The present disclosure relates generally to surface-mountable packaged pixel engine modules for displays.
Displays comprise arrays of pixels having sub-pixels that each emit light of one or more colors. In active-matrix displays, a pixel circuit local to each pixel controls the one or more light emitters of the pixel. In passive-matrix displays, the sub-pixel light emitters of each pixel are directly controlled externally to the array of pixels, for example by row and column drivers.
Displays can comprise liquid crystals, organic light emitters, or inorganic light emitters, among other technologies. Liquid crystals and organic light emitters are usually formed on or over a display substrate and inorganic light emitters are usually constructed on a native substrate and assembled together on a non-native display substrate, at least for displays that are larger than micro-displays.
In order to achieve a desirably high resolution for larger-format inorganic light-emitting diode displays, it is necessary to assemble the light emitting diodes (LEDs) on a display substrate. Inorganic light-emitting diode displays using micro-LEDs (for example having an area less than 100 microns square or having an area small enough that it is not visible to an unaided observer of the display at a designed viewing distance) can be constructed, for example, as described in U.S. Pat. No. 8,722,458 entitled Optical Systems Fabricated by Printing-Based Assembly teaches transferring light-emitting, light-sensing, or light-collecting semiconductor elements from a wafer substrate to a destination substrate. U.S. Pat. No. 5,739,800 describes an LED display chip with an array of micro-LEDs mounted on a mounting substrate and electrically connected to a driver substrate. U.S. Pat. Nos. 10, 153,256 and 10, 153,257 describe micro-transfer printable electronic components useful in inorganic LED displays. U.S. patent application Ser. No. 14/822,868 discloses assembly methods using pixel modules comprising intermediate substrates and groups of light emitters.
Surface-mount technology (SMT) is a widely used and relatively inexpensive assembly method for directly locating packaged electronic devices on a printed circuit board or other substrate, such as a display substrate, and interconnected on the surface of the substrate, rather than inserting package pins into holes on the substrate. This technique reduces substrate costs, but the smallest size of the packaged electronic devices is limited, for example to 200 microns, 500 microns, or larger. Surface-mount technology can increase production throughput and reduce costs but is consequently limited in its capacity for high-resolution systems, such as display systems.
However, there remains a need for structures, methods, and materials for efficiently integrating arrays of pixels on a display substrate at low cost to achieve high-resolution displays.
In some embodiments of the present disclosure, a method of making a (e.g., surface-mountable) pixel engine package comprises providing an array of spaced-apart conductive pillars and an insulating mold compound laterally disposed between the conductive pillars on a substrate, together defining a planarized surface. Pixel engines comprising connection posts are printed to the conductive pillars on the planarized surface so that each of the connection posts is in electrical contact with one of the conductive pillars. The pixel engines are tested to determine known-good pixel engines. An optically clear mold compound is provided over the planarized surface and tested pixel engines, a tape is adhered to the optically clear mold compound, and the substrate is removed. The optically clear mold compound, the insulating mold compound, the conductive pillars, the optically clear mold compound, and the tested pixel engines are singulated to provide pixel packages that comprise the pixel engines and the known-good pixel engines are transferred to a reel or tray.
In some embodiments, the method comprises assembling the pixel packages that comprise the known-good pixel engines onto wiring boards. The pixel packages can be assembled using surface-mount-technology (SMT).
In some embodiments, the method comprises disposing a wiring layer in electrical contact with the conductive pillars. The wiring layer can be disposed on the planarized surface or on and in contact with the substrate.
In some embodiments, the method comprises disposing insulating mold compound over the planarized surface between the pixel engines after the pixel engines are transfer printed. The transfer can be a laser transfer or a micro-transfer print using a stamp. The removal can be a laser release by heating an optional release layer disposed between the substrate and the pixel package.
In some embodiments, the method comprises comprise disposing an adhesive layer over the planarized surface prior to transfer printing the pixel engines and patterning the adhesive layer to expose a portion of each of the conductive pillars. The pixel engines can be tested through electrical connections made through the portion of each of the conductive pillars that is exposed.
In some embodiments, the method comprises forming the planarized surface, for example by grinding, back-grinding, etching, or polishing.
