Various types and design of door check and swing control devices and systems of hinged panel systems have been designed for the safety and convenience of the user. Such systems provide for various hold-point positions along the path of a hinge's movement and those panels attached to them. For example, it is common for vehicle doors to be supplanted with door check control systems allowing the door to stop at various points along the potential swing path of the door. It is desirable for the door to maintain a partially or fully open position to oppose natural weather conditions like wind loading as well as inclined vehicle positions for the safe ingress and egress of the vehicle's user. This same concept has been extended, albeit, for use in various foldable forms such as luggage, tool/storage boxes, portable devices, space dividers etc. wherein it is desirable to inhibit the swing of the hinged system in one or more predetermined positions.
In most automotive door check systems, the components are, at least partially, built into the bodywork of the vehicle. There are, however, instances in the automotive realm wherein a built-in door check system either isn't fitted by the carmaker and/or having a built-in door check is a hindrance. This situation would be exemplified for vehicles with doors that are designed to be removed from the vehicle by the user with the minimum of time and complexity.
U.S. Pat. No. 1,646,580 discloses a door check system that was designed to displace the door stop strap that is still found in some vehicles with doors designed to be easily removed by the user. Said device uses a primarily flat strap which is designed to maintain a relatively straight line when in use preventing buckling. This system, however, does not lend itself to ease of door removal and is limited to a single door restraint position.
U.S. Pat. No. 6,948,214 discloses a removable device for holding an automotive door in the open position. Designed primarily for use on a vehicle during the assembly process, this device is designed to be placed onto the vehicle's door hinge pin, it is made of a flexible material such as steel. It is limited by its provisioning only a single door position as well as the necessity to attach the device each instance that the user wants to keep the vehicle door in the fully open position and the device must be removed in order to close the door.
U.S. Pat. No. 6,901,630 discloses a door check device in which a formed arm allows for multiple stops in the door's swing path by means of spring energized rollers which press upon the formed planes of the formed pivoting arm. Its dual roller design effectively maintains alignment of the pivoting formed arm relative to the vehicle's body, however, checks in the door swing motion are limited to those provisioned in the formed arm. This limitation requires additional tool forming of the door check arm for doors of different styles and weights.
U.S. Pat. No. 6,711,778 discloses a door check device in which a substantially flat bar controls the door's swing by way of at least one spring energized roller making contact with the shorter edge. This short edge has predetermined contours upon which the sprung roller rides, providing various levels of resistance to the swing of the door. The relatively small contact area between the roller and the bar forces the utilization of a high spring rate which increases wear on the components and requires high precision alignment of the system's components relative to each other, which in turn, increases the cost to manufacture.
It is therefore desirable to offer a door check system which overcomes the many shortcomings of previous designs. Because the majority of vehicular door check applications deal with doors of various weights and sizes, most door check designs are bespoke for their intended application and, therefore, require specialized tooling, forging and engineering to fulfill their mission effectively. My new design overcomes many of those stated limitations of earlier designs and is a more universal design for a wide range of doors.
My Surface Mounted Door Check Device provides an economical, lightweight and adaptable means of adding intermediate door check stops to a hinged door/panel's swing path. This novel design, once installed, allows for tool-free separation of the door from its adjacent frame/body receiver connection. The design utilizes engineered materials to provide frictional control as a means of controlling the velocity of the door/panel's swing motion. The intermediate door check stop(s) are provisioned as negative areas within the flexible control arm for the requirements of the application. The system is adaptable to accommodate for the weight and size of a wide range of doors/panels.
Previous door check systems and devices are relatively complex mechanical devices. My new design has only three distinct components, the carrier, the flexible control arm and the receiver, all of which are surface mounted.
My new door check design allows the system to be installed on the surface of the inboard side of an outward swinging door. Because of the unique component design, this can be accomplished on most vehicles with removable doors without modifying the bodywork or chassis.
Previous and current door check systems often require lubrication. Lubricants often attract dust, dirt and other particulates which are detrimental to the door check device and its operational characteristics. This new design, optionally, uses a single self-lubricating plain bushing to reduce friction between the energized spherical element and the compression spring housed within the receiver when required by the application.
Many other designs of door check devices utilize a a pivoting rigid component to connect a door component to an adjacent frame area/bodywork component of the door check system. My new design requires no pivots instead utilizing a flexible control arm component to make the door to frame/bodywork connection.
The flexible control arm component of my new design may be provisioned with negative spaces/areas(s) which, by their size, shape and spacing, provides points of control for the intermediate swing check(s). The material properties of the flexible control arm, such as thickness, width, surface hardness, texture and stiffness contribute to control of the velocity of the door swing motion.
My new door check system is provisioned with an energized spherical element, which interacts with the negative space(s) provisioned within the flexible control arm. It is energized by the use of a compression spring. The energized spherical element, the compression spring and the optional plain bearing are housed within the receiver component.
