The present application claims priority to U.S. application Ser. No. 11/809,785, entitled “Surface-Mounted Lighting System” and filed on Jun. 1, 2007, which claims priority to U.S. Provisional Patent Application No. 60/803,670, entitled “Iris Square Fixture” and filed on Jun. 1, 2006, the entire contents of which are hereby incorporated herein by reference.
The present invention relates to lighting fixtures and more specifically to recessed lighting fixtures that facilitate making adjustments during or following fixture installation, thereby accommodating various ceiling thicknesses, outputting a variety of illumination patterns, or providing multiple orientations with respect to existing fixtures.
Lighting systems, such as ceiling-, wall-, or surface-mounted lighting fixtures or luminaries, commonly illuminate spaces in which people live, work, or play. Despite an availability of a wide variety of commercial lighting fixtures, lighting designers often struggle with competing design objectives. A person occupying a work or living space may desire a fixture that is integrated esthetically and functionally with the environment. Meanwhile, an installer may prefer a fixture that offers easy access to light bulbs, wires, and adjustment mechanisms—items that often lack visual appeal. Addressing electrical safety, compliance with government and industry standards, energy efficiency, and heat dissipation adds to the difficulty of balancing design criteria. Moreover, many users prefer specific patterns and angles of illumination and would like a capability to adapt the lighting fixture or the luminaire according to their personal preferences.
The term “luminaire”, as used herein, generally refers to a system for producing, controlling, and/or distributing light for illumination. A luminaire can be a system that outputs or distributes light into an environment so that people can observe items in the environment. Such a system could be a complete lighting unit comprising one or more lamps; sockets for positioning and protecting lamps and for connecting lamps to a supply of electric power; optical elements for distributing light; and mechanical components for supporting or attaching the luminaire. Luminaires are also sometimes referred to as “lighting fixtures” or as “light fixtures.” A lighting fixture that has a socket for a bulb, but no inserted bulb, can still be considered a luminaire.
Conventional lighting technologies often fail to strike an adequate balance among competing functional, service, installation, aesthetic, safety, and regulatory objectives. For example, conventional ceiling-mounted fixtures often lack a capability to fit a wide range of ceiling types and thicknesses. This lack of flexibility can result in excessive installation costs associated with making shims or with modifying either a ceiling or a lighting fixture to achieve installation compatibility.
Another problem with conventional technology lies in aligning a new lighting fixture to an existing fixture, for example to create an array or a line of lights. Yet another problem concerns making optical adjustments to output a sought-after illumination pattern. One more problem relates to mating a conventional lighting fixture with a ceiling in order to provide, without undue labor expense, a clean and defect-free interface between the ceiling and the lighting fixture.
Additionally, compact light sources produce a tremendous amount of heat and, if not properly managed, may result in short lamp life and premature socket failure. Other concerns include increased temperature within a recessed housing causing reduced life of components such as magnetic or electronic transformers, electrical connections or discolor finished surfaces. Visible light emissions directed rearward may also illuminate the interior of the recessed housing causing an unacceptable aesthetic appearance to the end user.
Accordingly, to address one or more of the aforementioned representative deficiencies in the art, an improved lighting fixture is needed. Moreover, a need exists for a lighting fixture that is readily adapted for mounting on a variety of surfaces, including ceilings that have different thicknesses. A need also exists for a lighting fixture that can be adjusted to provide geometric alignment with another fixture, lighting or otherwise. Yet another need is for a lighting fixture for which a person can readily control the pattern of illumination, including an angle of illumination or an optical axis. One more need is present for a lighting fixture that an installer can mate efficiently and cleanly with a hole in a ceiling or similar surface. Furthermore, there is a need for recessed lighting with increased lamp life and improved socket performance and longevity. A capability addressing one or more of these needs would decrease installation cost, offer better lighting, and/or provide a single fixture design that would serve multiple installation scenarios.
