Surface speaker

Information

  • Patent Grant
  • 11228840
  • Patent Number
    11,228,840
  • Date Filed
    Friday, July 20, 2018
    6 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
Embodiments described herein provide an audio device and a method of operating the audio device. The audio device comprises at least one surface, a first surface transducer positioned to excite first modes of oscillation in a first surface of the at least one surface, and a second surface transducer positioned to excite second modes of oscillation in a second surface of the at least one surface, wherein the first modes of oscillation are of a higher frequency than the second modes of oscillation.
Description
TECHNICAL FIELD

Embodiments disclosed herein relate to an audio device comprising a surface speaker. In particular, embodiments disclosed herein relate to the positioning of surface transducers on a surface in order to optimise a frequency response of the surface.


BACKGROUND

One method of generating an audio output from an electronic device such as a phone, tablet computer, television, laptop or desktop computer, or any other suitable device having an audio output, is to use a screen or surface of the device as the loudspeaker. The screen of the device may vibrate in a similar way as a diaphragm of a loud speaker. These vibrations displace the surrounding air creating soundwaves.


To vibrate the screen of an audio device, one or more surface transducers, for example piezo devices, moving magnetic voice coils, or other transducers capable of translating an input audio signal into movement to vibrate the screen, may be placed on the screen to vibrate the screen in order to translate an input audio signal into an acoustic output.



FIG. 1 illustrates an example of an audio device 100. In this example, the audio device 100 comprises a smartphone having a Liquid Crystal Display (LCD) screen 101. The LCD screen 101 is used as a loudspeaker. Two surface transducers 102 and 103 are placed on the LCD screen 101. In this example, the two surface transducers are placed at opposite ends of the LCD screen in order to provide a stereo output. The input signals received by the two surface transducers 102 and 103 may therefore be stereo input signals.


SUMMARY

According to embodiments described herein, there is provided an audio device. The audio device comprises at least one surface, a first surface transducer positioned to excite first modes of oscillation in a first surface of the at least one surface, and a second surface transducer positioned to excite second modes of oscillation in a second surface of the at least one surface, wherein the first modes of oscillation are of a higher frequency than the second modes of oscillation.


According to some embodiments, there is provided an audio device. The audio device comprises a first surface, a second surface, a first surface transducer configured to excite high frequency oscillations in the first surface, and a second surface transducer configured to excite low frequency oscillations in the second surface.


According to some embodiments, there is provided an audio device. The audio device comprises at least one surface, a first surface transducer positioned in a first location on a first surface of the at least one surface which has a first stiffness relating to displacement of the first location on the first surface from an equilibrium position, and a second surface transducer positioned in a second location on a second surface of the at least one surface which has a second stiffness relating to displacement of the second location of the second surface from an equilibrium position.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the embodiments of the present disclosure, and to show how it may be put into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:



FIG. 1 is an example of an audio device in accordance with the prior art;



FIGS. 2a to 2e are example plots illustrating the displacement of a rectangular surface when oscillating in different normal modes of oscillation;



FIG. 3a is a graph of an example of the frequency response of a surface when a surface transducer is placed at the center of the surface;



FIG. 3b is a graph of an example of the frequency response of a surface when a surface transducer is placed near the edge of the surface;



FIG. 4a illustrates a side view of an audio device in accordance with embodiments of the present disclosure;



FIG. 4b is a top down view of an audio device in accordance with embodiments of the present disclosure;



FIG. 5 is a side view of an audio device in accordance with embodiments of the present disclosure;



FIG. 6 illustrates a processing module in accordance with embodiments of the present disclosure.





DESCRIPTION

The description below sets forth example embodiments according to this disclosure. Further example embodiments and implementations will be apparent to those having ordinary skill in the art. Further, those having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiments discussed below, and all such equivalents should be deemed as being encompassed by the present disclosure.


One of the challenges of driving a screen or surface as a loudspeaker is obtaining an adequate low frequency bass response. The use of the screen of a device as the speaker diaphragm is an improvement over, for example, micro-speaker diaphragms in this regard, as the larger size of the screen allows for the reproduction of lower frequencies. However, there is still a need to optimize the low frequency response, particularly as the frequency response of the human ear is non-linear, and therefore lower frequencies are often reproduced at higher decibels than higher frequencies, in order for them to be perceived in a similar way by the human ear.


If a surface, such as a smartphone screen, is attached to a fixed support structure at the edges of the surface, in a similar way to a smartphone screen being attached at the edges to the body of the smartphone, then striking the surface at some specific location may cause the surface to vibrate in a particular transient way. This property characteristic is similar to a drum which, when struck with a drumstick, vibrates to produce an acoustic sound. If the location at which the surface of the drum is struck is changed, then the sound itself may change. In other words, the frequency response of the drum changes depending on where on the surface the drum is struck.


The impulse response of a surface is therefore dependent on the location of the impulse force. If a transducer is placed at a particular location on a surface and an input audio signal applied to the transducer (i.e. the transducer causes vibrations of a particular frequencies), the acoustic output signal may be described as the input audio signal filtered in the time domain by the impulse response of the surface at that particular location. This filtering applied by the impulse response of the surface will therefore be reflected in the acoustic output from the vibrating surface.


The frequency response of the surface at a particular location is the Fourier transform (FT) of the impulse response at that location. A different location on the surface may have a different impulse response and, as a result, a different frequency response.