In some embodiments of the present disclosure, a surface-mountable pixel engine package comprises a substrate having a substrate surface, an array of spaced-apart conductive pillars disposed on or over the substrate surface, an insulating mold compound laterally disposed over the substrate surface between the conductive pillars such that the conductive pillars and the insulating mold compound together define a planarized surface, a pixel engine comprising connection posts disposed on the planarized surface with each of the connection posts in electrical contact with one of the conductive pillars, and an optically clear mold compound disposed over the planarized surface and pixel engine.
The pixel engine can comprise a pixel-engine substrate and the pixel-engine substrate can comprise a broken or separated tether.
In some embodiments of the present disclosure, the surface-mountable pixel engine package comprises a tape adhered to the optically clear mold compound on a side of the optically clear mold compound opposite the pixel engine.
In some embodiments of the present disclosure, the substrate comprises a release layer that forms the substrate surface.
In some embodiments of the present disclosure, the conductive layer and conductive pillars each comprise at least 50% (e.g., at least 50 weight percent) copper. The conductive pillars can comprise a gold layer 21 that forms a portion of the planarized surface.
In some embodiments of the present disclosure, the surface-mountable pixel engine package comprises a wiring layer disposed in electrical contact with the conductive pillars and in electrical contact with the pixel engine. In some embodiments, the wiring layer is disposed on the planarized surface between the pixel engine and the substrate surface. In some embodiments, the wiring layer is disposed on and in contact with the substrate surface. In some embodiments, the wiring layer comprises substantially black ITO. The substantially black ITO can comprise layers of ITO interspersed by one or more layers of chromium or a reflective layer disposed between the substantially black ITO and the substrate surface, or both.
In some embodiments of the present disclosure, the connection posts are laterally separated by a distance less than a lateral separation of the conductive pillars over the substrate surface.
In some embodiments of the present disclosure, the insulating mold compound is substantially black, and can comprise any one or more of carbon black, dyes, and pigments.
In some embodiments of the present disclosure, the surface-mountable pixel engine package comprises insulating mold compound laterally disposed in a common layer with the pixel engines.
In some embodiments of the present disclosure, the pixel engines comprise a pixel controller. In some embodiments of the present disclosure, the pixel engines comprise two or more light emitters that emit different colors of light. The light emitters can be inorganic micro-light-emitting diodes (LEDs) comprising inorganic LEDs having at least one of a length and a width that is not greater than 200 microns (e.g., not greater than 100 microns, not greater than 50 microns, not greater than 25 microns, not greater than 10 microns, not greater than 5 microns, or not greater than 2 microns).
In some embodiments of the present disclosure, the one or more light emitters each comprise a broken or separated tether.
According to some embodiments of the present disclosure, a display surface-mountable pixel engine package comprises a display substrate and one or more surface-mounted pixel packages disposed on the display substrate. Each of the pixel packages comprises an array of spaced-apart conductive pillars and an insulating mold compound laterally disposed between the conductive pillars defining a planarized surface. A pixel engine comprising connection posts is in electrical contact with the conductive pillars disposed on the planarized surface. Individually singulated optically clear mold compound is disposed over the pixel engine and the planarized surface.
According to some embodiments of the present disclosure, a reel comprises a reel substrate comprising a plurality of pockets and a surface-mountable pixel package is disposed in each of the pockets. The pixel package comprises spaced-apart conductive pillars and an insulating mold compound laterally disposed over the substrate surface between the conductive pillars defining a planarized surface. A pixel engine comprising connection posts is in electrical contact with the conductive pillars disposed on the planarized surface. Individually singulated optically clear mold compound is disposed over the pixel engine and the planarized surface.
The present disclosure provides, inter alia, a display having reduced manufacturing cost and improved resolution.
The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
Features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout.
In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale since the variation in size of various elements in the Figures is too great to permit depiction to scale.
According to embodiments of the present disclosure, a low-cost wafer-level pixel package for displays is provided and tested before assembly onto a final display substrate or other wired substrate.
