SURFACE-PROTECTING FILM

Abstract
Provided is a novel surface protective film that can express sufficiently high antistatic property even without the use of any antistatic agent, can express sufficiently high wettability even without the use of any plasticizer, and is excellent in reworkability (light peelability). The surface protective film includes: a base material layer; and a pressure-sensitive adhesive layer, in which: the pressure-sensitive adhesive layer has a peeling electrification voltage of 0.7 kV or less; and a first wetting rate with respect to an acrylic plate in a surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is 5.0 cm2/sec or more.
Description
TECHNICAL FIELD

The present invention relates to a surface protective film. The surface protective film of the present invention has a base material layer and a pressure-sensitive adhesive layer, and is used in, for example, an application where a surface of a display member or an image recognition member is protected by attaching the film to the surface.


BACKGROUND ART

A surface protective film may be attached to a surface of a display member or an image recognition member for preventing the flaw, dirt, and the like of the surface.


Such surface protective film is manually attached in many cases. When the surface protective film is manually attached as described above, there is a problem in that air bubbles are involved between an adherend and the surface protective film in many cases.


A technology involving adding a plasticizer to a pressure-sensitive adhesive layer of the surface protective film to improve its wettability has been reported as a technology for preventing the air bubbles from being involved between the adherend and the surface protective film when the surface protective film is manually attached to the adherend (Patent Literature 1).


However, when the pressure-sensitive adhesive layer to which the plasticizer has been added is used, there is a problem in that the adherend is contaminated by the plasticizer.


In addition, when the surface protective film is manually attached to the adherend, light peelability as well as wettability is required. This is because the surface protective film attached to the adherend is attached to the adherend again after having been peeled and then used as a protective film again. When its peelability is heavy, the surface protective film deforms upon peeling of the surface protective film even in the case where its wettability is good, with the result that the surface protective film can no longer be used as a protective film again. Accordingly, such reworkability that the protective film can be attached any number of times without air bubbles and can be peeled without its deformation has been required.


Further, when the surface protective film is manually attached to the adherend, antistatic property as well as wettability is required in many cases. The same surface protective film is subjected to manual attachment and manual peeling any number of times in many cases. Hence, when the adherend is not subjected to an antistatic treatment, a peeling electrification voltage of the adherend to be generated upon peeling of the protective film becomes larger, resulting in a failure. For example, foreign matter is collected in the adherend to contaminate an optical member. In addition, in the optical member such as a polarizing plate, when a voltage is applied to liquid crystal in a large amount of static electricity, alignment of liquid crystal molecules may be lost or defects may occur in a panel.


CITATION LIST
Patent Literature



  • [PTL 1] JP 2010-209324 A



SUMMARY OF INVENTION
Technical Problem

The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a novel surface protective film that can express sufficiently high antistatic property even without the use of any antistatic agent, can express sufficiently high wettability even without the use of any plasticizer, and is excellent in reworkability (light peelability).


Solution to Problem

A surface protective film of the present invention is a surface protective film, including: a base material layer; and a pressure-sensitive adhesive layer, in which: the pressure-sensitive adhesive layer has a peeling electrification voltage of 0.7 kV or less; and a first wetting rate with respect to an acrylic plate in a surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is 5.0 cm2/sec or more.


In a preferred embodiment, an adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.02 to 0.20 N/25 mm.


In a preferred embodiment, an adhesion B with respect to the acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.02 to 0.30 N/25 mm.


In a preferred embodiment, a difference B-A between the adhesion B with respect to the acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, and the adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.1 N/25 mm or less.


In a preferred embodiment, the pressure-sensitive adhesive layer has a gel fraction of 80% or more.


In a preferred embodiment, the surface protective film of the present invention is used for a surface of a display member or an image recognition member.


The present invention also provides a display member. The display member of the present invention is covered with the surface protective film of the present invention.


The present invention also provides an image recognition member. The image recognition member of the present invention is covered with the surface protective film of the present invention.


Advantageous Effects of Invention

According to one embodiment of the present invention, it is possible to provide the novel surface protective film that can express sufficiently high antistatic property even without the use of any antistatic agent, can express sufficiently high wettability even without the use of any plasticizer, and is excellent in reworkability (light peelability).