The present invention provides a lamp capsule having a socket holder, a socket positioned in the socket holder at a first end, and a lens holder connected to the socket holder at a second end. The socket holder defines a cavity and is adapted to receive a lamp therewithin. The socket holder also includes a plurality of fins extending radially and outwardly therefrom. In some embodiments, the socket holder further includes a socket mounting platform in direct contact with the socket. The socket mounting platform may include apertures through which connection pins from a lamp may pass through. The socket mounting platform may also include an aperture to facilitate heat dissipation. In some embodiments, the socket may be in direct contact with the plurality of fins to facilitate conductive heat transfer from the socket to the fins. In some embodiments, the socket holder may include ventilation apertures for convective heat dissipation. The lens holder may also include a mounting groove, ventilation slots, lamp support features, and at least one lens. A snoot may be connected to the lens holder for retaining the lens and to control the light beam from the lamp.
Systems of the present invention include lamp capsules of the present invention having a lamp positioned within the socket holder cavity. In some embodiments, a gap may be included between the lamp and interior of the socket holder to facilitate heat dissipation.
The discussion of lamp capsules presented in this summary is for illustrative purposes only. Various aspects of the present invention may be more clearly understood and appreciated from a review of the following detailed description of the disclosed embodiments and by reference to the drawings and the claims that follow. Moreover, other aspects, systems, features, advantages, and objects of the present invention will become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such aspects, systems, features, advantages, and objects are to be included within this description, are to be within the scope of the present invention, and are to be protected by the accompanying claims.
Many aspects of the invention can be better understood with reference to the above drawings. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of exemplary embodiments of the present invention. Moreover, certain dimension may be exaggerated to help visually convey such principles. In the drawings, reference numerals designate like or corresponding, but not necessarily identical, elements throughout the several views.
An exemplary embodiment of the present invention supports installing a recessed lighting fixture in various ceiling materials while providing for a significant level of post-installation adjustments. The fixture can comprise an optic, such as a reflector or a lens; a lamp; and an aperture or hole that emits light into a environment, such as a room or a workspace. The lamp and associated optics can provide an axis of illumination that passes through the aperture.
One adjustment changes the angle of illumination, effectively tilting the axis of illumination. A user, be it an installer, a service professional, or a homeowner, can utilize this adjustment to change the angle of light emanating from the aperture according to personal preference or to achieve a desired lighting effect.
Via a second adjustment, the user can reposition the aperture, which can be square in an exemplary embodiment, after the fixture is partially, substantially, or completely installed. The aperture can be rotated following or during installation so that the visible portion of the fixture is aligned to another fixture.
To provide a third adjustment, the lighting fixture can provide a telescoping or translation capability that accommodates mounting the fixture in ceilings of different thicknesses. With this telescoping capability, an installer can recess the lamp a set depth in a ceiling, independent of ceiling thickness. The lighting fixture can achieve a fixed or predetermined relation between an upper reflector and a lower optical element regardless of ceiling thickness. Accordingly, the fixture can provide glare-free (or reduced glare) at a wide range of adjustment angles, for a wide range of ceiling thicknesses, and in a wide range of operating environments.
The term “optical element,” as used herein, generally refers to a device or system that manipulates, emits, produces, manages, or controls light, illumination, or photons. Among other things, an optical element could be or could comprise one or more lenses, reflectors, diffusers, panes, prisms, or flat glasses.
A lighting fixture will now be described more fully hereinafter with reference to
The invention can be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those having ordinary skill in the art. Furthermore, all “examples” or “exemplary embodiments” given herein are intended to be non-limiting, and among others supported by representations of the present invention.
Turning now to
In a typical application, the lighting fixture 100 is installed overhead, for example in a ceiling of a house, an office building, or a like structure, and
The platform 110, which can be characterized as an exemplary embodiment of a plate, comprises a square aperture 120 through which light from a lamp or other light source (not explicitly illustrated in
In an exemplary embodiment, the platform 110 can be a “plaster frame” that provides mechanical support for a lighting fixture housing or enclosure. A plaster frame is generally a metal member mounted on hanger bars between the joists of a building structure that supports a ceiling. A plaster frame can comprise a main body portion including a rectangular planar member 110 defining an aperture 120. A depending flange or rim may surround the frame for mating with a hole in a ceiling.