The impulse response of a surface comprises a sum of a number of decaying sinusoidal tones of different frequencies, amplitudes, phases, and decay rates. The frequencies of the sinusoidal tones are the natural resonant frequencies (or eigenfrequencies) of the surface. The eigenfrequencies of the surface are the frequencies that will naturally occur when the surface is struck impulsively and allowed to resonate.


Associated with each natural frequency is a mode of oscillation (eigenmode). This mode of oscillation is the oscillatory pattern that is formed on the surface for each natural frequency tone. FIGS. 2a to 2e illustrate the normal modes of oscillation of an example rectangular surface which is fixed at the edges. In particular, FIG. 2a illustrates the fundamental mode of oscillation, FIG. 2b illustrates a second mode of oscillation, FIG. 2c illustrates a third mode of oscillation, FIG. 2d illustrates a fourth mode of oscillation, and FIG. 2e illustrates a fifth mode of oscillation.


The amplitudes and phases of the sinusoidal tones associated with the normal modes of oscillation at these natural frequencies may depend on where the surface is struck. This spatial dependence of the amplitude and phase of the normal mode oscillations may be due to the shapes of the normal modes of oscillation on the surface. Since, in this example, the surface is fixed at the edges, boundary constraints apply where the displacement, velocity, and acceleration at the edges are always zero. All oscillations of the surface are therefore subject to these boundary constraints. It will, however, be appreciated that in some examples, different boundary constraints may apply. Any normal mode comprises a sinusoidal displacement pattern over the surface, for example as illustrated in FIGS. 2a through 2e. These sinusoidal displacement patterns are sinusoidal in two dimensions. In this example, there is always an integer number of half sinusoidal cycles in the x and y directions for any mode because of the previously mentioned boundary constraints.


The location(s) at which a peak displacement of a normal mode occurs is referred to as an anti-node of the normal mode, and the location(s) at which the displacement is zero is referred to as a node of the normal mode.


The first normal mode, or fundamental mode, is shown in FIG. 2a. This fundamental mode is the normal mode of the surface that oscillates with the lowest frequency. As illustrated, in this example, the fundamental mode of the surface has a single anti-node in the middle of the surface.


An anti-node of a mode of oscillation occurs at a point of maximum displacement for that particular mode. An anti-node is therefore a point at which the surface may therefore bend the most for the mode of oscillation. Therefore, a force applied to the middle of the surface will cause a large amplitude or displacement of the fundamental mode of oscillation because the force is acting on the anti-node of the fundamental mode. In contrast, a force applied near the edge of the surface results in a low amplitude or displacement of the fundamental mode because the energy is not easily translated into the displacement of the anti-node of the fundamental mode. An impulse force applied near the edge of a surface may, however, be close to the anti-nodes of higher frequency modes and so may be effective at exciting those modes.


When the surface is struck, the impulse force may excite many different modes of oscillation of the surface simultaneously, but the amplitudes of the excited modes may vary. In particular, the amplitude for a given mode of oscillation may depend on the distance of the location of the impulse force from the nearest anti-node of that mode of oscillation.


Furthermore, each normal mode of oscillation is associated with a natural frequency of that mode (or eigenfrequency). This natural frequency is the sinusoidal frequency that is generated when the normal mode is excited. For example, as illustrated in FIG. 2a, the fundamental mode oscillates at a frequency F1, where in this example F1 is 546.02 Hz. This frequency is the lowest resonant frequency of the surface. The second mode illustrated in FIG. 2b oscillates at a frequency F2, where in this example F2 is 690.93 Hz. F2 is a higher frequency than F1. The third mode illustrated in FIG. 2c oscillates at a frequency F3, where in this example F3 is 1279.2 Hz. F3 is a higher frequency than F2. The fourth mode illustrated in FIG. 2d oscillates at a frequency F4, where in this example F4 is 1841.2 Hz. F4 is a higher frequency than F3. The fifth mode of oscillation illustrated in FIG. 2e oscillates at a frequency F5, where in this example F5 is 2655.7 Hz. F5 is a higher frequency than F4. It will be appreciated that there are many modes of oscillation that are not illustrated, and that the frequencies of the modes of oscillation increase. As can be seen, the fundamental mode is associated with the lowest frequency of oscillation, and therefore produces the lowest frequency acoustic output. As the mode of oscillation becomes higher, the frequency produced becomes higher.


An impulse force applied to the middle of the surface illustrated in FIGS. 2a to 2e would be near the anti-node for the fundamental mode, and may therefore produce high amplitude oscillations of the fundamental mode. These large amplitude oscillations of the fundamental mode may therefore translate into a high amplitude acoustic response at the frequency associated with the fundamental mode.


However, an impulse force applied to the middle of the surface will be at a node between two anti-nodes for the second normal mode of oscillation, illustrated in FIG. 2b. If an impulse force is applied to a node of a mode of oscillation, then that mode of oscillation is not excited as a result of the impulse force. Such an impulse force would therefore produce little or no oscillation of the second mode, and therefore no acoustic output at the frequency associated with the second normal mode. Therefore, the impulse response associated with an impulse force at the middle of the surface may have a large amplitude component at the first eigenfrequency F1 and a small or zero amplitude component at the second eigenfrequency F2.


Similarly, an impulse force applied to the surface near one of the anti-nodes of the second mode of oscillation illustrated in FIG. 2b may result in a large amplitude component at the second eigenfrequency F2 and a smaller, but non-zero amplitude component at the first eigenfrequency F1.