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic sectional view of a surface protective film according to a preferred embodiment of the present invention.



FIG. 2 is a schematic sectional view illustrating a state before the attachment of an acrylic plate and a test piece in the measurement of a wetting rate.





DESCRIPTION OF EMBODIMENTS
A. Surface Protective Film

A surface protective film of the present invention includes a base material layer and a pressure-sensitive adhesive layer. FIG. 1 is a schematic sectional view of a surface protective film according to a preferred embodiment of the present invention. A surface protective film 10 includes a base material layer 1 and a pressure-sensitive adhesive layer 2. The surface protective film of the present invention may further have any appropriate other layer as required (not shown).


The surface of the base material layer 1 on which the pressure-sensitive adhesive layer 2 is not provided can be subjected to a release treatment by adding, for example, a fatty acid amide, a polyethyleneimine, or a long-chain alkyl-based additive to the base material layer, or can be provided with a coat layer formed of any appropriate releasing agent such as a silicone-, long-chain alkyl-, or fluorine-based releasing agent for the purpose of, for example, forming a winding body that can be easily rewound.


A release liner having releasability may be attached to the surface protective film of the present invention.


The thickness of the surface protective film of the present invention can be set to any appropriate thickness depending on applications. The thickness is preferably 10 to 300 μm, more preferably 15 to 250 μm, still more preferably 20 to 200 μm, particularly preferably 25 to 150 μm from the viewpoint of sufficiently expressing the effect of the present invention.


In the surface protective film of the present invention, the pressure-sensitive adhesive layer has a peeling electrification voltage of 0.7 kV or less, preferably 0.5 kV or less, more preferably 0.3 kV or less. When the peeling electrification voltage of the pressure-sensitive adhesive layer falls within the range, the surface protective film of the present invention can express sufficiently high antistatic property even without the use of any antistatic agent, can express sufficiently high wettability even without the use of any plasticizer, and is excellent in reworkability (light peelability). It should be noted that the measurement of the peeling electrification voltage is described later.


In the surface protective film of the present invention, a first wetting rate with respect to an acrylic plate in the surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is 5.0 cm2/sec or more, preferably 10 cm2/sec or more, more preferably 15 cm2/sec or more, still more preferably 20 cm2/sec or more, particularly preferably 30 cm2/sec or more. Although an upper limit for the first wetting rate is not particularly limited, the first wetting rate is preferably 1,000 cm2/sec or less, more preferably 100 cm2/sec or less in actuality. As long as the first wetting rate with respect to the acrylic plate in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, falls within the range, the surface protective film of the present invention can express sufficiently high antistatic property even without the use of any antistatic agent and can express sufficiently high wettability even without the use of any plasticizer. It should be noted that the measurement of the first wetting rate is described later.


In the surface protective film of the present invention, a third wetting rate with respect to an acrylic plate in the surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is preferably 5.0 cm2/sec or more, more preferably 10 cm2/sec or more, still more preferably 15 cm2/sec or more, particularly preferably 20 cm2/sec or more, most preferably 30 cm2/sec or more. Although an upper limit for the third wetting rate is not particularly limited, the third wetting rate is preferably 1,000 cm2/sec or less, more preferably 100 cm2/sec or less in actuality. As long as the third wetting rate with respect to the acrylic plate in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, falls within the range, the surface protective film of the present invention can express sufficiently high antistatic property even without the use of any antistatic agent and can express sufficiently high wettability even without the use of any plasticizer. It should be noted that the measurement of the third wetting rate is described later.


In the surface protective film of the present invention, an adhesion A with respect to an acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is preferably 0.02 to 0.20 N/25 mm, more preferably 0.02 to 0.10 N/25 mm, still more preferably 0.02 to 0.05 N/25 mm. As long as the adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, falls within the range, the surface protective film of the present invention can express sufficiently high antistatic property even without the use of any antistatic agent and is excellent in reworkability (light peelability). It should be noted that the measurement of the adhesion A is described later.


