third column of apertures is aligned with a corresponding plurality of apertures of the first column of electrical contact-receiving apertures with respect to a second direction that extends perpendicular to the first direction, and further aligned with a corresponding plurality of apertures of the second column of electrical contact-receiving apertures with respect to a second direction that extends perpendicular to the first direction.
  • 31. The electrical connector of claim 30, further comprising a passage that connects a first aperture of the third column of apertures with a second aperture of the third column of apertures.
Parent Case Info

This is a continuation of U.S. application Ser. No. 11/284,154, filed on Nov. 21, 2005, now issued as U.S. Pat. No. 7,384,289, which claims the benefit of Provisional Application No. 60/648,561, filed on Jan. 31, 2005, the contents of all of which are incorporated by reference herein. This application is related to U.S. application Ser. No. 11/255,295 filed on Oct. 20, 2005, now issued as U.S. Pat. No. 7,476,108, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/638,470, filed Dec. 22, 2004; and U.S. Provisional Application No. 60/668,350, filed Apr. 5, 2005. The contents of each of these applications is incorporated by reference herein in its entirety.

US Referenced Citations (331)
Number Name Date Kind
318186 Hertzog May 1885 A
741052 Mahon Oct 1903 A
1477527 Raettig Dec 1923 A
2248675 Huppert Jul 1941 A
2430011 Gillentine Nov 1947 A
2759163 Ustin et al. Aug 1956 A
2762022 Benander et al. Sep 1956 A
2844644 Soule, Jr. Jul 1958 A
3011143 Dean Nov 1961 A
3178669 Roberts Apr 1965 A
3208030 Evans et al. Sep 1965 A
3286220 Marley et al. Nov 1966 A
3411127 Adams Nov 1968 A
3420087 Hatfield Jan 1969 A
3514740 Filson May 1970 A
3538486 Shlesinger, Jr. Nov 1970 A
3634811 Teagno et al. Jan 1972 A
3669054 Desso et al. Jun 1972 A
3692994 Hirschmann et al. Sep 1972 A
3748633 Lundergan Jul 1973 A
3845451 Neidecker Oct 1974 A
3871015 Lin et al. Mar 1975 A
3942856 Mindheim et al. Mar 1976 A
3972580 Pemberton et al. Aug 1976 A
4070088 Vaden Jan 1978 A
4076362 Ichimura Feb 1978 A
4082407 Smorzaniuk et al. Apr 1978 A
4136919 Howard et al. Jan 1979 A
4159861 Anhalt Jul 1979 A
4217024 Aldridge et al. Aug 1980 A
4260212 Ritchie et al. Apr 1981 A
4288139 Cobaugh et al. Sep 1981 A
4371912 Guzik Feb 1983 A
4383724 Verhoevan May 1983 A
4402563 Sinclair Sep 1983 A
4403821 Zimmerman, Jr. et al. Sep 1983 A
4473113 Whitfield et al. Sep 1984 A
4505529 Barkus Mar 1985 A
4533187 Kirkman Aug 1985 A
4536955 Gudgeon Aug 1985 A
4545610 Lakritz et al. Oct 1985 A
4552425 Billman Nov 1985 A
4560222 Dambach Dec 1985 A
4564259 Vandame Jan 1986 A
4596433 Oesterheld et al. Jun 1986 A
4685886 Denlinger et al. Aug 1987 A
4717360 Czaja Jan 1988 A
4767344 Noschese Aug 1988 A
4776803 Pretchel et al. Oct 1988 A
4782893 Thomas Nov 1988 A
4790763 Weber et al. Dec 1988 A
4815987 Kawano et al. Mar 1989 A
4818237 Weber Apr 1989 A
4820169 Weber et al. Apr 1989 A
4820182 Harwath et al. Apr 1989 A
4867713 Ozu et al. Sep 1989 A
4878611 LoVasco et al. Nov 1989 A
4881905 Demler, Jr. et al. Nov 1989 A
4900271 Colleran et al. Feb 1990 A
4907990 Bertho et al. Mar 1990 A
4915641 Miskin et al. Apr 1990 A