The result may therefore be a varying frequency response, i.e. varying amplitudes of each of the components of decaying eigenfrequencies, depending on the location of the impulse force.


The lower modes of oscillation have lower eigenfrequencies, and the higher modes have higher eigenfrequencies. Therefore, the impulse response for an impulse force located at the center of the surface, or at the anti-node of the fundamental mode, may result in higher amplitudes of the lower frequency modes, i.e. modes 1, 3, 5 illustrated in FIGS. 2a, 2c and 2d, than an impulse force located at the edge of the surface.


The higher amplitudes of the lower frequency modes, may therefore result in louder lower frequency components in the frequency response when an audio signal is produced using a surface transducer located at the anti-node of the fundamental mode, than the lower frequency components in the frequency response when an audio signal is produced using a transducer located near the edge of the surface which can only effectively excite the higher modes of oscillation with large amplitudes.


As a result, a surface transducer placed at the center of the surface may have a more lowpass acoustic frequency response than a surface transducer placed near the edge of the surface which may have a more highpass acoustic frequency response. Such responses are demonstrated in FIGS. 3a and 3b. FIG. 3a illustrates the frequency response of a surface when the transducer is placed at the center of the surface, e.g. at the anti-node of the fundamental mode of oscillation. FIG. 3b illustrates the frequency response of the surface when the transducer is placed near the edge of the surface.


The sound pressure level of a sound generated by a vibrating object is proportional to the acceleration of the object. Acceleration is the second derivative of the displacement of the object with respect to time. The second derivative of a sinusoid with respect to the phase angle has the same amplitude as the original signal. However, the second derivative with respect to time has an amplitude that goes up as the square of frequency. In other words, in order to maintain a constant sound pressure level across different frequencies, and hence a constant acceleration across different frequencies, for a vibrating object driven by a sinusoidal input signal, the amplitude of the input sinusoid will go down as the square of frequency. Since amplitude of the input sinusoid is proportional to the displacement of the object, the displacement will also go down as the square of frequency to maintain a constant acceleration and therefore a constant sound pressure level.


This principle may also be applied to a vibrating surface. For a constant sound pressure level across different frequencies, the acceleration of the sum of all modes of oscillation at any point on the surface must be constant across frequency. This relationship implies that the displacement at any point on the surface will go down as the square of frequency. So, for constant sound pressure level, the displacement of the surface will be much smaller at high frequencies than at low frequencies.


Stiffness may be considered as being a property inversely proportional to the amount of displacement that occurs in response to an applied force. For example, the more displacement that occurs for a given force, the less stiff is the surface. Force equals mass times acceleration, so for constant acceleration and mass, i.e. constant force, the displacement will go down as the square of frequency, and so the stiffness will go up as the square of frequency. Therefore, a location on the surface, such as the middle of the surface, that has a more lowpass frequency response and higher displacements, i.e. excites lower frequency oscillatory modes, may be considered less stiff than a location on the surface, such as the edge of the surface, which has lower displacements and primarily excites higher frequency oscillatory modes. (See, Philip M. Morse, K. Uno Ingard, Theoretical Acoustics, Princeton University Press, Princeton N.J., Copyright 1968 McGraw-Hill, ISBN-691-08425-4).


As is illustrated in FIGS. 3a and 3b, where the surface transducer is placed at the center of the surface, i.e. FIG. 3a, the amplitude (e.g. decibels) of oscillations at lower frequencies are larger, for example, see the peak 300 as opposed to the peak 301 in FIG. 3b. However, the amplitude of higher frequencies is larger in FIG. 3b, where the surface transducer is placed at the edge of the surface, see peak 302 as opposed to peak 303.



FIGS. 4a and 4b therefore illustrate an audio device according to one embodiment of the present disclosure. FIG. 4a is a side view of the audio device 400. FIG. 4b is a top down view of the audio device 400. The audio device 400 comprises at least one surface. In this example, there are two surfaces: a first surface 401 and a second surface 402. However, it will be appreciated that the audio device may comprise only one surface. In this example, the first and second surfaces 401 and 402 are both rectangular and have edge boundary conditions. However, it will be appreciated that in some examples, different boundary constraints may apply and different shaped surfaces may be used.


The audio device 400 further comprises a first surface transducer 403. The first surface transducer 403 may be positioned to excite first modes of oscillation in a first surface of the at least one surface.


In other words, the first surface transducer 403 may be positioned in a first location on the first surface 401 which has a first stiffness relating to displacement of the first location on first surface 401 from an equilibrium position. In this example, the first surface transducer 403 is positioned on or coupled to the first surface 401.


The audio device 400 further comprises a second surface transducer 404. The second surface transducer 404 may be positioned to excite second modes of oscillation in a second surface of the at least one surface. The second surface of the at least one surface may comprise the first surface 401 or the second surface 402. In other words, the second surface transducer 404 may be positioned on or coupled to the same surface as the first surface transducer, or a different surface, as illustrated in FIG. 4a.


For example, the second surface transducer 404 may be positioned in a second location on the first surface 401 or the second surface 402 which has a second stiffness relating to displacement of second location of the first surface 401 or the second surface 402 from an equilibrium position.