Referring to the exemplary embodiment of
The square collar 115 is attached to a rotating disc (or disk) 125 that facilitates rotating the aperture 120. In one exemplary embodiment, the rotating disc 125 is round or circular and is made of metal. Alternatively, the disc 125 can be oval, square, crescent, star-shaped, or some other shape.
As illustrated, the rotating disc 125 comprises four slots 135 that are disposed at four locations around the periphery of the disc 125. In an exemplary embodiment, the slots 135 are arcuate or arc-shaped, as illustrated. Pins 140 or similar members are disposed in three of the slots 135. The slots 135 and pins 140 define the rotational freedom of the disc 125 and the associated square collar 115 and aperture 120. More specifically, the arc lengths of the slots 135 define the rotational travel or the amount of available rotational motion, which is plus or minus 7.5 degrees in the illustrated exemplary embodiment. Other embodiments may have shorter or longer slots 135 and may have fewer or more than four slots 135.
The pin 105 of one of the slots 135 is threaded, thus forming a screw 105. Tightening the nut threaded onto that locking screw 105 locks or sets the rotating disc 125 in a specific angular position. A “home position” screw 130 sets the rotating disc 125 to a known or initial rotational position to facilitate initial installation. The home position is approximately in the middle of the range of available rotations of the aperture frame 115.
With the rotating disc 125 set to the home position, an installer typically mounts the lighting fixture 100 at a hole in the ceiling. After the fixture 100 is mounted, the installer can loosen the home position screw 130 and rotate the aperture 120 up to about 7.5 degrees clockwise and up to about 7.5 degrees counterclockwise. The disc 125 rotates essentially about a central axis of the aperture 120, with the disc 125 remaining generally parallel to the platform 110 (or at least to some generally planar surface thereof) during the rotation. Thus, the exemplary aperture 120 is typically disposed more or less in the center of the disc 125.
The installer can adjust the orientation of a linear side or a corner of the aperture 120 and the associated square collar 115. Via this adjustment, the installer can align the visible portions of the lighting fixture 100 with another object in a room, for example to create a row of lighting fixtures 110. After achieving a desired orientation, the installer locks the rotational position via tightening the locking screw 105. The rotational adjustment relaxes initial installation tolerances and facilitates aligning the apertures 120 of adjacent luminaires with respect to one another to correct initial misalignment. The illustrated rotational adjustment capability further facilitates changing the angular orientation of the lighting fixture 100 at future times, even years after the initial installation.
Turning now to
Turning now to
Turning now to
The removable square collar 115 provides a range of height adjustments of 0.5 inch (about 12.7 millimeters) to facilitate mounting in ceilings if different thicknesses, as discussed in further detail below. The removable square collar 115 comprises regressed or recessed fastener pockets 405 that each accommodates a screw or some other type of fastener. As illustrated in
Lower limits stops 415 and slots/notches 410 support interchanging lamps or upper modules. Thus, a base platform 110 is compatible with multiple lighting elements, including elements that may be visible to an occupant of a lighted spaced and functional elements hidden from view. In an exemplary embodiment, the removable square collar 115 can be installed in multiple positions, for example on four 90 degree increments.
Turning now to
The junction box 510, sometimes referred to as a “j-box,” contains electrical connections for joining the fixture's wiring 515 with electrical supply lines. The junction box 510 is mounted on a raised platform 525 that provides service accessibility and that offers compatibility with commonly available electrical components. In operation, current flows to the junction box 510, through the wires in the wireway 520, and to an electrical lamp (not explicitly illustrated in
The housing or enclosure 500 contains the electrically fed lamp, associated optics, mechanical components, and adjustment mechanisms that are illustrated in subsequent figures and discussed in further detail below. In an exemplary embodiment, the housing 500 can be viewed as a sealed enclosure or as a box.