Referring to the successive illustrations of
In optional step 110, and as shown in
Referring to
Referring to
Optionally, in step 135 and as illustrated in
Referring to
Pixel engine 30 can comprise electrically conductive connection posts 36, for example sharp spikes, that extend from a pixel engine 30 substrate to form an electrical connection between components of pixel engine 30 and conductive pillars 20, either through direct contact or, optionally, through optional package wiring layer 17 (e.g., as shown in
The lateral separation between connection posts 36 can be equal to or greater than the lateral separation between conductive pillars 20 (e.g., as shown in
If adhesive layer 24 is provided, it can be optionally patternwise removed from around pixel engines 30 but not beneath pixel engines 30, for example using an etchant or directed plasma, in optional step 150 and as shown in
As shown in
Once the testing is complete, in step 160 and as illustrated in
Once the optically clear mold compound 40 is applied, a tape 42 is applied in step 165 to the optically clear mold compound 40 and optically clear mold compound 40 is cured so that tape 42 is adhered to optically clear mold compound 40, pixel engine 30, and patterned conductive layer 26, as shown in
In step 170 substrate 10 is removed, for example by grinding, laser ablation, or laser liftoff. In some embodiments of the present disclosure, a laser provides radiation 44 that is absorbed by optional release layer 14, as illustrated in
Referring to
Referring to
Once provided in an assembly package for assembly with an assembly tool, for example surface-mount tools, pixel packages 60 are assembled in step 185 onto a wiring board 70, for example a destination substrate such as a display substrate, as shown in the various configurations illustrated in
Referring to
Referring to
Referring to
Referring to
The assembled pixel packages 60 can be operated by a control system that provides power and control signals to wiring board 70. The power and control signals are transmitted through conductive wires or traces 72 of wiring board 70 to conductive pillars 20 in patterned conductive layer 26, and through any optional substrate or optional package wiring layers 16, 17, respectively, to connection posts 36 and to light emitters 32 or pixel controller 33 of pixel engine 30, to control pixel engine 30 to operate. Pixel engine 30 can emit light through optically clear mold compound 40 and out of the display system. Insulating mold material 22 can absorb incident ambient light to improve the contrast of the display system.
In some embodiments, a pixel package 60 as shown in
In some embodiments, as shown in
In some embodiments, for example as shown in
As is understood by those skilled in the art, the terms “over” and “under” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present disclosure. For example, a first layer on a second layer, in some implementations means a first layer directly on and in contact with a second layer. In other implementations a first layer on a second layer includes a first layer and a second layer with another layer therebetween.
Having described certain implementations of embodiments, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the invention should not be limited to the expressly described embodiments, but rather should be limited only by the spirit and scope of the following claims.
Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously.
This application claims the benefit of U.S. Provisional Patent Application No. 62/817,491, filed on Mar. 12, 2019, entitled Surface Mountable Pixel Packages and Pixel Engines, the content of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5739800 | Lebby et al. | Apr 1998 | A |
6142358 | Cohn et al. | Nov 2000 | A |
7195733 | Rogers et al. | Mar 2007 | B2 |
7354801 | Sugiyama et al. | Apr 2008 | B2 |
7521292 | Rogers et al. | Apr 2009 | B2 |
7557367 | Rogers et al. | Jul 2009 | B2 |
7662545 | Nuzzo et al. | Feb 2010 | B2 |
7704684 | Rogers et al. | Apr 2010 | B2 |
7799699 | Nuzzo et al. | Sep 2010 | B2 |
7932123 | Rogers et al. | Apr 2011 | B2 |
7943491 | Nuzzo et al. | May 2011 | B2 |
7972875 | Rogers et al. | Jul 2011 | B2 |
8333860 | Bibl et al. | Dec 2012 | B1 |
8470701 | Rogers et al. | Jun 2013 | B2 |