It will be appreciated that the first and second surface transducers 403 and 404 may comprise piezo devices, moving magnetic voice coils, or any other transducers capable of translating an input audio signal into movement to vibrate the first or second surfaces. Furthermore, it will be appreciated that the first and second surface transducers 403 and 404 may comprise different types of surface transducers. For example, the first surface transducer 403 may comprise a piezo device whereas the second surface transducer 404 may comprise a moving magnetic voice coil.


For example, in some embodiments, both the first surface transducer 403 and the second surface transducer 404 are positioned to excite modes of oscillation in the first surface 401, where the first surface 401 may be, for example, a screen or front surface of an audio device. However, in some examples, the first surface transducer 403 and the second surface transducer 404 are positioned to excite modes of oscillation in different surfaces, for example the first surface transducer 403 may be positioned to excite modes of oscillation in the screen or front surface 401 of the audio device, and the second surface transducer 404 may be positioned to excite modes of oscillation in a back surface 402 of the audio device 400.


In some examples, both the first and second surface transducers 403 and 404 may be coupled to excite modes of oscillation in both the first surface 401 and the second surface 402. In this example, the first and second surfaces may be designed such that they have differing frequency responses. In other words, one surface may be designed to better produce higher frequencies and the other surface may be designed to better produce lower frequencies.


The first modes of oscillation are of a higher frequency than the second modes of oscillation. In other words, as previously described, the first surface transducer 403 may be positioned near to a fixed boundary of the first surface 401, whereas the second surface transducer 404 may be positioned a maximum distance from the fixed boundary of the first surface 401 or second surface 402.


In some examples, the second surface transducer 404 is located at an anti-node of a fundamental mode of oscillation of the first surface or the second surface. In other words, the second surface transducer 404 is positioned to best excite the lowest frequency mode of oscillation. In some examples, the anti-node of the fundamental mode of oscillation may not be in the exact center of the first surface 401 or the second surface 402. For example, the first surface 401 or second surface 402 may not be entirely linear or planar, and/or the thickness or stiffness of the surface's material may vary. This varying profile of the first surface 401 or second surface 402 may have an effect on the distribution of the normal modes of oscillation, and may therefore shift the locations of the anti-nodes and nodes of the modes of oscillation.


In some examples, the first surface transducer 403 may be positioned at an anti-node of a high order mode of oscillation of the first surface 401. In other words, the first surface transducer 403 may be positioned at an anti-node of a mode of oscillation with a higher frequency than the frequency of the fundamental mode of oscillation.


In some examples, the audio device 400 further comprises a third surface transducer 405. The third surface transducer 405 may also be positioned to excite the first modes of oscillation in the first surface. In some examples, the first surface transducer 403 and third surface transducer 405 are positioned at opposite ends of the first surface 401. This positioning allows the first surface transducer 403 and second surface transducer 404 to produce a stereo output acoustic signal from the first surface 401.


In embodiments as previously described, the first and second surface transducers 403 and 404 are placed on different surfaces of the audio device 400. In these examples, the materials of the different surfaces may be optimized for the different desired frequency responses. For example, the second surface 402 of the audio device 400, on which the second surface transducer 404 is coupled to excite lower frequency vibrations, may be made of a more flexible material than the first surface 401. This more flexible material may therefore allow for higher amplitude oscillations of the fundamental mode of oscillation, thereby allowing for louder reproductions of lower frequencies.



FIG. 5 illustrates an example of an audio device according to some embodiments of the present disclosure. The audio device 500 comprises a first surface 501 and a second surface 502. In this example, the audio device 500 comprises first surface transducer 503 configured to excite high frequency oscillations in the first surface 501 and a second surface transducer 504 configured to excite low frequency oscillations in the second surface 502. The first and second surface transducers may be located at any position on the first and second surfaces respectively. However, as described previously, it will be appreciated that the first surface transducer 503 may be located in a position to excite high frequency modes of oscillation in the first surface 501. The second surface transducer 504 may also be positioned to excite low frequency modes of oscillation in the second surface 502.


In this example, the first surface 501 and second surface 502 may be designed such that their frequency responses are appropriate for the frequencies that the first surface transducer 503 and second surface transducer 504 are configured to excite in each surface. In other words, the first surface 501 may be designed such that the frequency response of the first surface 501 is high in a higher frequency region whereas the second surface 502 may be designed such that its frequency response is high in a lower frequency region. These responses may be achieved by using different materials or thicknesses of the first and second surfaces.


It will be appreciated that other numbers of surface transducers may be used in the embodiments illustrated in FIGS. 4 and 5. For example, FIG. 4 illustrates a system having two high frequency surface transducers and one low frequency surface transducer. In the traditional nomenclature of multichannel audio systems, such a system may be referred to as a 2.1 audio system with 2 higher frequency channels forming a stereo pair, and 1 mono bass channel, in a manner similar to the 5.1 and 7.1 audio systems used in home theatre systems with 5 or 7 higher frequency channels and 1 low frequency subwoofer channel. In general, any suitable number of surface transducers allocated to different frequency ranges may be utilized. For example, there may be one surface transducer positioned at the anti-node of the fundamental configured to excite low frequency modes of oscillation, two more surface transducers configured to excite medium frequency modes of oscillation, and two further surface transducers configured to excite high frequency modes of oscillation to form a 4.1 system. All of these surface transducers may then be positioned on the relevant surface in a location suitable to generate the appropriate frequency response.