Turning now to
Turning now to
Turning now to
Turning now to
The locking feature 900 keeps the door 700 closed and can operate without excessive tightening of the locking screw 910. Two capture dimples 930, which are typically slight recesses, are stamped on the outer surface of the door flange 930. The distance between the two dimples 930 is smaller than the outer diameter of the locking screw neck 920. Accordingly, the locking screw neck 920 engages the capture dimples 930 to retain the closed position.
Turning now to
Turning now to
U.S. patent application Ser. No. 11/090,654, entitled “Hangar Bar for Recessed Luminaires With Integral Nail” and filed on Mar. 25, 2005 in the name of Grzegorz Wronski, describes other exemplary embodiments of the hanger bars 1100, 1200 illustrated in
Turning now to
Turning now to
Turning now to
The expanded and contracted hangar bar configurations of
Turning now to
Turning now to
The term “lamp support mechanism,” as used herein, generally refers to one or more members or a structure that supports a light source, a lamp, a light bulb socket, a light module, and/or one or more associated optics or optical elements.
With the lamp support mechanism 1700 attached directly to the square collar 115, the lamp support mechanism 1700 maintains a fixed spatial relationship between the optical elements and the bottom portion (e.g. lower shielding cone or trim) of the lighting fixture 100 regardless of the ceiling thickness. Independent of the ceiling thickness, the reflector 1710 and the associated bulb (not explicitly shown in
Turning now to
In the illustrated exemplary installation, the bulb 1820 and the associated socket 1825 are positioned 4 inches (about 102 millimeters) 1810 above the lower surface of the ceiling 1800 that faces the room 1850. In this orientation, the light source and associated reflectors are recessed within the ceiling 4 inches (about 102 millimeters). The lamp 1820 and reflector 1710 output light through the aperture 120 and into the room 1850.
While the room 1850 typically has four walls, in some exemplary embodiments, the room 1850 may have fewer or perhaps no walls. For example, the lighting fixture 100 might be mounted to the ceiling 1800 of an awning or a gazebo that lacks any traditional walls.
The mechanism 405 facilitates adjusting the lighting fixture 100 according to the specific ceiling thickness 1805 of the installation. That adjustment mechanism 405 comprises a slot 1860, the length of which establishes the amount of adjustment range, and a fastener 1865 that is disposed through the slot 1860. Tightening the fastener 1865 sets the lighting fixture 100 to a specific ceiling thickness 1805, while loosing the fastener 1865 enables thickness adjustments.
In connection with adjusting the lighting fixture 100 for various ceiling thicknesses 1805, the lighting fixture 100 clamps onto or embraces the ceiling 1800. More specifically, the surface 1870 and the surface 1875 press together onto the ceiling 1800. Thus, the members 1870 and 1875 can be viewed as jaws that apply at least some compression force to the cross section of the ceiling 1800 in an exemplary embodiment.
Turning now to
As illustrated in
Turning now to
In addition to being able to accommodate two different ceiling thicknesses 1805, 1905, the illustrated embodiment comprises a facility to adjust the angle of the light emitted from the fixture's aperture 120. As will be discussed in further detail below with reference to
Turning now to
Turning now to
As discussed in further detail below with reference to
Turning now to
Turning now to
The exemplary lighting fixture 100 of
The lamp support mechanism 1700 is oriented so that the lamp 1820 and the associated socket 1825 are generally parallel to the longer side 2410 of the platform 110. In an exemplary embodiment, the slots 135, home position screw 130, and locking screw 105 provide a rotational adjustment relative to the illustrated home position. As discussed above with reference to
Turning now to
In the illustrated embodiments of
Turning now to
The lamp support mechanism 1700 attaches to the square collar 115 via a hook 2610 or a tab that inserts in a slot 410 of the collar 115. A spring member 2620 inserts in another slot 410. The spring member 2620 and hook 2610 thereby apply retaining pressure so that the lamp support mechanism 1700 is detachably mounted on the square collar 115. In other words, the lamp support mechanism 1700 is secured to the square collar 115 by two hooks 2610, two springs 2620, and corresponding notches 410 in the square collar 115.