The flexible control arm, spherical element and compression spring may be replaced with ease for other like-kind parts while being of different engineering/material characteristics and/or compressive force to accommodate for different static and dynamic loading and the varying weight, mass and size of the panels/doors to be controlled.
In this embodiment of the invention, the flexible control arm 4 is fixed to the carrier 6 with fasteners 10, which is in turn, fixed to a door 11a with fasteners 7 and bridges across the door 11a, hinge 9 and into the receiver 1, which is fixed to the chassis 11. The installed position of the invention is reversible, wherein the receiver body 1 may be fixed to a door 11a and the carrier 6 with the fixedly attached flexible control arm 4 which may be attached to the chassis 11 without a loss of functionality.
Check points for control of the door 11a, to which the invention may be installed upon, the swing of which, is controlled, at least in part, via the negative spaces 4a as provisioned within the body of the flexible control arm 4. The size, shape and spacing of these negative spaces 4a may be determined by the requirements of the specific application as well as the user's preferences.
The receiver body 1 is enclosed with two receiver covers 2 which are attached to opposing sides of the receiver's body 1 with fastener parts labeled 3, 3a and 3b. The fastening(s) may be of any suitable type or nature to address the needs of the application and/or the ease of manufacturability of the invention and all that entails.
The flanged bushing 8 which may have a self-lubricating property, is placed between the spherical element 12 and the compression spring 5 acts and may act as an anti-friction bearing facilitating potential, and desirous property of rotational motion of the spherical element 12 as the flexible control arm 4 may pass in a linear direction beneath its surface. Said component group is oriented in a perpendicular geometry in relation to one of the two widest faces of the flexible control arm 4. This arrangement may place the energized spherical element 12 in alignment and in forced contact with the potential travel pathway of the flexible control arm 4 and, in particular, with its provisioned negative spaces 4a. The flexible control arm 4 is held in alignment with the aforementioned components within a boundary 1a formed as a negative spatial feature within the carrier body 1 and primarily and generally rectangularly shaped through-slots 2a which are provisioned in the receiver covers 2.
The lower section of negative area 1b of the receiver 1 is shown as being of a primarily horizontal area in appearance and is marked as area 1a. Negative area 1a will be occupied primarily, when assembled, by the flexible control arm 4. The negative area 1a, as aforementioned, extends through the receiver body 1.
Enclosing the receiver body 1 are two receiver covers 2 which may be provisioned with thru-holes 2b which align with and receiver 1 provisioned thru-holes 1c in the receiver body 1. Alignment of the aforementioned negative spaces 2b and 1c facilitates the use of mechanical fastener components 3, 3a, 3b, 3c and 3d which pass through all three of these components, namely two of receiver covers 2 and one receiver body 1, to constrain and assist in containing the compression spring 5, the flanged bushing 8 and the spherical element 12 as an aligned assembly within the receiver body 1. The two receiver covers 2 are also provisioned with negative through-holes 2a which generally align with negative area 1a in the receiver body.
The receiver body 1 is may also be provisioned with through-holes 1d which may allow mechanical fasteners 13 to attach the receiver body 1 to a chassis, of any manner, as illustrated in
Both illustrations p1 and p2, show through-holes 1c, which may be provisioned wherein the use of mechanical fasteners 3, 3a, 3c and 3d may be desirable. The use of and/or style and nature of said fasteners is variable as to the application of the invention or its ease of manufacture.
In illustration p1 we see a cross-sectional view of the receiver body 1 and the flexible control arm 4 with the compression spring 5 in its most compressed state as the flexible control arm 4 is occupying negative space 1a in the receiver body 1 but has not yet reached a potential check position 4a as provisioned on the flexible control arm 4. In this positional state, the spherical element 12 is riding on the primary positive (non-negative) surface of the flexible control arm 4.
The second illustration of
Illustrated in drawing v1 are three negative check point location spaces 4b on the flexible control arm 4. These have a primarily rectangular form. You will also see four through-holes 4b for mechanical attachment.
In drawing v2 we see the flexible control arm 4 provisioned with four ovoid teardrop shaped negative areas 4c check point locations. You will also see four through-holes 4b for mechanical attachment.
Illustration v3 shows another variation with four spherical negative areas 4a check point locations. You will also see four through-holes 4b for mechanical attachment.
Drawing v4 shows three spherical negative spaces 4a check point locations. The number and size of negative spaces is variable and may be utilized in a manner that is befitting the application. You will also see four through-holes 4b for mechanical attachment.
In drawing v5 there are only two through-holes 4b on the flexible control arm 4 to illustrate that in some applications there is variability in the number (and size) of potential fasteners to be used in the invention, dependent on the needs of the particular application. In this instance, there is no requirement for the stop-block 15 assembly as seen in