In some examples, the audio device 400 of FIG. 4 or audio device 500 of FIG. 5 may comprise audio processing circuitry configured to receive an input audio signal and process the input audio signal to input higher frequencies of the input audio signal into the first surface transducer and lower frequencies of the input audio signal into the second surface transducer. For example, the audio processing circuitry may comprise a processing module 600 as illustrated in FIG. 6.



FIG. 6 illustrates a processing module 600 for processing an audio input signal AIN for input into surface transducers of an audio device, such as audio device 400 or 500.


The processing module comprises a first filter block 601 for receiving the audio input signal AIN and outputting a signal AL comprising lower frequencies of the audio input signal AIN. The processing module further comprises a second filter block 602 for receiving the audio input signal and outputting a signal AH comprising higher frequencies of the audio input signal AIN. For example, the signal AL may comprise frequencies between 50 Hz and 500 Hz. The signal AH may comprise frequencies between 500 Hz and 20 kHz.


The signal AH may be input into the first surface transducer 403/503 for outputting the higher frequencies of the input audio signal. The signal AL may be input into the second surface transducer 404/504 for outputting the lower frequencies of the input audio signal AIN. In some examples, the signal AH may be also input into the third surface transducer 405. In some examples, the higher frequencies of the input audio signal may be input in stereo to the first surface transducer 403 and the third surface transducer 405.


In some examples, the signal AH may be amplified by a first amplification block 603 before inputting into the first surface transducer 403/503. In some examples, the first amplification block may comprise amplification circuitry which is optimized for amplification of higher frequencies. For example, the first amplification block 603 may comprise a low voltage but high current class D amplifier.


In some examples, the signal AL may be amplified by a second amplification block 604 before inputting into the second surface transducer 404/504. In some examples, the second amplification block may comprise amplification circuitry which is optimized for amplification of lower frequencies. For example, the second amplification block 604 may comprise a high voltage class AB amplifier or class H linear amplifier.


This amplification may be particularly useful where the first surface transducer 403/503 and/or second surface transducer 404/504 comprises a piezo actuator. Piezo actuators present a highly capacitive load to an amplifier. For low frequencies, an amplifier may be required to drive the piezo actuator at a high voltage but with little current. Conversely, for high frequencies, an amplifier may be required to drive the piezo actuator at low voltages but with a high current. Therefore, by splitting the signal into higher frequencies and lower frequencies, the respective amplification blocks 603 and 604 may be optimized for driving the different piezo actuators according to the frequency bands of the respective signals that they are inputting into the piezo actuators.


Furthermore, the first surface transducer may itself be optimized for the reproduction of higher frequencies, and the second surface transducer may itself be optimized for the reproduction of lower frequencies. The second surface transducer may be a piezo transducer while the first surface transducer may be a voice-coil transducer. Piezo transducers may be considered very efficient at lower frequencies, but their capacitive nature means that high currents are needed to maintain their drive at higher frequencies. These high currents may lead to increased losses in support components (amplifiers, wiring for example). At higher frequencies, less excursion of the surface is required to maintain the same sound levels; therefore a more conventional moving coil or moving magnet transducers (which may have a higher impedance at higher frequencies) may be used, again minimizing losses in supporting components.


There is also provided a method of operating an audio device comprising at least one surface. The method comprises exciting first modes of oscillation in a first surface of the at least one surface, and exciting second modes of oscillation in a second surface of the at least one surface, wherein the first modes of oscillation are of a higher frequency than the second modes of oscillation.


There is therefore provided an audio device and a method of operating the audio device, wherein the audio device comprises at least one surface and two surface transducers configured to excite high frequency oscillations and low frequency oscillations in the at least one surface of the audio device.


It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. The word “comprising” does not exclude the presence of elements or steps other than those listed in the claim, “a” or “an” does not exclude a plurality, and a single feature or other unit may fulfil the functions of several units recited in the claims. Any reference numerals or labels in the claims shall not be construed so as to limit their scope. Terms such as amplify or gain include possible applying a scaling factor or less than unity to a signal.


It should be understood that the various operations described herein, particularly in connection with the figures, may be implemented by other circuitry or other hardware components. The order in which each operation of a given method is performed may be changed, and various elements of the systems illustrated herein may be added, reordered, combined, omitted, modified, etc. It is intended that this disclosure embrace all such modifications and changes and, accordingly, the above description should be regarded in an illustrative rather than a restrictive sense.


Similarly, although this disclosure makes reference to specific embodiments, certain modifications and changes can be made to those embodiments without departing from the scope and coverage of this disclosure. Moreover, any benefits, advantages, or solutions to problems are not intended to be construed as critical, required, or essential feature or element.


Further embodiments likewise, with the benefit of this disclosure, will be apparent to those having ordinary skill in the art, and such embodiments should be deemed as being encompassed herein.