In the surface protective film of the present invention, an adhesion B with respect to an acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is preferably 0.02 to 0.30 N/25 mm, more preferably 0.02 to 0.20 N/25 mm, still more preferably 0.02 to 0.15 N/25 mm. As long as the adhesion B with respect to the acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, falls within the range, the surface protective film of the present invention can express sufficiently high antistatic property even without the use of any antistatic agent and is excellent in reworkability (light peelability). It should be noted that the measurement of the adhesion B is described later.


In the surface protective film of the present invention, a difference between the adhesion B with respect to the acrylic plate at a tension rate of 10 m/min and the adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend (B-A: “adhesion with respect to acrylic plate at tension rate of 10 m/min“−” adhesion with respect to acrylic plate at tension rate of 0.3 m/min”) is preferably 0.1 N/25 mm or less, more preferably 0.09 N/25 mm or less, still more preferably 0.08 N/25 mm or less. When the difference between the adhesions falls within the range, the surface protective film of the present invention can additionally express sufficiently high antistatic property even without the use of any antistatic agent and is additionally excellent in reworkability (light peelability).


In the surface protective film of the present invention, the pressure-sensitive adhesive layer has a gel fraction of 80% or more, preferably 82% or more, more preferably 84% or more, still more preferably 86% or more, particularly preferably 88% or more. When the gel fraction of the pressure-sensitive adhesive layer falls within the range, the surface protective film of the present invention can additionally express sufficiently high antistatic property even without the use of any antistatic agent, can express sufficiently high wettability even without the use of any plasticizer, and is excellent in reworkability (light peelability). It should be noted that the measurement of the gel fraction is described later.


<A-1. Base Material Layer>


Any appropriate thickness can be adopted as the thickness of the base material layer depending on applications. The thickness of the base material layer is preferably 5 to 300 μm, more preferably 10 to 250 μm, still more preferably 15 to 200 μm, particularly preferably 20 to 150 μm.


The base material layer may be a single layer, or may be a laminate of two or more layers. The base material layer may be stretched.


Any appropriate material can be adopted as a material for the base material layer depending on applications. Examples of the material include a plastic, paper, a metal film, and a nonwoven fabric. Of those, a plastic is preferred. The materials may be used alone or in combination to construct the base material layer. For example, the layer may be constructed of two or more kinds of plastics.


Examples of the plastic include a polyester-based resin, a polyamide-based resin, and a polyolefin-based resin. Examples of the polyester-based resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyolefin-based resin include a homopolymer of an olefin monomer and a copolymer of olefin monomers. Specific examples of the polyolefin-based resin include: homopolypropylene; propylene-based copolymers such as block, random, and graft copolymers each including an ethylene component as a copolymer component; reactor TPO; ethylene-based polymers such as low density, high density, linear low density, and ultra low density polymers; and ethylene-based copolymers such as an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-butyl acrylate copolymer, an ethylene-methacrylic acid copolymer, and an ethylene-methyl methacrylate copolymer.


The base material layer may contain any appropriate additive as required. Examples of the additive that can be contained in the base material layer include an antioxidant, a UV absorbing agent, a light stabilizer, an antistatic agent, a filler, and a pigment. The kind, number, and amount of the additive that can be contained in the base material layer can be appropriately set depending on purposes. In particular, when the material for the base material layer is a plastic, it is preferred to contain some of the above-mentioned additives for the purpose of, for example, preventing deterioration. From the viewpoint of, for example, the improvement of weather resistance, particularly preferred examples of the additive include an antioxidant, a UV absorbing agent, a light stabilizer, and a filler.


Any appropriate antioxidant can be adopted as the antioxidant. Examples of such antioxidant include a phenol-based antioxidant, a phosphorus-based processing heat stabilizer, a lactone-based processing heat stabilizer, a sulfur-based heat stabilizer, and a phenol-phosphorus-based antioxidant. The content of the antioxidant is preferably 1 part by weight or less, more preferably 0.5 part by weight or less, still more preferably 0.01 to 0.2 part by weight with respect to 100 parts by weight of the base resin of the base material layer (when the base material layer is a blend, the blend is the base resin).