4963102 Gettig et al. Oct 1990 A
4965699 Jorden et al. Oct 1990 A
4973257 Lhotak Nov 1990 A
4973271 Ishizuka et al. Nov 1990 A
4974119 Martin Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4979074 Morley Dec 1990 A
5016968 Hammond et al. May 1991 A
5024610 French et al. Jun 1991 A
5035639 Kilpatrick et al. Jul 1991 A
5046960 Fedder et al. Sep 1991 A
5052953 Weber Oct 1991 A
5066236 Broeksteeg Nov 1991 A
5077893 Mosqucra et al. Jan 1992 A
5082459 Billman et al. Jan 1992 A
5094634 Dixon et al. Mar 1992 A
5104332 McCoy Apr 1992 A
5137959 Block et al. Aug 1992 A
5139426 Barkus et al. Aug 1992 A
5151056 McClune Sep 1992 A
5152700 Bogursky et al. Oct 1992 A
5174770 Sasaki et al. Dec 1992 A
5194480 Block et al. Mar 1993 A
5213868 Liberty et al. May 1993 A
5214308 Nishiguchi May 1993 A
5238414 Yaegashi et al. Aug 1993 A
5254012 Wang Oct 1993 A
5274918 Reed Jan 1994 A
5276964 Anderson, Jr. et al. Jan 1994 A
5286212 Broeksteeg Feb 1994 A
5295843 Davis et al. Mar 1994 A
5298791 Liberty et al. Mar 1994 A
5302135 Lee Apr 1994 A
5321582 Casperson Jun 1994 A
5381314 Rudy et al. Jan 1995 A
5400949 Hirvonen et al. Mar 1995 A
5427543 Dynia Jun 1995 A
5431578 Wayne Jul 1995 A
5457342 Herbst, II Oct 1995 A
5458426 Ito Oct 1995 A
5475922 Tamura et al. Dec 1995 A
5490040 Gavdenzi et al. Feb 1996 A
5511987 Shnchi Apr 1996 A
5512519 Hwang Apr 1996 A
5533915 Deans Jul 1996 A
5558542 O'Sullivan et al. Sep 1996 A
5564952 Davis et al. Oct 1996 A
5577928 Duclos Nov 1996 A
5590463 Feldman et al. Jan 1997 A
5609502 Thumma Mar 1997 A
5618187 Goto Apr 1997 A
5637008 Kozel Jun 1997 A
5643009 Dinkel et al. Jul 1997 A
5664968 Mickievicz Sep 1997 A
5664973 Emmert et al. Sep 1997 A
5665969 Beusch Sep 1997 A
5667392 Kocher et al. Sep 1997 A
5691041 Frankeny et al. Nov 1997 A
5702255 Murphy et al. Dec 1997 A
5727963 LeMaster Mar 1998 A
5730609 Harwath Mar 1998 A
5741144 Elco et al. Apr 1998 A
5741161 Cahaly et al. Apr 1998 A
5742484 Gillette et al. Apr 1998 A
5743009 Matsui et al. Apr 1998 A
5745349 Lemke Apr 1998 A
5746608 Taylor May 1998 A
5749746 Tan et al. May 1998 A
5755595 Davis et al. May 1998 A
5772451 Dozier, II et al. Jun 1998 A
5782644 Kiat Jul 1998 A
5787971 Dodson Aug 1998 A
5795191 Preputnick et al. Aug 1998 A
5810607 Shih et al. Sep 1998 A
5817973 Elco et al. Oct 1998 A
5827094 Aizawa et al. Oct 1998 A
5831314 Wen Nov 1998 A
5857857 Fukuda Jan 1999 A
5874776 Kresge et al. Feb 1999 A
5876219 Taylor et al. Mar 1999 A
5876248 Brunker et al. Mar 1999 A
5882214 Hillbish et al. Mar 1999 A
5883782 Thurston et al. Mar 1999 A
5888884 Wojnarowski Mar 1999 A
5908333 Perino et al. Jun 1999 A
5919050 Kehley et al. Jul 1999 A
5930114 Kuzmin et al. Jul 1999 A
5955888 Frederickson et al. Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971817 Longueville Oct 1999 A
5975921 Shuey Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5980321 Cohen et al. Nov 1999 A
5984726 Wu Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
6012948 Wu Jan 2000 A
6036549 Wulff Mar 2000 A
6041498 Hillbish et al. Mar 2000 A
6050862 Ishii Apr 2000 A
6059170 Jimarez et al. May 2000 A
6066048 Lees May 2000 A
6068520 Winings et al. May 2000 A
6071152 Achammer et al. Jun 2000 A
6077130 Hughes et al. Jun 2000 A