Claims
  • 1. An audio device comprising: at least one surface,a first surface transducer positioned to excite first modes of oscillation in a first surface of the at least one surface, anda second surface transducer positioned to excite second modes of oscillation in the first surface of the at least one surface, wherein the first modes of oscillation are of a higher order than the second modes of oscillation;wherein the second surface transducer is located at an anti-node of a fundamental mode of oscillation of the first surface.
  • 2. The audio device as claimed in claim 1, wherein the second surface transducer is positioned a maximum distance from a fixed boundary of the first surface.
  • 3. The audio device as claimed in claim 1, wherein the first surface transducer is positioned close to a fixed boundary of the first surface.
  • 4. The audio device as claimed in claim 3, wherein the first surface transducer is positioned at an anti-node of a high order mode of oscillation of the first surface.
  • 5. The audio device as claimed in claim 1, further comprising audio processing circuitry configured to: receive an input audio signal; andprocess the input audio signal to input higher frequencies of the input audio signal into the first surface transducer and lower frequencies of the input audio signal into the second surface transducer.
  • 6. The audio device as claimed in claim 1, wherein the first surface transducer is optimized for reproduction of higher frequencies.
  • 7. The audio device as claimed in claim 1, wherein the second surface transducer is optimized for reproduction of lower frequencies.
  • 8. The audio device as claimed in claim 1, further comprising a third surface transducer positioned to excite the first modes of oscillation in the first surface.
  • 9. The audio device as claimed in claim 8, wherein the first surface transducer is positioned at one end of the one of the first surface and the third surface transducer is positioned at an opposite end of the first surface.
  • 10. The audio device as claimed in claim 1, wherein the audio device comprises a smartphone.
  • 11. The audio device as claimed in claim 10, wherein the first surface comprises a screen of the audio device.
US Referenced Citations (236)
Number Name Date Kind
3686927 Scharton Aug 1972 A
4902136 Mueller et al. Feb 1990 A
5684722 Thorner et al. Nov 1997 A
5748578 Schell May 1998 A
5857986 Moriyasu Jan 1999 A
6050393 Murai et al. Apr 2000 A
6278790 Davis Aug 2001 B1
6332029 Azima Dec 2001 B1
6388520 Wada et al. May 2002 B2
6567478 Oishi et al. May 2003 B2
6580796 Kuroki Jun 2003 B1
6683437 Tierling Jan 2004 B2
6703550 Chu Mar 2004 B2
6762745 Braun et al. Jul 2004 B1
6768779 Nielsen Jul 2004 B1
6784740 Tabatabaei Aug 2004 B1
6906697 Rosenberg Jun 2005 B2
7154470 Tierling Dec 2006 B2
7277678 Rozenblit et al. Oct 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7392066 Haparnas Jun 2008 B2
7456688 Okazaki et al. Nov 2008 B2
7623114 Rank Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7791588 Tierling et al. Sep 2010 B2
7979146 Ullrich et al. Jul 2011 B2
8068025 Devenyi et al. Nov 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8102364 Tierling Jan 2012 B2
8325144 Tierling et al. Dec 2012 B1
8427286 Grant et al. Apr 2013 B2
8441444 Moore et al. May 2013 B2
8466778 Hwang Jun 2013 B2
8480240 Kashiyama Jul 2013 B2
8572293 Cruz-Hernandez et al. Oct 2013 B2
8572296 Shasha et al. Oct 2013 B2
8593269 Grant et al. Nov 2013 B2
8648829 Shahoian et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8947216 Da Costa et al. Feb 2015 B2
8981915 Birnbaum et al. Mar 2015 B2
8994518 Gregorio et al. Mar 2015 B2
9030428 Fleming May 2015 B2
9063570 Weddle et al. Jun 2015 B2
9083821 Hughes Jul 2015 B2
9092059 Bhatia Jul 2015 B2
9117347 Matthews Aug 2015 B2
9128523 Buuck et al. Sep 2015 B2
9164587 Da Costa et al. Oct 2015 B2
9196135 Shah et al. Nov 2015 B2
9248840 Truong Feb 2016 B2
9326066 Klippel Apr 2016 B2
9329721 Buuck et al. May 2016 B1
9354704 Lacroix et al. May 2016 B2
9368005 Cruz-Hernandez et al. Jun 2016 B2
9495013 Underkoffler et al. Nov 2016 B2
9507423 Gandhi et al. Nov 2016 B2
9513709 Gregorio et al. Dec 2016 B2
9520036 Buuck et al. Dec 2016 B1
9588586 Rihn Mar 2017 B2
9640047 Choi et al. May 2017 B2
9652041 Jiang et al. May 2017 B2
9696859 Heller et al. Jul 2017 B1
9697450 Lee Jul 2017 B1
9715300 Sinclair et al. Jul 2017 B2
9842476 Rihn et al. Dec 2017 B2
9864567 Seo Jan 2018 B2
9881467 Levesque Jan 2018 B2
9886829 Levesque Feb 2018 B2
9946348 Ulrich et al. Apr 2018 B2
9947186 Macours Apr 2018 B2
9959744 Koskan et al. May 2018 B2
9965092 Smith May 2018 B2
10032550 Zhang et al. Jul 2018 B1
10055950 Saboune et al. Aug 2018 B2
10074246 Da Costa et al. Sep 2018 B2
