(a) Field of the Invention
The present invention relates to a surface mount thin film fuse structure and a method of manufacturing the surface mount thin film fuse, and more particularly to a surface mount thin film fuse and a method of manufacturing the surface mount thin film fuse that assure the effect of blowing the fuse at a specific current or a specific temperature to protect a circuit against an overload current.
(b) Description of the Prior Art
In general, an electric device is set to consume a maximum current for its use, and thus the device may be damaged or burned by an overload current easily, and a fuse is provided to prevent an overload current from passing through an electronic circuit. If an overload current is passed through a fuse, the fuse will produce a high temperature to blow the fuse in order to protect the circuit from being damaged. In present existing electric devices such as information, communication and consumer electronic products mainly use a printed circuit board (PCB) to connect electronic components to maximize the overall performance. Since the electric devices become more complicated and require more components, the layout of circuits and components on the printed circuit board becomes increasingly denser.
At present, the technology adopted for packaging components of a printed circuit board is divided mainly into a through hole technology (THT) or a surface mount technology (SMT), and the through hole technology (THT) installs components on a side of the PCB and solders pins on the other side, and thus the components of this technology occupy a larger space, and a bore hole is required for each pin on the printed circuit board. As a result, the pins occupy more spaces on both sides of the PCB and the solder joints of the pins are bigger. On the other hand, the SMT sets a surface mount device (SMD) on a PCB adhered with glue or solder paste, and then fixes the devices on a surface of the printed circuit board by a heating technology. Unlike traditional THT, SMT does not insert the pins of components into the bored holes of a PCB to support the weight of the components or maintain the direction of the components. In addition, the electrodes of the SMD and PCB are situated on the same side having the components, and thus the components can be installed on both sides of the PCB. Compared with a PCB produced by THT, the layout of components on a SMT PCB can be denser. In other words, more functions can be bundle into a PCB of equal area, or maintain the same functions by a smaller area of PCB.
For the same reason, the fuses used in devices requiring an overload current protection also adopt the SMT for their manufacture. Referring to
When use, the surface mount fuse electrically connects a circuit composed of two opposite electrode portions 12 by the fusible link portion 13, so that when an overload current is passed through the fusible link portion 13, a high temperature or a specific temperature is produced at the fusible link portion 13 to achieve the over current protection effect. However, if the fusible link portion 13 is electrically connected and operated to produce a heat source, the heat source at the fusible link portion 13 is conducted and dissipated from the insulating substrate 11, since the fusible link portion 13 is in a direct contact with the insulating substrate 11. When the overload current is passed through the fusible link portion 13, a specific current or a specific high temperature of the fusible link portion 13 cannot be achieved to blow the fuse, and the over current protection effect cannot be achieved. As a result, the electronic circuits of the electric devices will be damaged or burned easily.
The primary objective of the present invention is to provide a surface mount thin film fuse structure and a method of manufacturing the surface mount thin film fuse structure that assure the effect of blowing the fuse at a specific current or a specific temperature to protect a circuit against an overload current.
To achieve the foregoing objective, the present invention provides a surface mount thin film fuse structure comprising a fusible fuse circuit structure disposed on at least one side of an insulating substrate, and having a fusible link portion electrically connected between two opposite electrode portions, such that when an overload current is passed through fusible link portion, a heat source of a high temperature or a specific temperature is generated to blow the fuse to achieve the an over current protection effect, and at least one space is defined between the fusible link portion and the insulating substrate, such that a heat generated by the electrically energized the fusible link portion will not be dissipated through the heat conduction of the insulating substrate, so as to assure the effect of blowing the fuse at a specific current or a specific temperature to protect a circuit.
Referring to
Referring to
Step A: Provide an insulating substrate 21 as shown in
Step B: Install a spacer layer 31 on at least one side of the insulating substrate 21 as shown in the figure, wherein the spacer layer 31 is disposed on a surface of the insulating substrate 21 and at a desired position for installing the fusible link portion.
Step C: Install a copper layer 32 on a side of the insulating substrate 21 having the spacer layer 31 and cover the whole insulating substrate 21 with the copper layer 32 as shown in
Step D: Coat a photoresist 33 on the copper layer 32 as shown in
Step E: Remove a spacer layer 31, and the spacer layer 31 can be made of a photoresist material, wherein the photoresist can be a dry film or liquid photoresist, and the photoresist 33 remained on the fusible fuse circuit structure 22 and the spacer layer 31 can be removed by a chemical solvent, so that at least one space 25 is formed between the fusible link portion 222 and the insulating substrate 21 as shown in
Step F: Install a tin layer 23 at the middle of a surface of the fusible link portion 222 as shown in
Step G: Install a nickel layer 26 and a tin layer 27 sequentially on a surface of the two opposite electrode portions 221.
Step H: Install a protective layer 24 at a position of the fusible link portion 222 of the fusible fuse circuit structure to form the surface mount thin film fuse structure 2.
In Step F, the fusible link portion 222 and the tin layer 23 further include a second spacer layer 34 as shown in
In a spacer layer in accordance with another preferred embodiment of the present invention, the spacer layer is made of a water washable and durable material. In Step E, the spacer layer is washed and removed by a high-pressure water or a chemical solvent, and the photoresist remained on the fusible fuse circuit structure is removed by a chemical solvent, and Steps F to H are performed to produce the surface mount thin film fuse structure 2 as shown in
In a spacer according to another preferred embodiment of the present invention, the spacer layer is made of a hot melt material, and the melting point of the spacer layer is lower than the melting point of the tin layer. In Step E, the spacer layer is removed by heating, and the photoresist remained on the fusible fuse circuit structure is removed by a chemical solvent. Step F is included between Steps D and E, and Steps G and H are performed sequentially after carrying out the Step F to produce the surface mount thin film fuse structure 2 as shown in
Referring to
Referring to
It is noteworthy to point out that the present invention can improve the conventional surface mount thin film fuse structure, such that the fusible link portion and the insulating substrate are contacted directly then lead to electrically connect the fusible link portion to generated a heat source which can be conducted and dissipated from the insulating substrate, and thus the fusible link portion cannot reach a specific high temperature to blow the fusible link portion or achieve the over current protection effect. As a result, the circuits of an electric device may be damaged or burned easily. The present invention adopts a non-contact design of the fusible link portion and the insulating substrate, such that the heat source generated after the fusible link portion is connected electrically will not be conducted or dissipated from the insulating substrate to assure the effect of reaching a specific current or a specific temperature to blow the fuse, so as to achieve the effect of protecting the circuits.
While the technical contents and characteristics of the invention have been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
096149138 | Dec 2007 | TW | national |