6089878 Meng Jul 2000 A
6095827 Dutkowsky et al. Aug 2000 A
6123554 Ortega et al. Sep 2000 A
6125535 Chiou et al. Oct 2000 A
6139336 Olson Oct 2000 A
6146157 Lenoir et al. Nov 2000 A
6146202 Ramey et al. Nov 2000 A
6146203 Elco et al. Nov 2000 A
6152756 Huang et al. Nov 2000 A
6174198 Wu et al. Jan 2001 B1
6180891 Murdeshwar Jan 2001 B1
6183287 Po Feb 2001 B1
6183301 Paagman Feb 2001 B1
6190213 Rcichart et al. Feb 2001 B1
6193537 Harper, Jr. et al. Feb 2001 B1
6196871 Szu Mar 2001 B1
6202916 Updike et al. Mar 2001 B1
6206722 Ko et al. Mar 2001 B1
6210197 Yu Apr 2001 B1
6210240 Comerci et al. Apr 2001 B1
6212755 Shimada et al. Apr 2001 B1
6215180 Chen et al. Apr 2001 B1
6219913 Uchiyama Apr 2001 B1
6220884 Lin Apr 2001 B1
6220895 Lin Apr 2001 B1
6220896 Bertoncici et al. Apr 2001 B1
6234851 Phillips May 2001 B1
6238225 Middlehurst et al. May 2001 B1
6257478 Straub Jul 2001 B1
6259039 Chroneos, Jr. et al. Jul 2001 B1
6261132 Koseki et al. Jul 2001 B1
6269539 Takahashi et al. Aug 2001 B1
6274474 Caletka et al. Aug 2001 B1
6280230 Takase et al. Aug 2001 B1
6293827 Stokoe Sep 2001 B1
6299492 Pierini et al. Oct 2001 B1
6309245 Sweeney Oct 2001 B1
6319075 Clark et al. Nov 2001 B1
6322377 Middlehurst et al. Nov 2001 B2
6328602 Yamasaki et al. Dec 2001 B1
6347952 Hasegawa et al. Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6359783 Noble Mar 2002 B1
6360940 Bolde et al. Mar 2002 B1
6362961 Chiou Mar 2002 B1
6363607 Chen et al. Apr 2002 B1
6371773 Crofoot et al. Apr 2002 B1
6379188 Cohen et al. Apr 2002 B1
6386924 Long May 2002 B2
6394818 Smalley, Jr. May 2002 B1
6402566 Middlehurst et al. Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6428328 Haba et al. Aug 2002 B2
6431914 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6450829 Weisz-Margulescu Sep 2002 B1
6461183 Ohkita et al. Oct 2002 B1
6461202 Kline Oct 2002 B2
6471523 Shuey Oct 2002 B1
6471548 Bertoncini et al. Oct 2002 B2
6472474 Burkhardt et al. Oct 2002 B2
6488549 Weller et al. Dec 2002 B1
6489567 Zachrai Dec 2002 B2
6506081 Blanchfield et al. Jan 2003 B2
6514103 Pape et al. Feb 2003 B2
6537111 Brammer et al. Mar 2003 B2
6544046 Hahn et al. Apr 2003 B1
6551112 Li et al. Apr 2003 B1
6554647 Cohen et al. Apr 2003 B1
6572410 Volstorf et al. Jun 2003 B1
6575774 Ling et al. Jun 2003 B2
6575776 Conner et al. Jun 2003 B1
6592381 Cohen et al. Jul 2003 B2
6604967 Middlehurst et al. Aug 2003 B2
6629854 Murakami Oct 2003 B2
6652318 Winings et al. Nov 2003 B1
6663426 Hasircoglu et al. Dec 2003 B2
6665189 Lebo Dec 2003 B1
6669514 Wiebking et al. Dec 2003 B2
6672884 Toh et al. Jan 2004 B1
6672907 Azuma Jan 2004 B2
6692272 Lemke et al. Feb 2004 B2
6702594 Lee et al. Mar 2004 B2
6705902 Yi et al. Mar 2004 B1
6712621 Li et al. Mar 2004 B2
6716068 Wu Apr 2004 B2
6740820 Cheng May 2004 B2
6743037 Kassa et al. Jun 2004 B2
6746278 Nelson et al. Jun 2004 B2
6769883 Brid et al. Aug 2004 B2
6769935 Stokoe et al. Aug 2004 B2
6776635 Blanchfield et al. Aug 2004 B2
6776649 Pape et al. Aug 2004 B2
6780027 Allison Aug 2004 B2
6790088 Ono et al. Sep 2004 B2
6796831 Yasfuku et al. Sep 2004 B1
6810783 Larose Nov 2004 B1
6811440 Rothermel et al. Nov 2004 B1
6814590 Minich et al. Nov 2004 B2
6829143 Russell et al. Dec 2004 B2
6835103 Middlehurst et al. Dec 2004 B2