Turning now to
The illustrated mechanisms facilitate reorienting the lamp support mechanism 1700 for a desired effect and exchanging light sources 2740 in the field or following fixture installation. When the adjustment mechanism 2720 tilts the lamp 2740 (which can be a lamp capsule in exemplary embodiment) and likewise tilts the lighting fixture's axis of illumination or optical axis 2000, 2005, 2010. While not explicitly depicted in
In an exemplary embodiment, the adjustment mechanism 2720 provides a tilting capability between 0 and 45 degrees and further provides 360 degrees of rotation via the rotating bracket 3010, which is attached to the base 3020. That 360 degrees of rotation is distinct from the rotational adjustment of the aperture 120 and square collar 115 discussed above with reference to
The adjustment mechanism 2720 comprises a tilting device with locking tab 3040. The tilting device with locking tab 3040 comprises a pair of guiding holes 2710 that can receive a screwdriver 2910 and an adjustment screw 2730. In an exemplary embodiment, the holes 2710 and adjustment screw 2730 are components of the tilting device with locking tab 30400.
A user or installer, located in the room 1850, inserts a blade of the screwdriver 2910 through the holes 2710 so that the screwdriver's bit contacts a spring loaded adjustment screw 2730. The user can tilt screwdriver 2910 to implement tilting and rotation, as discussed above. After achieving a suitable tilt and rotation, the user tightens the adjustment screw 2730 to fix the lighting fixture 100 in that position. In other words, the screwdriver 2910 repositions the tilting plate 2720 and secures the desired orientation and corresponding pattern of illumination.
Turning now to
Rimless installation of the lighting fixture 100 or recessed luminaire can be achieved with a frame 3105 and protective frame cover 3205. The perforated flange 3205 is attached to the square collar 115 and bonded to or embedded in the ceiling material, for example, drywall or gypsum board. The installation can be accomplished via well-known drywall finishing techniques and common materials such as joint compound and drywall mesh tape. In other words, the installer covers the perforated flange 3205 with joint compound, spackling compound, or “mud” so that the flange 3205 is effectively embedded in the ceiling 1800, 1900 and thereby hidden from view. The joint compound enters the perforations to help enhance structural integrity.
The protective cover 3205 attaches to the frame 3105 prior to installation and is removed after installation is complete. Thus, the protective cover 3205 keeps paint, joint compound, and other construction materials from entering the interior of the aperture 120.
As illustrated in
The frame 3405 of
Turning now to
The hinged access door 700 comprises a thermally isolated double panel 3525 that avoids directly transferring heat to any insulation that may directly contact the housing or enclosure 500. The fixed section 500 of the enclosure also comprises a thermal protector 3610 that is positioned in accordance with applicable UL standards. With the door 700 closed, the illustrated exemplary embodiment 100 can comply with applicable airtight standards, for example standards of the American Society of Testing and Materials (“ASTM standards”).
Socket holder 3710 defines a cavity 3755 and is configured to receive lamp 3740 within cavity 3755. An integral reflector in socket holder 3710 limits infrared energy from passing directly into the socket holder 3710 while aiding to absorb this energy into the body of the socket holder 3710. In some embodiments, socket holder 3710 is configured to align pins 3735 such that blind insertion of lamp 3740 is possible. For instance, the upper portion of cavity 3755 may be shaped to match the top of the lamp 3740 where connection pins 3735 are such that the two align and fit together in only one way. Additionally, the length of socket holder 3710 is such that adequate access to lamp 3740 is provided to easily grip lamp 3740 for removal, i.e. socket holder 3710 is shorter in length than lamp 3740. In some embodiments, cavity 3755 may be configured to include a gap 3760 between lamp 3740 and the interior of socket holder 3710 after lamp 3740 has been inserted into the socket 3705 and socket holder 3710. Gap 3760 may facilitate convective heat transfer from the socket 3705 and lamp 3740 to ventilation apertures 3765, which allow heat to escape from the lamp 3740. Socket holder 3710 also includes a plurality of cooling fins 3770 extending radially and outwardly from socket holder 3710. Ventilation apertures 3765 are spaced between fins 3770, and the presence of fins 3770 aids in restricting light emission into the socket holder 3710 and lowering aperture brightness. Fins 3770 may also facilitate dissipation of heat generated by lamp 3740 into the surrounding air. In some embodiments, fins 3770 may be angled; however, one of skill in the art will recognize that the geometric configuration of the fins 3770 may vary in alternate embodiments. In some embodiments, at least a portion of socket 3705 and/or socket mounting platform 3725 may be in direct contact with fins 3770 so as to conductively transfer heat from socket 3705 and/or socket mounting platform 3725 to fins 3770, and in turn convectively dissipate heat to the surrounding environment.