Any appropriate UV absorbing agent can be adopted as the UV absorbing agent. Examples of such UV absorbing agent include a benzotriazole-based UV absorbing agent, a triazine-based UV absorbing agent, and a benzophenone-based UV absorbing agent. The content of the UV absorbing agent is preferably 2 parts by weight or less, more preferably 1 part by weight or less, still more preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the base resin that forms the base material layer (when the base material layer is a blend, the blend is the base resin).


Any appropriate light stabilizer can be adopted as the light stabilizer. Examples of such light stabilizer include a hindered amine-based light stabilizer and a benzoate-based light stabilizer. The content of the light stabilizer is preferably 2 parts by weight or less, more preferably 1 part by weight or less, still more preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the base resin that forms the base material layer (when the base material layer is a blend, the blend is the base resin).


Any appropriate filler can be adopted as the filler. Examples of such filler include an inorganic filler. Specific examples of the inorganic filler include carbon black, titanium oxide, and zinc oxide. The content of the filler is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, still more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the base resin that forms the base material layer (when the base material layer is a blend, the blend is the base resin).


Further, a surfactant, an inorganic salt, a polyhydric alcohol, a metal compound, an inorganic antistatic agent such as carbon, and low molecular-weight and high molecular-weight antistatic agents each intended to impart antistatic property are also preferably given as examples of the additive. Of those, a high-molecular weight antistatic agent or carbon is particularly preferred from the viewpoints of contamination and the maintenance of pressure-sensitive adhesiveness.


<A-2. Pressure-Sensitive Adhesive Layer>


The thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 μm, more preferably 3 to 50 μm, still more preferably 5 to 30 μm.


The pressure-sensitive adhesive layer is constructed of a pressure-sensitive adhesive. The pressure-sensitive adhesives may be used alone or in combination.


The pressure-sensitive adhesive preferably contains a polymer P as a main component. The content of the polymer P in the pressure-sensitive adhesive is preferably 50 wt % or more, more preferably 80 wt % or more, still more preferably 90 wt % or more, particularly preferably 95 wt % or more.


The polymer P may be a cross-linked polymer.


Any appropriate pressure-sensitive adhesive can be adopted as the pressure-sensitive adhesive for constructing the pressure-sensitive adhesive layer. Examples of such pressure-sensitive adhesive include a silicone-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive. Of those, a silicone-based pressure-sensitive adhesive and a urethane-based pressure-sensitive adhesive are preferred as the pressure-sensitive adhesive because the effect of the present invention can be additionally expressed.


Any appropriate silicone-based pressure-sensitive adhesive can be adopted as the silicone-based pressure-sensitive adhesive. A product obtained by blending or agglomerating a silicone resin can be preferably adopted as such silicone-based pressure-sensitive adhesive.


Examples of the silicone-based pressure-sensitive adhesive include an addition reaction-curable silicone-based pressure-sensitive adhesive and a peroxide-curable silicone-based pressure-sensitive adhesive. Of those silicone-based pressure-sensitive adhesives, an addition reaction-curable silicone-based pressure-sensitive adhesive is preferred because a peroxide (such as benzoyl peroxide) is not used and no decomposition product is produced.


For example, when a polyalkylsilicone-based pressure-sensitive adhesive is obtained, a method involving curing a polyalkylhydrogensiloxane composition with a platinum catalyst is generally given as a curing reaction for the addition reaction-curable silicone-based pressure-sensitive adhesive.


Any appropriate urethane-based pressure-sensitive adhesive may be adopted as the urethane-based pressure-sensitive adhesive. As such urethane-based pressure-sensitive adhesive, there are preferably given one formed of a urethane resin obtained by a reaction of a polyol and a polyisocyanate compound. Examples of the polyol include a polyether polyol, a polyester polyol, a polycarbonate polyol, and a polycaprolactone polyol. Examples of the polyisocyanate compound include diphenylmethane diisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate.