6843687 McGowan et al. Jan 2005 B2
6848886 Schmaling et al. Feb 2005 B2
6848950 Allison et al. Feb 2005 B2
6848953 Schell et al. Feb 2005 B2
6869294 Clark et al. Mar 2005 B2
6884117 Korsunsky et al. Apr 2005 B2
6890221 Wagner May 2005 B2
6905367 Crane, Jr. et al. Jun 2005 B2
6923685 Holmes Aug 2005 B2
6929504 Ling et al. Aug 2005 B2
6947012 Aisenbrey Sep 2005 B2
6969268 Brunker Nov 2005 B2
6975511 Lebo et al. Dec 2005 B1
6994569 Minich et al. Feb 2006 B2
7001189 McGowan et al. Feb 2006 B1
7059892 Trout Jun 2006 B1
7059919 Clark et al. Jun 2006 B2
7065871 Minich et al. Jun 2006 B2
7070464 Clark et al. Jul 2006 B2
7074096 Copper et al. Jul 2006 B2
7097465 Korsunsky et al. Aug 2006 B1
7101228 Hammer et al. Sep 2006 B2
7104812 Bogiel et al. Sep 2006 B1
7114963 Shuey et al. Oct 2006 B2
RE039380 Davis Nov 2006 E
7137848 Trout et al. Nov 2006 B1
7163421 Cohen Jan 2007 B1
7168963 Minich et al. Jan 2007 B2
7182642 Ngo et al. Feb 2007 B2
7204699 Stoner Apr 2007 B2
D542736 Rico May 2007 S
7220141 Daily et al. May 2007 B2
7258562 Daily et al. Aug 2007 B2
7273382 Igarashi et al. Sep 2007 B2
7303427 Swain Dec 2007 B2
7335043 Hgo et al. Feb 2008 B2
7384289 Minich Jun 2008 B2
7425145 Ngo Sep 2008 B2
7458839 Ngo et al. Dec 2008 B2
7476108 Swain et al. Jan 2009 B2
20010003685 Aritani Jun 2001 A1
20010049229 Pape et al. Dec 2001 A1
20020142676 Hosaka et al. Oct 2002 A1
20020159235 Miller et al. Oct 2002 A1
20020193019 Blanchfield et al. Dec 2002 A1
20030013330 Takeuchi Jan 2003 A1
20030119378 Avery Jun 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030219999 Minich et al. Nov 2003 A1
20030220021 Whiteman, Jr. et al. Nov 2003 A1
20030236035 Kuroda et al. Dec 2003 A1
20040147177 Wagner Jul 2004 A1
20040183094 Caletka et al. Sep 2004 A1
20050112952 Wang et al. May 2005 A1
20060003620 Daily et al. Jan 2006 A1
20060128197 McGowan et al. Jun 2006 A1
20060228927 Daily Oct 2006 A1
20060228948 Swain Oct 2006 A1
20060281354 Ngo et al. Dec 2006 A1
20070197063 Ngo Aug 2007 A1
20070202748 Daily Aug 2007 A1
20070275586 Ngo Nov 2007 A1
20070293084 Ngo Dec 2007 A1
20080038956 Swain Feb 2008 A1
20080248670 Daily et al. Oct 2008 A1
Foreign Referenced Citations (36)
Number Date Country
1 665 181 Apr 1974 DE
102 26 279 Nov 2003 DE
0 273 683 Jul 1988 EP
0 321 257 Apr 1993 EP
0 623 248 Nov 1995 EP
0 789 422 Aug 1997 EP
0091449 Sep 2004 EP
1 162 705 Aug 1969 GB
05344728 Dec 1993 JP
06-236788 Aug 1994 JP
06068943 Nov 1994 JP
07-114958 May 1995 JP
07169523 Jul 1995 JP
08096918 Apr 1996 JP
0 812 5379 May 1996 JP
09199215 Jul 1997 JP
2000-003743 Jan 2000 JP
2000-003744 Jan 2000 JP
2000-003745 Jan 2000 JP
2000-003746 Jan 2000 JP
2000228243 May 2000 JP
13135388 May 2001 JP
2003217785 Jul 2003 JP
100517561 Sep 2005 KR
546 872 Aug 2003 TW
576 555 Feb 2004 TW
WO 9743885 Nov 1997 WO
WO9744859 Nov 1997 WO
WO 9815989 Apr 1998 WO
WO 0016445 Mar 2000 WO
WO 0129931 Apr 2001 WO
WO 0139332 May 2001 WO
WO 02103847 Dec 2002 WO
WO 2005065254 Jul 2005 WO
WO2008117180 Oct 2008 WO
WO 2007064632 Jun 2009 WO
Related Publications (1)
Number Date Country
20080207038 A1 Aug 2008 US
Provisional Applications (1)
Number Date Country
60648561 Jan 2005 US
Continuations (1)
Number Date Country
Parent 11284154 Nov 2005 US
Child 12119233 US