10110152 Hajati Oct 2018 B1
10171008 Nishitani Jan 2019 B2
10175763 Shah Jan 2019 B2
10264348 Harris Apr 2019 B1
10275087 Smith Apr 2019 B1
10447217 Zhao et al. Oct 2019 B2
10564727 Billington et al. Feb 2020 B2
10620704 Rand et al. Apr 2020 B2
10667051 Stahl May 2020 B2
10732714 Rao et al. Aug 2020 B2
10782785 Hu et al. Sep 2020 B2
10795443 Hu et al. Oct 2020 B2
10820100 Stahl et al. Oct 2020 B2
10828672 Stahl et al. Nov 2020 B2
10832537 Doy et al. Nov 2020 B2
10848886 Rand Nov 2020 B2
10969871 Rand et al. Apr 2021 B2
20010043714 Asada Nov 2001 A1
20020018578 Burton Feb 2002 A1
20030068053 Chu Apr 2003 A1
20030214485 Roberts Nov 2003 A1
20050031140 Browning Feb 2005 A1
20050134562 Grant et al. Jun 2005 A1
20060028095 Maruyama et al. Feb 2006 A1
20060197753 Hotelling Sep 2006 A1
20060284856 Soss Dec 2006 A1
20080077367 Odajima Mar 2008 A1
20080226109 Yamakata Sep 2008 A1
20080240458 Goldstein et al. Oct 2008 A1
20080293453 Atlas et al. Nov 2008 A1
20080316181 Nurmi Dec 2008 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090079690 Watson et al. Mar 2009 A1
20090088220 Persson Apr 2009 A1
20090096632 Ullrich et al. Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090128306 Luden et al. May 2009 A1
20090153499 Kim et al. Jun 2009 A1
20090278819 Goldenberg et al. Nov 2009 A1
20100013761 Birnbaum et al. Jan 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100260371 Afshar Oct 2010 A1
20100261526 Anderson et al. Oct 2010 A1
20110056763 Tanase Mar 2011 A1
20110075835 Hill Mar 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110161537 Chang Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20120011436 Jinkinson et al. Jan 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120112894 Yang et al. May 2012 A1
20120206246 Cruz-Hernandez et al. Aug 2012 A1
20120206247 Bhatia et al. Aug 2012 A1
20120229264 Company Bosch et al. Sep 2012 A1
20120253698 Cokonaj Oct 2012 A1
20120274243 Sumioka Nov 2012 A1
20120306631 Hughes Dec 2012 A1
20130016855 Lee et al. Jan 2013 A1
20130027359 Schevin et al. Jan 2013 A1
20130038792 Quigley et al. Feb 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130141382 Simmons et al. Jun 2013 A1
20130275058 Awad Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20140056461 Afshar Feb 2014 A1
20140064516 Cruz-Hernandez et al. Mar 2014 A1
20140079248 Short et al. Mar 2014 A1
20140085064 Crawley et al. Mar 2014 A1
20140118126 Garg et al. May 2014 A1
20140119244 Steer et al. May 2014 A1
20140139327 Bau et al. May 2014 A1
20140226068 Lacroix et al. Aug 2014 A1
20140292501 Lim et al. Oct 2014 A1
20140340209 Lacroix et al. Nov 2014 A1
20140347176 Modarres et al. Nov 2014 A1
20150070149 Cruz-Hernandez et al. Mar 2015 A1
20150070151 Cruz-Hernandez et al. Mar 2015 A1
20150070260 Saboune et al. Mar 2015 A1
20150084752 Heubel et al. Mar 2015 A1
20150117686 Kim Apr 2015 A1
20150130767 Myers et al. May 2015 A1
20150208189 Tsai Jul 2015 A1
20150216762 Oohashi et al. Aug 2015 A1
20150234464 Yliaho Aug 2015 A1
20150324116 Marsden et al. Nov 2015 A1
20150341714 Ahn Nov 2015 A1
20160004311 Yliaho Jan 2016 A1
20160007095 Lacroix Jan 2016 A1
20160063826 Morrell et al. Mar 2016 A1
20160070392 Wang et al. Mar 2016 A1
20160074278 Muench et al. Mar 2016 A1
20160132118 Park et al. May 2016 A1
20160162031 Westerman et al. Jun 2016 A1
20160179203 Modarres et al. Jun 2016 A1
20160239089 Taninaka et al. Aug 2016 A1
20160246378 Sampanes et al. Aug 2016 A1
20160358605 Ganong, III et al. Dec 2016 A1
20170052593 Jiang et al. Feb 2017 A1
20170078804 Guo et al. Mar 2017 A1
20170083096 Rihn et al. Mar 2017 A1
20170090572 Holenarsipur et al. Mar 2017 A1
20170090573 Hajati et al. Mar 2017 A1
20170153760 Chawda et al. Jun 2017 A1
20170168574 Zhang Jun 2017 A1
20170169674 Macours Jun 2017 A1
20170220197 Matsumoto Aug 2017 A1
20170256145 Macours et al. Sep 2017 A1
20170277350 Wang et al. Sep 2017 A1
20170357440 Tse Dec 2017 A1
20180059733 Gault et al. Mar 2018 A1
20180059793 Hajati Mar 2018 A1
20180067557 Robert et al. Mar 2018 A1
20180074637 Rosenberg et al. Mar 2018 A1
20180082673 Tzanetos Mar 2018 A1
20180084362 Zhang et al. Mar 2018 A1
20180151036 Cha et al. May 2018 A1
20180158289 Vasilev et al. Jun 2018 A1
20180159452 Eke et al. Jun 2018 A1
20180159457 Eke Jun 2018 A1
20180159545 Eke et al. Jun 2018 A1
20180160227 Lawrence et al. Jun 2018 A1
20180165925 Israr et al. Jun 2018 A1
20180178114 Mizuta et al. Jun 2018 A1
20180182212 Li et al. Jun 2018 A1
20180183372 Li et al. Jun 2018 A1
20180196567 Klein et al. Jul 2018 A1
20180237033 Hakeem et al. Aug 2018 A1
20180253123 Levesque et al. Sep 2018 A1
20180255411 Lin et al. Sep 2018 A1
20180267897 Jeong Sep 2018 A1
20180294757 Feng et al. Oct 2018 A1
20180301060 Israr et al. Oct 2018 A1
20180321748 Rao et al. Nov 2018 A1
20180329172 Tabuchi Nov 2018 A1