Any appropriate additive can be contained in the pressure-sensitive adhesive for constructing the pressure-sensitive adhesive layer. Examples of such additive include a softener, a tackifier, a surface lubricating agent, a leveling agent, an antioxidant, a corrosion inhibitor, a light stabilizer, a UV absorbing agent, a heat stabilizer, a polymerization inhibitor, a silane coupling agent, a lubricant, an inorganic or organic filler, a metal powder, a pigment, and a solvent. However, in the present invention, the pressure-sensitive adhesive for constituting the pressure-sensitive adhesive layer is preferably free of any antistatic agent. This is because the use of the pressure-sensitive adhesive layer to which the antistatic agent has been added improves the antistatic property but may cause the contamination of the adherend by the antistatic agent. In addition, in the present invention, the pressure-sensitive adhesive for constituting the pressure-sensitive adhesive layer is preferably free of any plasticizer. This is because the use of the pressure-sensitive adhesive layer to which the plasticizer has been added improves the wettability but may cause the contamination of the adherend by the plasticizer.


The pressure-sensitive adhesive for constructing the pressure-sensitive adhesive layer can be produced by any appropriate method. The pressure-sensitive adhesive for constructing the pressure-sensitive adhesive layer can be produced, for example, as described below. While a polymerization method to be generally employed as an approach to synthesizing a polymer, such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, or polymerization with ultraviolet light (UV) is employed, any appropriate cross-linking method is adopted, and any appropriate additive is used as required.


The surface protective film of the present invention can be used in any appropriate application. The surface protective film of the present invention is preferably used for the surface of a display member or an image recognition member.


A display member covered with the surface protective film of the present invention can be subjected to manual attachment and manual peeling any number of times.


An image recognition member covered with the surface protective film of the present invention can be subjected to manual attachment and manual peeling any number of times.


B. Method of Producing Surface Protective Film

The surface protective film of the present invention can be produced by any appropriate method. The production can be performed in conformity with, as such production method, any appropriate method of producing a pressure-sensitive adhesive film, such as:


(1) a method involving applying a solution of the pressure-sensitive adhesive in a solvent or a hot-melt liquid thereof to the base material;


(2) a method involving transferring the pressure-sensitive adhesive layer applied and formed in a separator fashion in conformity with the foregoing;


(3) a method involving extruding a material for forming the pressure-sensitive adhesive layer onto the base material to form and apply the layer;


(4) a method involving extruding the base material and the pressure-sensitive adhesive layer in two layers or a plurality of layers;


(5) a method involving laminating a single layer of the pressure-sensitive adhesive layer onto the base material or a method involving laminating two layers of a laminate layer and the pressure-sensitive adhesive layer; or


(6) a method involving laminating two layers, or a plurality of layers, of the pressure-sensitive adhesive layer and a material for forming the base material such as a film or a laminate layer.


Examples of the application method include methods each involving the use of a bar coater, a gravure coater, a spin coater, a roll coater, a knife coater, or an applicator.


The method involving applying a solution of the pressure-sensitive adhesive in a solvent or a hot-melt liquid thereof to the base material is particularly preferred as the method of producing the surface protective film of the present invention in terms of productivity and a cost.


EXAMPLES

Hereinafter, the present invention is described specifically by way of examples. However, the present invention is by no means limited to these examples. It should be noted that test and evaluation methods in the examples and the like are as described below. In addition, the term “part(s)” means “part(s) by weight.”


(Measurement of Peeling Electrification Voltage)


The protective film was cut into a size of a width of 70 mm and a depth of 130 mm, and the separator was peeled off. After that, the resultant film was pressure-bonded to a surface of an acrylic plate (manufactured by MITSUBISHI RAYON CO., LTD., ACRYLITE L) having a thickness of 1 mm, a width of 70 mm, and a length of 100 mm that had been subjected to an antistatic treatment in advance with a hand roller in such a manner that one end portion thereof protruded by 30 mm. After having been left to stand under an environment of 23° C.×25% RH for 1 hour, the sample was set to a predetermined position. The one end portion protruding by 30 mm was fixed to an automatic winder, and then peeling was performed so that the peel angel was 150° and the peel rate was 10 m/min. The peeled protective film was mounted on a sample fixing stand, and the potential of the acrylic plate was measured with a potential meter (manufactured by KASUGA DENKI, Inc., KSD-0103) fixed on a predetermined position. The measurement was carried out under an environment of 23° C.×25% RH.