8558243 | Bibl et al. | Oct 2013 | B2 |
8722458 | Rogers et al. | May 2014 | B2 |
8791474 | Bibl et al. | Jul 2014 | B1 |
8794501 | Bibl et al. | Aug 2014 | B2 |
8835940 | Hu et al. | Sep 2014 | B2 |
8865489 | Rogers et al. | Oct 2014 | B2 |
8877648 | Bower et al. | Nov 2014 | B2 |
8889485 | Bower | Nov 2014 | B2 |
8934259 | Bower et al. | Jan 2015 | B2 |
8941215 | Hu et al. | Jan 2015 | B2 |
8987765 | Bibl et al. | Mar 2015 | B2 |
9049797 | Menard et al. | Jun 2015 | B2 |
9087764 | Chan et al. | Jul 2015 | B2 |
9105714 | Hu et al. | Aug 2015 | B2 |
9111464 | Bibl et al. | Aug 2015 | B2 |
9139425 | Vestyck | Sep 2015 | B2 |
9153171 | Sakariya et al. | Oct 2015 | B2 |
9161448 | Menard et al. | Oct 2015 | B2 |
9165989 | Bower et al. | Oct 2015 | B2 |
9166114 | Hu et al. | Oct 2015 | B2 |
9178123 | Sakariya et al. | Nov 2015 | B2 |
9217541 | Bathurst et al. | Dec 2015 | B2 |
9240397 | Bibl et al. | Jan 2016 | B2 |
9252375 | Bibl et al. | Feb 2016 | B2 |
9355854 | Meitl et al. | May 2016 | B2 |
9358775 | Bower et al. | Jun 2016 | B2 |
9367094 | Bibl et al. | Jun 2016 | B2 |
9412727 | Menard et al. | Aug 2016 | B2 |
9478583 | Hu et al. | Oct 2016 | B2 |
9484504 | Bibl et al. | Nov 2016 | B2 |
9520537 | Bower et al. | Dec 2016 | B2 |
9555644 | Rogers et al. | Jan 2017 | B2 |
9583533 | Hu et al. | Feb 2017 | B2 |
9589944 | Higginson et al. | Mar 2017 | B2 |
9601356 | Bower et al. | Mar 2017 | B2 |
9640715 | Bower et al. | May 2017 | B2 |
9716082 | Bower et al. | Jul 2017 | B2 |
9761754 | Bower et al. | Sep 2017 | B2 |
9765934 | Rogers et al. | Sep 2017 | B2 |
9865832 | Bibl et al. | Jan 2018 | B2 |
9929053 | Bower et al. | Mar 2018 | B2 |
10153256 | Cok et al. | Dec 2018 | B2 |
10153257 | Cok et al. | Dec 2018 | B2 |
20030141570 | Chen et al. | Jul 2003 | A1 |
20100306993 | Mayyas et al. | Dec 2010 | A1 |
20130309792 | Tischler et al. | Nov 2013 | A1 |
20130316487 | de Graff et al. | Nov 2013 | A1 |
20140159043 | Sakariya et al. | Jun 2014 | A1 |
20160093600 | Bower et al. | Mar 2016 | A1 |
20170244386 | Bower | Aug 2017 | A1 |
20170338374 | Zou et al. | Nov 2017 | A1 |
Entry |
---|
Bower, C. A. et al., Emissive displays with transfer-printed assemblies of 8μm×15 μm inorganic light-emitting diodes, Photonics Research, 5(2):A23-A29, (2017). |
Bower, C. A. et al., Micro-Transfer-Printing: Heterogeneous Integration of Microscale Semiconductor Devises using Elastomer Stamps, IEEE Conference, (2014). |
Bower, C. A. et al., Transfer Printing: An Approach for Massively Parallel Assembly of Microscale Devices, IEEE, Electronic Components and Technology Conference, (2008). |
Cok, R. S. et al., 60.3: AMOLED Displays Using Transfer-Printed Integrated Circuits, Society for Information Display, 10:902-904, (2010). |
Cok, R. S. et al., Amoled displays with transfer-printed integrated circuits, Journal of SID, 19(4):335-341, (2011). |
Cok, R. S. et al., Inorganic light-emitting diode displays using micro-transfer printing, Journal of the SID, 25(10):589-609, (2017). |
Feng, X. et al., Competing Fracture in Kinetically Controlled Transfer Printing, Langmuir, 23(25):12555-12560, (2007). |
Gent, A.N., Adhesion and Strength of Viscoelastic Solids. Is There a Relationship between Adhesion and Bulk Properties, American Chemical Society, Langmuir, 12(19):4492-4496, (1996). |
Kim, Dae-Hyeong et al., Optimized Structural Designs for Stretchable Silicon Integrated Circuits, Small, 5(24):2841-2847, (2009). |
Kim, Dae-Hyeong et al., Stretchable and Foldable Silicon Integrated Circuits, Science, 320:507-511, (2008). |
Kim, S. et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembl by transfer printing, PNAS, 107(40):17095-17100 (2010). |
Kim, T. et al., Kinetically controlled, adhesiveless transfer printing using microstructured stamps, Applied Physics Letters, 94(11):113502-1-113502-3, (2009). |
Meitl, M. A. et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Material, 5:33-38, (2006). |
Michel, B. et al., Printing meets lithography: Soft approaches to high-resolution patterning, J. Res. & Dev. 45(5):697-708, (2001). |
Trindade, A.J. et al., Precision transfer printing of ultra-thin AlInGaN micron-size light-emitting diodes, Crown, pp. 217-218, (2012). |
Number | Date | Country | |
---|---|---|---|
20200295245 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62817491 | Mar 2019 | US |