20180335848 Moussette et al. Nov 2018 A1
20180367897 Bjork et al. Dec 2018 A1
20190064925 Kim et al. Feb 2019 A1
20190069088 Seiler Feb 2019 A1
20190073078 Sheng et al. Mar 2019 A1
20190103829 Vasudevan et al. Apr 2019 A1
20190138098 Shah May 2019 A1
20190163234 Kim May 2019 A1
20190196596 Yokoyama et al. Jun 2019 A1
20190206396 Chen Jul 2019 A1
20190215349 Adams et al. Jul 2019 A1
20190220095 Ogita et al. Jul 2019 A1
20190227628 Rand et al. Jul 2019 A1
20190228619 Yokoyama et al. Jul 2019 A1
20190114496 Lesso Aug 2019 A1
20190235629 Hu et al. Aug 2019 A1
20190294247 Hu et al. Sep 2019 A1
20190296674 Janko et al. Sep 2019 A1
20190297418 Stahl Sep 2019 A1
20190311590 Doy et al. Oct 2019 A1
20190341903 Kim Nov 2019 A1
20200117506 Chan Apr 2020 A1
20200401292 Lorenz et al. Dec 2020 A1
20210108975 Peso Parada et al. Apr 2021 A1
Foreign Referenced Citations (39)
Number Date Country
2002347829 Apr 2003 AU
103165328 Jun 2013 CN
103403796 Nov 2013 CN
204903757 Dec 2015 CN
105264551 Jan 2016 CN
106438890 Feb 2017 CN
106950832 Jul 2017 CN
107665051 Feb 2018 CN
0784844 Jun 2005 EP
2363785 Sep 2011 EP
2487780 Aug 2012 EP
2600225 Jun 2013 EP
2846218 Mar 2015 EP
2846229 Mar 2015 EP
2846329 Mar 2015 EP
2988528 Feb 2016 EP
3125508 Feb 2017 EP
3379382 Sep 2018 EP
201620746 Jan 2017 GB
201747044027 Aug 2018 IN
H02130433 May 1990 JP
08149006 Jun 1996 JP
2011059208 Mar 2011 JP
6026751 Nov 2016 JP
6250985 Dec 2017 JP
6321351 May 2018 JP
20120126446 Nov 2012 KR
2013104919 Jul 2013 WO
2013186845 Dec 2013 WO
2014018086 Jan 2014 WO
2014094283 Jun 2014 WO
2016105496 Jun 2016 WO
2016164193 Oct 2016 WO
2017113651 Jul 2017 WO
2018053159 Mar 2018 WO
2018067613 Apr 2018 WO
2018125347 Jul 2018 WO
2020004840 Jan 2020 WO
2020055405 Mar 2020 WO
Non-Patent Literature Citations (28)
Entry
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050964, dated Sep. 3, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050770, dated Jul. 5, 2019.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/US2018/031329, dated Jul. 20, 2018.
Combined Search and Examination Report, UKIPO, Application No. GB1720424.9, dated Jun. 5, 2018.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/052991, dated Mar. 17, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/023342, dated Jun. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050823, dated Jun. 30, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051037, dated Jul. 9, 2020.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/GB2020/050822, dated Jul. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051035, dated Jul. 10, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/024864, dated Jul. 6, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050822, dated Aug. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051438, dated Sep. 28, 2020.
First Examination Opinion Notice, State Intellectual Property Office of the People's Republic of China, Application No. 201880037435.X, dated Dec. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/056610, dated Jan. 21, 2021.
Invitation to Pay Additional Fees, Partial International Search Report and Provisional Opinion of the International Searching Authority, International Application No. PCT/US2020/052537, dated Jan. 14, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/052537, dated Mar. 9, 2021.
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2019-7036236, dated Jun. 29, 2021.
Combined Search and Examination Report, United Kingdom Intellectual Property Office, Application No. GB2018051.9, dated Jun. 30, 2021.
Communication pursuant to Rule 164(2)(b) and Article 94(3) EPC, European Patent Office, Application No. 18727512.8, dated Jul. 8, 2021.
Gottfried Behler: “Measuring the Loudspeaker's Impedance during Operation for the Derivation of the Voice Coil Temperature”, AES Convention Preprint, Feb. 25, 1995 (Feb. 25, 1995), Paris.
Office Action of the Intellectual Property Office, ROC (Taiwan) Patent Application No. 107115475, datd Apr. 30, 2021.
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800208570, dated Jun. 3, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/021908, dated Jun. 9, 2021.
First Office Action, China National Intellectual Property Administration, Patent Application Number 2019800211287, dated Jul. 5, 2021.
Steinbach et al., Haptic Data Compression and Communication, IEEE Signal Processing Magazine, Jan. 2011.
Pezent et al., Syntacts Open-Source Software and Hardware for Audio-Controlled Haptics, IEEE Transactions on Haptics, vol. 14, No. 1, Jan.-Mar. 2021.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2018051.9, dated Nov. 5, 2021.
Related Publications (1)
Number Date Country
20190028807 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62535400 Jul 2017 US