(Measurement of First Wetting Rate)


Test piece: 2.5 cm×8.0 cm


Adherend: An acrylic plate (manufactured by MITSUBISHI RAYON CO., LTD., trade name: ACRYLITE L)


Number of times of measurement:

    • 3 (The average of 3 independently measured values was adopted.)


Measurement environment:

    • A class-10,000 clean room (having a temperature of 23° C. and a humidity of 50% RH)


      (1) FIG. 2 illustrates a state before the attachment of the acrylic plate and the test piece in the measurement of a first wetting rate. As illustrated in FIG. 2, an angle of 20 to 30° was formed in a state where part of the pressure-sensitive adhesive layer surface of the test piece (surface protective film) was brought into contact with the acrylic plate.


      (2) Next, a hand was freed from the test piece so that the test piece was attached to the acrylic plate with its own weight alone. Simultaneously with the freeing of the hand, the manner in which the pressure-sensitive adhesive layer of the test piece was wet and spread over the acrylic plate was recorded with a digital camera at an interval of 0.2 second.


      (3) The time point at which the pressure-sensitive adhesive layer surface except the site brought into contact with the acrylic plate in the section (1) started to be brought into contact with the acrylic plate was defined as an initial point. The manner in which the pressure-sensitive adhesive layer was wet and spread was analyzed with an image analysis software “Image J” every 0.2 second from the initial point.


      (4) A wetting rate was calculated by using the following calculation equation.





Wetting rate (cm2/sec)=(wetted area 0.2 second after initial point (cm2)−wetted area at initial point (cm2))/0.2 (sec)


(Measurement of Third Wetting Rate)


The sample after the measurement of the first wetting rate was used. An end portion of the sample was lifted with fingers to form an angle of 20 to 30° in a state where part of the pressure-sensitive adhesive layer surface of the test piece (surface protective film) was brought into contact with the acrylic plate as illustrated in FIG. 2. Next, a hand was freed from the test piece so that the test piece was attached to the acrylic plate with its own weight alone. Simultaneously with the freeing of the hand, the manner in which the pressure-sensitive adhesive layer of the test piece was wet and spread over the acrylic plate was recorded with a digital camera at an interval of 0.2 second, and then a second wetting rate was measured in the same manner as in the first wetting rate. A third wetting rate was similarly measured by using the sample after the measurement of the second wetting rate.


(Evaluation for Wettability)


The same test piece as that in the method of measuring the first wetting rate was produced, the test piece was manually attached to the acrylic plate at a rate of 10 m/min, and the presence or absence of air bubbles between the test piece and the acrylic plate was confirmed.


o: No air bubbles are present.


Δ: Air bubbles are slightly involved but the air bubbles can be easily removed with fingers and the like, and no problems arise in practical use.


x: A large number of air bubbles are involved and the air bubbles cannot be easily removed.


(Measurement of Adhesion A with Respect to Acrylic Plate at Tension Rate of 0.3 m/min)


A surface protective film was cut into a piece measuring 25 mm wide by 150 mm long and the piece was defined as a sample for an evaluation.


The pressure-sensitive adhesive layer surface of the sample for an evaluation was attached to an acrylic plate (manufactured by MITSUBISHI RAYON CO., LTD., trade name: ACRYLITE L) under an atmosphere having a temperature of 23° C. and a humidity of 50% RH by reciprocating a 2-kg roller once. After having been guarded at 23° C. for 30 minutes, the sample was measured for its adhesion A with a universal tensile tester (manufactured by Minebea Co., Ltd., product name: TCM-1 kNB) at a peel angle of 180° and a tension rate of 0.3 m/min.


(Measurement of Adhesion B with Respect to Acrylic Plate at Tension Rate of 10 m/min)


A surface protective film was cut into a piece measuring 25 mm wide by 150 mm long and the piece was defined as a sample for an evaluation.