Socket holder 3710 includes connecting means, such as threading 3775, for engaging mating means, such as threading 3780, of lens holder 3715. Lens holder 3715 is generally cylindrical, and contributes to thermal management of lamp capsule 2740. Lens holder 3715 includes a mounting groove 3785 as a means for a variety of mounting methods within the lens holder 3715, for instance, with spring loaded devices such as ball plungers. Ventilation slots 3790 are included in lens holder 3715 between lamp 3740 and lens 3795 to aid in the dissipation of heat to the surrounding air, as well as aid in cooling down the inner surface of lamp 3740. In some embodiments, the lens holder 3715 may further include a spacer, or gap, between lamp 3740 and lens 3795 to aid heat dissipation and cooling of the inner surface of lamp 3740. The inner diameter of the lens holder 3715 may be used to secure lamp 3740 orientation and alignment within the lamp capsule 2740. In some embodiments, lamp support features 3800 may be included within the lens holder 3715 to ensure proper pin 3735 engagement with socket 3705, while also maintaining proper lamp 3740 position with the face of lamp 3740 being parallel to lens 3795. In some embodiments, a second lens 3805 may be included, and one of skill in the art will recognize that a plurality of lenses may be included in alternate embodiments. In some embodiments, no lens may be included in the lens holder. The design of the lens holder 3715 is such that lamp 3740 stays stationary regardless of the number of lenses placed in the lens holder 3715.
Lens holder 3715 includes a second mating means, such as threading 3810, for engaging connecting means, such as threading 3815, of snoot 3720. Snoot 3720 is generally cylindrical and may vary in length in alternate embodiments. The function of snoot 3720 is to provide retention for lens 3795 and to control the light beam from lamp 3740. In some embodiments, snoot 3720 may be tapered or reverse tapered in order to manipulate the focal point of the beam pattern of the lamp 3740.
Lighting fixtures, luminaires, illumination apparatuses, and technology for installing, configuring, adjusting, and using such systems have been described. From the description, it will be appreciated that an embodiment of the present invention overcomes the limitations of the prior art. Those skilled in the art will appreciate that the present invention is not limited to any specifically discussed application or implementation and that the embodiments described herein are illustrative and not restrictive. From the description of the exemplary embodiments, equivalents of the elements shown therein will suggest themselves to those skilled in the art, and ways of constructing other embodiments of the present invention will appear to practitioners of the art. Therefore, the scope of the present invention is to be limited only by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
1622087 | Calderwood | Mar 1927 | A |
1756361 | Johnson | Apr 1930 | A |
1791480 | Smith et al. | Feb 1931 | A |
2316389 | Atkinson | Apr 1943 | A |
2713983 | Kay | Jul 1955 | A |
2802933 | Broadwin | Aug 1957 | A |
