The present invention relates to a surface treating machine having a frame and an undercarriage supporting a tool for contacting a floor.
Such a machine is known from EP-A-0 788 761. In this known machine, the support and spring means for the tool comprises a pressing wheel for varying the magnitude and position of the pressing force of the tool relative to the surface. In this way it is attempted to allow a user to adjust the pressing wheel in order to obtain the desired forward traction force from the tool depending on the conditions of the surface. In the embodiment of
The object of the present invention is to provide an improved surface treating machine.
For this purpose, the surface treating machine according to the invention is characterised by the features of the characterising portion of claim 1.
Due to the distribution of the spring-like means around the axis of rotation, a concentrated pressure at a distinct location on the tool is avoided. On the contrary, according to the invention, the pressure of the spring-like means is distributed over the entire circumference of the tool. This leads to a more homogeneous treating efficiency and, in the case of cleaning, avoids the danger of visible stripes. Furthermore, the distributed pressure on a tool ensures that the tool is fully in contact with the floor which not only leads to improved treating/cleaning performance, but also avoids abrupt behaviour changes of the machine due to variation in the traction between the tool and the surface or due to uneveness of the surface.
An advantageous embodiment of the machine according to the invention has the features of a support and spring means wherein a first support means is attached to the tool. A second support means is positioned at a distance from the first support means and fixed to the other end of the drive and coupling means. A spring-like means is positioned between the first and second support means to enable the first and second support means to swivel with respect to each other. The second support means is connected to the frame in a defined non-parallel orientation with respect to a surface.
In this embodiment, the uneven/non-symmetrical pressure distribution around the circumference of the tool is caused by the inclined or non-parallel orientation of the second support means relative to the first support means. This leads to a higher compression of the spring-like means at one (stationary) location on the circumference of the first and second support means and a gradual release of the compression towards an opposite location.
In practice, the orientation of the second support means will be fixed such that a pressure is exerted on the surface which results in a smooth forward drive, whereas normally occurring side forces are eliminated or at least reduced considerably. However, the orientation may be adjustable in order to adapt the machine to different conditions.
Preferably, not only the orientation of the axis of rotation is diverted from a vertical one, but it is also possible to offset the axis of rotation in lateral direction of the machine in order to approach the optimum theoretical centre of the pressure distribution and to obtain desired driving forces exerted by the tool on the machine.
A further advantage obtained by the invention is that tolerances in the first and second support discs and the angle in between do not lead to different behaviours between various machines, as the system according to the invention is able to compensate for these tolerances. This results in a simple and uncritical assembly without needs for adjustment.
The invention will hereafter be further explained with reference to the drawings showing an embodiment of the surface treating machine according to the invention.
The drawings, and in first instance
The machine comprises a body of frame 1 and an undercarriage 2, 3 to enable the machine to move over a surface or floor S. The undercarriage includes in this case two front wheels 2 and at the rear double castor wheels 3 so that the machine is supported by the undercarriage 2, 3 in a defined orientation with respect to the surface S. In use, an operator is walking behind the machine and is steering it through a steering bar 4 or the like.
The machine further comprises a head 5 including a tool 6, such as a disc-shaped brush, to act on the floor S.
The second support disc 9 is rotatably drivable around an axis of rotation 12 by means of an (electric) motor 13, in this case through a belt drive comprising a motor pulley 14 and a belt 15 guided around the pulley 14 and the circumferential flange of the second support disc. The axis of rotation 12 is formed by the fixed shaft 10. Of course, other drive means and transmission means are conceivable. The torque from the second support disc 9 is transmitted to the first support disc 8 through a cardanic coupling 16 (including a spherical cap and hexagon) in order to drive the tool 6, but to allow a swivelling motion thereof with respect to the second support disc 9.
Between the first and second support discs 8 and 9 there are provided 6 to 12 spring-like means, in this case coil springs 17 which are distributed around the axis of rotation 12. The coil springs exert a pressure force onto the first support disc 8 which is chosen according to the aimed tool-pressure in relation to the relative position of the cleaning/scrubbing means and the machine weight. The pressure force is for example between 50 and 200 N. The springs 17 will urge the first support disc 8 and therefore the tool 6 to a symmetrical position with respect to the second support disc 9 (see
The whole head 5 of the unit is adjustably mounted to the frame 1, at least such that the head 5 and therefore the shaft 10 may rotate with respect to the frame 1 around an axis substantially perpendicular to the longitudinal axis of the machine. This rotation can preferably be within the range of 5 to 10 degrees with respect to the horizontal. This rotation is provided in order to obtain a position of the second support disc as is shown in
During the rotation of the discs 8, 9 around the axis of rotation 12, all springs 17 are compressed and released consecutively and create a pressure distribution on the tool without any peaks. This will improve the cleaning efficiency of the tool 6 and will avoid the danger of visual stripes on the surface to be maintained.
The invention is not restricted to the embodiment shown in the drawing and described hereinbefore, but may be varied in different manners within the scope of the accompanying claims. For example, it is possible to use all kinds of other springs, or rubber spring-like elements, rather than coil springs as shown.
Number | Date | Country | Kind |
---|---|---|---|
01202074 | May 2001 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2956296 | Ardido | Oct 1960 | A |
5922968 | Briscoe | Jul 1999 | A |
Number | Date | Country |
---|---|---|
313 345 | Dec 1928 | DE |
94 04 369 | Jun 1994 | DE |
Number | Date | Country | |
---|---|---|---|
20020178522 A1 | Dec 2002 | US |