The pressure-sensitive adhesive layer surface of the sample for an evaluation was attached to an acrylic plate (manufactured by MITSUBISHI RAYON CO., LTD., trade name: ACRYLITE L) under an atmosphere having a temperature of 23° C. and a humidity of 50% RH by reciprocating a 2-kg roller once. After having been guarded at 23° C. for 30 minutes, the sample was measured for its adhesion B with a universal tensile tester (manufactured by Minebea Co., Ltd., product name: TCM-1 kNB) at a peel angle of 180° and a tension rate of 10 m/min.


(Evaluation for Reworkability)


An evaluation for reworkability was performed on the basis of the following criteria.


o: The third wetting rate is 5.0 cm2/sec or more, and the deformation of the film and the deformation of the pressure-sensitive adhesive layer surface are absent.


x: The third wetting rate is less than 5.0 cm2/sec, the result of the evaluation for wettability is x, and the deformation of the film and the deformation of the pressure-sensitive adhesive layer surface are present.


(Measurement of Gel Fraction)


A sample having a dry weight W1 (g) was collected from the pressure-sensitive adhesive layer. The sample was immersed in toluene. The insoluble content of the sample was taken out from the toluene and measured for its weight W2 (g) after drying. Then, the gel fraction was determined from the calculation expression (W2/W1)×100.


Example 1

100 Parts by weight of an “X-40-3295” (solid content: 30%, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silicone-based pressure-sensitive adhesive, 0.3 part by weight of a “CAT-PL-50T” (manufactured by Shin-Etsu Chemical Co., Ltd.) as a platinum catalyst, and 150 parts by weight of toluene as a solvent were compounded, and then the mixture was stirred with a disper to produce a silicone-based pressure-sensitive adhesive composition.


The resultant silicone-based pressure-sensitive adhesive composition was applied to a base material “Lumirror S10” (thickness: 38 μm, manufactured by Toray Industries, Inc.) formed of a polyester resin with a fountain roll so that its thickness after drying became 21 μm, followed by curing and drying under the conditions of a drying temperature of 150° C. and a drying time of 1 minute.


Next, the silicone-treated surface of a base material formed of a polyester resin having a thickness of 25 μm one surface of which had been subjected to a fluorosilicone treatment was attached to the surface of the pressure-sensitive adhesive layer to produce a surface protective film (1).


Table 1 shows the results.


Example 2

100 Parts by weight of an “X-40-3229” (solid content: 60%, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silicone-based pressure-sensitive adhesive, 0.5 part by weight of a “CAT-PL-50T” (manufactured by Shin-Etsu Chemical Co., Ltd.) as a platinum catalyst, and 300 parts by weight of toluene as a solvent were compounded, and then the mixture was stirred with a disper to produce a silicone-based pressure-sensitive adhesive composition.


The resultant silicone-based pressure-sensitive adhesive composition was applied to a base material “Lumirror S10” (thickness: 38 μm, manufactured by Toray Industries, Inc.) formed of a polyester resin with a fountain roll so that its thickness after drying became 21 μm, followed by curing and drying under the conditions of a drying temperature of 150° C. and a drying time of 1 minute.


Next, the silicone-treated surface of a base material formed of a polyester resin having a thickness of 25 μm one surface of which had been subjected to a fluorosilicone treatment was attached to the surface of the pressure-sensitive adhesive layer to produce a surface protective film (2).


Table 1 shows the results.


Comparative Example 1

60 Parts by weight of an “X-40-3229” (solid content: 60%, manufactured by Shin-Etsu Chemical Co., Ltd.) and 40 parts by weight of a “KR-3700” (solid content: 60%, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silicone-based pressure-sensitive adhesive, 0.5 part by weight of a “CAT-PL-50T” (manufactured by Shin-Etsu Chemical Co., Ltd.) as a platinum catalyst, and 300 parts by weight of toluene as a solvent were compounded, and then the mixture was stirred with a disper to produce a silicone-based pressure-sensitive adhesive composition.


The resultant silicone-based pressure-sensitive adhesive composition was applied to a base material “Lumirror S10” (thickness: 38 μm, manufactured by Toray Industries, Inc.) formed of a polyester resin with a fountain roll so that its thickness after drying became 21 μm, followed by curing and drying under the conditions of a drying temperature of 150° C. and a drying time of 1 minute.