2887568 | Franck | May 1959 | A |
2930564 | Maier | Mar 1960 | A |
3102306 | Hutchinson | Sep 1963 | A |
3104087 | Budnick et al. | Sep 1963 | A |
3162413 | Hexdall | Dec 1964 | A |
3321615 | Hilzen | May 1967 | A |
3597889 | Nigro | Aug 1971 | A |
3609346 | Lund et al. | Sep 1971 | A |
3710096 | McFarlin | Jan 1973 | A |
4041657 | Schuplin | Aug 1977 | A |
4048491 | Wessman | Sep 1977 | A |
4290098 | Pierson | Sep 1981 | A |
4336575 | Gilman | Jun 1982 | A |
4388677 | Druffel | Jun 1983 | A |
4391428 | Grimes | Jul 1983 | A |
4406216 | Hott et al. | Sep 1983 | A |
4511113 | Druffel et al. | Apr 1985 | A |
4566057 | Druffel | Jan 1986 | A |
4569003 | Elmer et al. | Feb 1986 | A |
4577824 | Druffel et al. | Mar 1986 | A |
4646212 | Florience | Feb 1987 | A |
4670822 | Baker | Jun 1987 | A |
4723747 | Karp et al. | Feb 1988 | A |
4754377 | Wenman | Jun 1988 | A |
4796169 | Shemitz | Jan 1989 | A |
4803603 | Carson | Feb 1989 | A |
4829410 | Patel | May 1989 | A |
4967990 | Rinderer | Nov 1990 | A |
4972339 | Gabrius | Nov 1990 | A |
4978092 | Nattel | Dec 1990 | A |
5029794 | Wolfe | Jul 1991 | A |
5044582 | Walters | Sep 1991 | A |
5045985 | Russo et al. | Sep 1991 | A |
5057979 | Carson et al. | Oct 1991 | A |
5074515 | Carter, Jr. | Dec 1991 | A |
5075831 | Stringer et al. | Dec 1991 | A |
5178503 | Losada | Jan 1993 | A |
5209444 | Rinderer | May 1993 | A |
5222800 | Chan et al. | Jun 1993 | A |
5316254 | McCartha | May 1994 | A |
5374812 | Chan et al. | Dec 1994 | A |
5386959 | Laughlin et al. | Feb 1995 | A |
5452816 | Chan et al. | Sep 1995 | A |
5505419 | Gabrius | Apr 1996 | A |
5571256 | Good et al. | Nov 1996 | A |
5588737 | Kusmer | Dec 1996 | A |
5591968 | Tseng | Jan 1997 | A |
5597234 | Winkelhake | Jan 1997 | A |
5662413 | Akiyama | Sep 1997 | A |
5662414 | Jennings et al. | Sep 1997 | A |
5678799 | Jorgensen et al. | Oct 1997 | A |
5690423 | Hentz et al. | Nov 1997 | A |
5746507 | Lee | May 1998 | A |
5758959 | Sieczkowski | Jun 1998 | A |
5803571 | McEntyre et al. | Sep 1998 | A |
5857766 | Sieczkowski | Jan 1999 | A |
5873556 | Reiker | Feb 1999 | A |
5915828 | Buckley | Jun 1999 | A |
5934631 | Becker et al. | Aug 1999 | A |
5954304 | Jorgensen | Sep 1999 | A |
5957573 | Wedekind et al. | Sep 1999 | A |
5957574 | Hentz et al. | Sep 1999 | A |
6030102 | Gromotka | Feb 2000 | A |
6076788 | Akiyama | Jun 2000 | A |
6082878 | Doubek et al. | Jul 2000 | A |
6206544 | Costa | Mar 2001 | B1 |
6286265 | Rinderer | Sep 2001 | B1 |
6431723 | Schubert et al. | Aug 2002 | B1 |
6461016 | Jamison et al. | Oct 2002 | B1 |
6471374 | Thomas et al. | Oct 2002 | B1 |
6484980 | Medlin, Sr. et al. | Nov 2002 | B2 |
6505960 | Schubert et al. | Jan 2003 | B2 |
6652124 | Schubert et al. | Nov 2003 | B2 |
20050168986 | Wegner | Aug 2005 | A1 |
20050183344 | Ziobro et al. | Aug 2005 | A1 |
20050230589 | Wronski | Oct 2005 | A1 |
20050247842 | Wronski | Nov 2005 | A1 |
20070075206 | Wright et al. | Apr 2007 | A1 |
20070211470 | Huang | Sep 2007 | A1 |
20080025031 | Wronski | Jan 2008 | A1 |
20080130298 | Negley et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090175040 A1 | Jul 2009 | US |