Next, the silicone-treated surface of a base material formed of a polyester resin having a thickness of 25 μm one surface of which had been subjected to a fluorosilicone treatment was attached to the surface of the pressure-sensitive adhesive layer to produce a surface protective film (C1).


Table 1 shows the results.


Comparative Example 2

A mixture of 200 g of 2-ethylhexyl acrylate, 8 g of 2-hydroxyethyl acrylate, 0.4 g of 2,2′-azobisisobutyronitrile, and 312 g of ethyl acetate was subjected to a reaction in a stream of nitrogen at 65° C. for 6 hours to provide a solution (40 wt %) of an acrylic polymer A having a Tg of −68° C. and a weight-average molecular weight of 500,000. The resultant solution (40 wt %) of the acrylic polymer A was diluted to 20 wt % with ethyl acetate, and then 0.8 g of an isocyanurate body of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate HX) and 0.4 g of dibutyltin dilaurate (1-wt % ethyl acetate solution) as a cross-linking catalyst were added to 100 g of the solution to prepare an acrylic pressure-sensitive adhesive solution.


The resultant acrylic pressure-sensitive adhesive solution was applied to a base material “Lumirror S10” (thickness: 38 μm, manufactured by Toray Industries, Inc.) formed of a polyester resin with a fountain roll so that its thickness after drying became 21 μm, followed by curing and drying under the conditions of a drying temperature of 110° C. and a drying time of 3 minutes.


Next, the silicone-treated surface of a base material formed of a polyester resin having a thickness of 25 μm one surface of which had been subjected to a fluorosilicone treatment was attached to the surface of the pressure-sensitive adhesive layer to produce a surface protective film (C2).


Table 1 shows the results.













TABLE 1








Comparative
Comparative



Example 1
Example 2
Example 1
Example 2



















Peeling
0.23
0.30
1.2
0.77


electrification






voltage [kV]






First wetting
30.4
37.0
4.9
0.6


rate [cm2/sec]






Third wetting
32.6
42.0
3.8
0.5


rate [cm2/sec]






Adhesion A [N/25
0.03
0.04
0.28
0.23


mm]






Adhesion B [N/25
0.08
0.11
1.50
1.32


mm]






Wettability


x
x


Reworkability


x
x


Gel fraction [%]
95.6
88.7
57.4
96.1









INDUSTRIAL APPLICABILITY

The surface protective film of the present invention is suitably used in, for example, an application where a surface of a display member or an image recognition member is protected by attaching the film to the surface.


REFERENCE SIGNS LIST




  • 1 base material layer


  • 2 pressure-sensitive adhesive layer


  • 10 surface protective film


Claims
  • 1. A surface protective film, comprising: a base material layer; anda pressure-sensitive adhesive layer,wherein:the pressure-sensitive adhesive layer has a peeling electrification voltage of 0.7 kV or less; anda first wetting rate with respect to an acrylic plate in a surface of the pressure-sensitive adhesive layer, which is brought into contact with an adherend, is 5.0 cm2/sec or more.
  • 2. A surface protective film according to claim 1, wherein an adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.02 to 0.20 N/25 mm.
  • 3. A surface protective film according to claim 1, wherein an adhesion B with respect to the acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.02 to 0.30 N/25 mm.
  • 4. A surface protective film according to claim 1, wherein a difference B-A between the adhesion B with respect to the acrylic plate at a tension rate of 10 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, and the adhesion A with respect to the acrylic plate at a tension rate of 0.3 m/min in the surface of the pressure-sensitive adhesive layer, which is brought into contact with the adherend, is 0.1 N/25 mm or less.
  • 5. A surface protective film according to claim 1, wherein the pressure-sensitive adhesive layer has a gel fraction of 80% or more.
  • 6. A surface protective film according to claim 1, wherein the surface protective film is used for a surface of a display member or an image recognition member.
  • 7. A display member, which is covered with the surface protective film according to claim 1.
  • 8. An image recognition member, which is covered with the surface protective film according to claim 1.
Priority Claims (1)
Number Date Country Kind
2011-095697 Apr 2011 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2012/059532 4/6/2012 WO 00 10/8/2013